Systems Biology
Elucidating the Role of Wildtype and Variant FGFR2 Structural Dynamics in (Dys)Function and Disorder
Int J Mol Sci. 2024 Apr 20;25(8):4523. doi: 10.3390/ijms25084523.
ABSTRACT
The fibroblast growth factor receptor 2 (FGFR2) gene is one of the most extensively studied genes with many known mutations implicated in several human disorders, including oncogenic ones. Most FGFR2 disease-associated gene mutations are missense mutations that result in constitutive activation of the FGFR2 protein and downstream molecular pathways. Many tertiary structures of the FGFR2 kinase domain are publicly available in the wildtype and mutated forms and in the inactive and activated state of the receptor. The current literature suggests a molecular brake inhibiting the ATP-binding A loop from adopting the activated state. Mutations relieve this brake, triggering allosteric changes between active and inactive states. However, the existing analysis relies on static structures and fails to account for the intrinsic structural dynamics. In this study, we utilize experimentally resolved structures of the FGFR2 tyrosine kinase domain and machine learning to capture the intrinsic structural dynamics, correlate it with functional regions and disease types, and enrich it with predicted structures of variants with currently no experimentally resolved structures. Our findings demonstrate the value of machine learning-enabled characterizations of structure dynamics in revealing the impact of mutations on (dys)function and disorder in FGFR2.
PMID:38674107 | DOI:10.3390/ijms25084523
Mechanism of Decision Making between Autophagy and Apoptosis Induction upon Endoplasmic Reticulum Stress
Int J Mol Sci. 2024 Apr 15;25(8):4368. doi: 10.3390/ijms25084368.
ABSTRACT
Dynamic regulation of the cellular proteome is mainly controlled in the endoplasmic reticulum (ER). Accumulation of misfolded proteins due to ER stress leads to the activation of unfolded protein response (UPR). The primary role of UPR is to reduce the bulk of damages and try to drive back the system to the former or a new homeostatic state by autophagy, while an excessive level of stress results in apoptosis. It has already been proven that the proper order and characteristic features of both surviving and self-killing mechanisms are controlled by negative and positive feedback loops, respectively. The new results suggest that these feedback loops are found not only within but also between branches of the UPR, fine-tuning the response to ER stress. In this review, we summarize the recent knowledge of the dynamical characteristic of endoplasmic reticulum stress response mechanism by using both theoretical and molecular biological techniques. In addition, this review pays special attention to describing the mechanism of action of the dynamical features of the feedback loops controlling cellular life-and-death decision upon ER stress. Since ER stress appears in diseases that are common worldwide, a more detailed understanding of the behaviour of the stress response is of medical importance.
PMID:38673953 | DOI:10.3390/ijms25084368
Comparative Transcriptomics of Fat Bodies between Symbiotic and Quasi-Aposymbiotic Adult Females of <em>Blattella germanica</em> with Emphasis on the Metabolic Integration with Its Endosymbiont <em>Blattabacterium</em> and Its Immune System
Int J Mol Sci. 2024 Apr 11;25(8):4228. doi: 10.3390/ijms25084228.
ABSTRACT
We explored the metabolic integration of Blattella germanica and its obligate endosymbiont Blattabacterium cuenoti by the transcriptomic analysis of the fat body of quasi-aposymbiotic cockroaches, where the endosymbionts were almost entirely removed with rifampicin. Fat bodies from quasi-aposymbiotic insects displayed large differences in gene expression compared to controls. In quasi-aposymbionts, the metabolism of phenylalanine and tyrosine involved in cuticle sclerotization and pigmentation increased drastically to compensate for the deficiency in the biosynthesis of these amino acids by the endosymbionts. On the other hand, the uricolytic pathway and the biosynthesis of uric acid were severely decreased, probably because the reduced population of endosymbionts was unable to metabolize urea to ammonia. Metabolite transporters that could be involved in the endosymbiosis process were identified. Immune system and antimicrobial peptide (AMP) gene expression was also reduced in quasi-aposymbionts, genes encoding peptidoglycan-recognition proteins, which may provide clues for the maintenance of the symbiotic relationship, as well as three AMP genes whose involvement in the symbiotic relationship will require additional analysis. Finally, a search for AMP-like factors that could be involved in controlling the endosymbiont identified two orphan genes encoding proteins smaller than 200 amino acids underexpressed in quasi-aposymbionts, suggesting a role in the host-endosymbiont relationship.
PMID:38673813 | DOI:10.3390/ijms25084228
Deoxyxylulose 5-Phosphate Synthase Does Not Play a Major Role in Regulating the Methylerythritol 4-Phosphate Pathway in Poplar
Int J Mol Sci. 2024 Apr 10;25(8):4181. doi: 10.3390/ijms25084181.
ABSTRACT
The plastidic 2-C-methylerythritol 4-phosphate (MEP) pathway supplies the precursors of a large variety of essential plant isoprenoids, but its regulation is still not well understood. Using metabolic control analysis (MCA), we examined the first enzyme of this pathway, 1-deoxyxylulose 5-phosphate synthase (DXS), in multiple grey poplar (Populus × canescens) lines modified in their DXS activity. Single leaves were dynamically labeled with 13CO2 in an illuminated, climate-controlled gas exchange cuvette coupled to a proton transfer reaction mass spectrometer, and the carbon flux through the MEP pathway was calculated. Carbon was rapidly assimilated into MEP pathway intermediates and labeled both the isoprene released and the IDP+DMADP pool by up to 90%. DXS activity was increased by 25% in lines overexpressing the DXS gene and reduced by 50% in RNA interference lines, while the carbon flux in the MEP pathway was 25-35% greater in overexpressing lines and unchanged in RNA interference lines. Isoprene emission was also not altered in these different genetic backgrounds. By correlating absolute flux to DXS activity under different conditions of light and temperature, the flux control coefficient was found to be low. Among isoprenoid end products, isoprene itself was unchanged in DXS transgenic lines, but the levels of the chlorophylls and most carotenoids measured were 20-30% less in RNA interference lines than in overexpression lines. Our data thus demonstrate that DXS in the isoprene-emitting grey poplar plays only a minor part in controlling flux through the MEP pathway.
PMID:38673766 | DOI:10.3390/ijms25084181
Machine Learning Prediction of Tongue Pressure in Elderly Patients with Head and Neck Tumor: A Cross-Sectional Study
J Clin Med. 2024 Apr 18;13(8):2363. doi: 10.3390/jcm13082363.
ABSTRACT
Background: This investigation sought to cross validate the predictors of tongue pressure recovery in elderly patients' post-treatment for head and neck tumors, leveraging advanced machine learning techniques. Methods: By employing logistic regression, support vector regression, random forest, and extreme gradient boosting, the study analyzed an array of variables including patient demographics, surgery types, dental health status, and age, drawn from comprehensive medical records and direct tongue pressure assessments. Results: Among the models, logistic regression emerged as the most effective, demonstrating an accuracy of 0.630 [95% confidence interval (CI): 0.370-0.778], F1 score of 0.688 [95% confidence interval (CI): 0.435-0.853], precision of 0.611 [95% confidence interval (CI): 0.313-0.801], recall of 0.786 [95% confidence interval (CI): 0.413-0.938] and an area under the receiver operating characteristic curve of 0.626 [95% confidence interval (CI): 0.409-0.806]. This model distinctly highlighted the significance of glossectomy (p = 0.039), the presence of functional teeth (p = 0.043), and the patient's age (p = 0.044) as pivotal factors influencing tongue pressure, setting the threshold for statistical significance at p < 0.05. Conclusions: The analysis underscored the critical role of glossectomy, the presence of functional natural teeth, and age as determinants of tongue pressure in logistics regression, with the presence of natural teeth and the tumor site located in the tongue consistently emerging as the key predictors across all computational models employed in this study.
PMID:38673635 | DOI:10.3390/jcm13082363
Urinary Biomarkers for Lupus Nephritis: A Systems Biology Approach
J Clin Med. 2024 Apr 18;13(8):2339. doi: 10.3390/jcm13082339.
ABSTRACT
Systemic lupus erythematosus (SLE) is the prototypical systemic autoimmune disorder. Kidney involvement, termed lupus nephritis (LN), is seen in 40-60% of patients with systemic lupus erythematosus (SLE). After the diagnosis, serial measurement of proteinuria is the most common method of monitoring treatment response and progression. However, present treatments for LN-corticosteroids and immunosuppressants-target inflammation, not proteinuria. Furthermore, subclinical renal inflammation can persist despite improving proteinuria. Serial kidney biopsies-the gold standard for disease monitoring-are also not feasible due to their inherent risk of complications. Biomarkers that reflect the underlying renal inflammatory process and better predict LN progression and treatment response are urgently needed. Urinary biomarkers are particularly relevant as they can be measured non-invasively and may better reflect the compartmentalized renal response in LN, unlike serum studies that are non-specific to the kidney. The past decade has overseen a boom in applying cutting-edge technologies to dissect the pathogenesis of diseases at the molecular and cellular levels. Using these technologies in LN is beginning to reveal novel disease biomarkers and therapeutic targets for LN, potentially improving patient outcomes if successfully translated to clinical practice.
PMID:38673612 | DOI:10.3390/jcm13082339
The Use of Artificial Intelligence in Head and Neck Cancers: A Multidisciplinary Survey
J Pers Med. 2024 Mar 25;14(4):341. doi: 10.3390/jpm14040341.
ABSTRACT
Artificial intelligence (AI) approaches have been introduced in various disciplines but remain rather unused in head and neck (H&N) cancers. This survey aimed to infer the current applications of and attitudes toward AI in the multidisciplinary care of H&N cancers. From November 2020 to June 2022, a web-based questionnaire examining the relationship between AI usage and professionals' demographics and attitudes was delivered to different professionals involved in H&N cancers through social media and mailing lists. A total of 139 professionals completed the questionnaire. Only 49.7% of the respondents reported having experience with AI. The most frequent AI users were radiologists (66.2%). Significant predictors of AI use were primary specialty (V = 0.455; p < 0.001), academic qualification and age. AI's potential was seen in the improvement of diagnostic accuracy (72%), surgical planning (64.7%), treatment selection (57.6%), risk assessment (50.4%) and the prediction of complications (45.3%). Among participants, 42.7% had significant concerns over AI use, with the most frequent being the 'loss of control' (27.6%) and 'diagnostic errors' (57.0%). This survey reveals limited engagement with AI in multidisciplinary H&N cancer care, highlighting the need for broader implementation and further studies to explore its acceptance and benefits.
PMID:38672968 | DOI:10.3390/jpm14040341
Volatile Profiling of Spirulina Food Supplements
Foods. 2024 Apr 19;13(8):1257. doi: 10.3390/foods13081257.
ABSTRACT
Spirulina, a cyanobacterium widely used as a food supplement due to its high nutrient value, contains volatile organic compounds (VOCs). It is crucial to assess the presence of VOCs in commercial spirulina products, as they could influence sensory quality, various processes, and technological aspects. In this study, the volatile profiles of seventeen commercial spirulina food supplements were determined using headspace solid-phase microextraction (HS-SPME), coupled with gas chromatography-mass spectrometry (GC-MS). The identification of volatile compounds was achieved using a workflow that combined data processing with software tools and reference databases, as well as retention indices (RI) and elution order data. A total of 128 VOCs were identified as belonging to chemical groups of alkanes (47.2%), ketones (25.7%), aldehydes (10.9%), alcohols (8.4%), furans (3.7%), alkenes (1.8%), esters (1.1%), pyrazines (0.8%), and other compounds (0.4%). Major volatiles among all samples were hydrocarbons, especially heptadecane and heptadec-8-ene, followed by ketones (i.e., 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)-3-buten-2-one, β-ionone, 2,2,6-trimethylcyclohexan-1-one), aldehydes (i.e., hexanal), and the alcohol oct-1-en-3-ol. Several volatiles were found in spirulina dietary supplements for the first time, including 6,10-dimethylundeca-5,9-dien-2-one (geranylacetone), 6,10,14-trimethylpentadecan-2-one, hept-2-enal, octanal, nonanal, oct-2-en-1-ol, heptan-1-ol, nonan-1-ol, tetradec-9-en-1-ol, 4,4-dimethylcyclohex-2-en-1-ol, 2,6-diethylpyrazine, and 1-(2,5-dimethylfuran-3-yl) ethanone. The methodology used for VOC analysis ensured high accuracy, reliability, and confidence in compound identification. Results reveal a wide variety of volatiles in commercial spirulina products, with numerous newly discovered compounds, prompting further research on sensory quality and production methods.
PMID:38672929 | DOI:10.3390/foods13081257
Fibrinaloid Microclots and Atrial Fibrillation
Biomedicines. 2024 Apr 17;12(4):891. doi: 10.3390/biomedicines12040891.
ABSTRACT
Atrial fibrillation (AF) is a comorbidity of a variety of other chronic, inflammatory diseases for which fibrinaloid microclots are a known accompaniment (and in some cases, a cause, with a mechanistic basis). Clots are, of course, a well-known consequence of atrial fibrillation. We here ask the question whether the fibrinaloid microclots seen in plasma or serum may in fact also be a cause of (or contributor to) the development of AF. We consider known 'risk factors' for AF, and in particular, exogenous stimuli such as infection and air pollution by particulates, both of which are known to cause AF. The external accompaniments of both bacterial (lipopolysaccharide and lipoteichoic acids) and viral (SARS-CoV-2 spike protein) infections are known to stimulate fibrinaloid microclots when added in vitro, and fibrinaloid microclots, as with other amyloid proteins, can be cytotoxic, both by inducing hypoxia/reperfusion and by other means. Strokes and thromboembolisms are also common consequences of AF. Consequently, taking a systems approach, we review the considerable evidence in detail, which leads us to suggest that it is likely that microclots may well have an aetiological role in the development of AF. This has significant mechanistic and therapeutic implications.
PMID:38672245 | DOI:10.3390/biomedicines12040891
Genomic and environmental controls on Castellaniella biogeography in an anthropogenically disturbed subsurface
Environ Microbiome. 2024 Apr 26;19(1):26. doi: 10.1186/s40793-024-00570-9.
ABSTRACT
Castellaniella species have been isolated from a variety of mixed-waste environments including the nitrate and multiple metal-contaminated subsurface at the Oak Ridge Reservation (ORR). Previous studies examining microbial community composition and nitrate removal at ORR during biostimulation efforts reported increased abundances of members of the Castellaniella genus concurrent with increased denitrification rates. Thus, we asked how genomic and abiotic factors control the Castellaniella biogeography at the site to understand how these factors may influence nitrate transformation in an anthropogenically impacted setting. We report the isolation and characterization of several Castellaniella strains from the ORR subsurface. Five of these isolates match at 100% identity (at the 16S rRNA gene V4 region) to two Castellaniella amplicon sequence variants (ASVs), ASV1 and ASV2, that have persisted in the ORR subsurface for at least 2 decades. However, ASV2 has consistently higher relative abundance in samples taken from the site and was also the dominant blooming denitrifier population during a prior biostimulation effort. We found that the ASV2 representative strain has greater resistance to mixed metal stress than the ASV1 representative strains. We attribute this resistance, in part, to the large number of unique heavy metal resistance genes identified on a genomic island in the ASV2 representative genome. Additionally, we suggest that the relatively lower fitness of ASV1 may be connected to the loss of the nitrous oxide reductase (nos) operon (and associated nitrous oxide reductase activity) due to the insertion at this genomic locus of a mobile genetic element carrying copper resistance genes. This study demonstrates the value of integrating genomic, environmental, and phenotypic data to characterize the biogeography of key microorganisms in contaminated sites.
PMID:38671539 | DOI:10.1186/s40793-024-00570-9
Apolipoprotein E controls Dectin-1-dependent development of monocyte-derived alveolar macrophages upon pulmonary β-glucan-induced inflammatory adaptation
Nat Immunol. 2024 Apr 26. doi: 10.1038/s41590-024-01830-z. Online ahead of print.
ABSTRACT
The lung is constantly exposed to the outside world and optimal adaptation of immune responses is crucial for efficient pathogen clearance. However, mechanisms that lead to lung-associated macrophages' functional and developmental adaptation remain elusive. To reveal such mechanisms, we developed a reductionist model of environmental intranasal β-glucan exposure, allowing for the detailed interrogation of molecular mechanisms of pulmonary macrophage adaptation. Employing single-cell transcriptomics, high-dimensional imaging and flow cytometric characterization paired with in vivo and ex vivo challenge models, we reveal that pulmonary low-grade inflammation results in the development of apolipoprotein E (ApoE)-dependent monocyte-derived alveolar macrophages (ApoE+CD11b+ AMs). ApoE+CD11b+ AMs expressed high levels of CD11b, ApoE, Gpnmb and Ccl6, were glycolytic, highly phagocytic and produced large amounts of interleukin-6 upon restimulation. Functional differences were cell intrinsic, and myeloid cell-specific ApoE ablation inhibited Ly6c+ monocyte to ApoE+CD11b+ AM differentiation dependent on macrophage colony-stimulating factor secretion, promoting ApoE+CD11b+ AM cell death and thus impeding ApoE+CD11b+ AM maintenance. In vivo, β-glucan-elicited ApoE+CD11b+ AMs limited the bacterial burden of Legionella pneumophilia after infection and improved the disease outcome in vivo and ex vivo in a murine lung fibrosis model. Collectively these data identify ApoE+CD11b+ AMs generated upon environmental cues, under the control of ApoE signaling, as an essential determinant for lung adaptation enhancing tissue resilience.
PMID:38671323 | DOI:10.1038/s41590-024-01830-z
A systems biology-based mathematical model demonstrates the potential anti-stress effectiveness of a multi-nutrient botanical formulation
Sci Rep. 2024 Apr 26;14(1):9582. doi: 10.1038/s41598-024-60112-8.
ABSTRACT
Stress is an adaptive response to the stressors that adversely affects physiological and psychological health. Stress elicits HPA axis activation, resulting in cortisol release, ultimately contributing to oxidative, inflammatory, physiological and mental stress. Nutritional supplementations with antioxidant, anti-inflammatory, and stress-relieving properties are among widely preferred complementary approaches for the stress management. However, there is limited research on the potential combined impact of vitamins, minerals and natural ingredients on stress. In the present study, we have investigated the effect of a multi-nutrient botanical formulation, Nutrilite® Daily Plus, on clinical stress parameters. The stress-modulatory effects were quantified at population level using a customized sub-clinical inflammation mathematical model. The model suggested that combined intervention of botanical and micronutrients lead to significant decline in physical stress (75% decline), mental stress (70% decline), oxidative stress (55% decline) and inflammatory stress (75% decline) as evident from reduction in key stress parameters such as ROS, TNF-α, blood pressure, cortisol levels and PSS scores at both individual and population levels. Further, at the population level, the intervention relieved stress in 85% of individuals who moved towards a healthy state. The in silico studies strongly predicts the use of Gotukola based Nutrilite® Daily Plus as promising anti-stress formulation.
PMID:38671040 | DOI:10.1038/s41598-024-60112-8
Machine learning to understand risks for severe COVID-19 outcomes: a retrospective cohort study of immune-mediated inflammatory diseases, immunomodulatory medications, and comorbidities in a large US health-care system
Lancet Digit Health. 2024 May;6(5):e309-e322. doi: 10.1016/S2589-7500(24)00021-9.
ABSTRACT
BACKGROUND: In the context of immune-mediated inflammatory diseases (IMIDs), COVID-19 outcomes are incompletely understood and vary considerably depending on the patient population studied. We aimed to analyse severe COVID-19 outcomes and to investigate the effects of the pandemic time period and the risks associated with individual IMIDs, classes of immunomodulatory medications (IMMs), chronic comorbidities, and COVID-19 vaccination status.
METHODS: In this retrospective cohort study, clinical data were derived from the electronic health records of an integrated health-care system serving patients in 51 hospitals and 1085 clinics across seven US states (Providence St Joseph Health). Data were observed for patients (no age restriction) with one or more IMID and for unmatched controls without IMIDs. COVID-19 was identified with a positive nucleic acid amplification test result for SARS-CoV-2. Two timeframes were analysed: March 1, 2020-Dec 25, 2021 (pre-omicron period), and Dec 26, 2021-Aug 30, 2022 (omicron-predominant period). Primary outcomes were hospitalisation, mechanical ventilation, and mortality in patients with COVID-19. Factors, including IMID diagnoses, comorbidities, long-term use of IMMs, and COVID-19 vaccination status, were analysed with multivariable logistic regression (LR) and extreme gradient boosting (XGB).
FINDINGS: Of 2 167 656 patients tested for SARS-CoV-2, 290 855 (13·4%) had confirmed COVID-19: 15 397 (5·3%) patients with IMIDs and 275 458 (94·7%) without IMIDs. In the pre-omicron period, 169 993 (11·2%) of 1 517 295 people who were tested for COVID-19 tested positive, of whom 23 330 (13·7%) were hospitalised, 1072 (0·6%) received mechanical ventilation, and 5294 (3·1%) died. Compared with controls, patients with IMIDs and COVID-19 had higher rates of hospitalisation (1176 [14·6%] vs 22 154 [13·7%]; p=0·024) and mortality (314 [3·9%] vs 4980 [3·1%]; p<0·0001). In the omicron-predominant period, 120 862 (18·6%) of 650 361 patients tested positive for COVID-19, of whom 14 504 (12·0%) were hospitalised, 567 (0·5%) received mechanical ventilation, and 2001 (1·7%) died. Compared with controls, patients with IMIDs and COVID-19 (7327 [17·3%] of 42 249) had higher rates of hospitalisation (13 422 [11·8%] vs 1082 [14·8%]; p<0·0001) and mortality (1814 [1·6%] vs 187 [2·6%]; p<0·0001). Age was a risk factor for worse outcomes (adjusted odds ratio [OR] from 2·1 [95% CI 2·0-2·1]; p<0·0001 to 3·0 [2·9-3·0]; p<0·0001), whereas COVID-19 vaccination (from 0·082 [0·080-0·085]; p<0·0001 to 0·52 [0·50-0·53]; p<0·0001) and booster vaccination (from 2·1 [2·0-2·2]; p<0·0001 to 3·0 [2·9-3·0]; p<0·0001) status were associated with better outcomes. Seven chronic comorbidities were significant risk factors during both time periods for all three outcomes: atrial fibrillation, coronary artery disease, heart failure, chronic kidney disease, chronic obstructive pulmonary disease, chronic liver disease, and cancer. Two IMIDs, asthma (adjusted OR from 0·33 [0·32-0·34]; p<0·0001 to 0·49 [0·48-0·51]; p<0·0001) and psoriasis (from 0·52 [0·48-0·56] to 0·80 [0·74-0·87]; p<0·0001), were associated with a reduced risk of severe outcomes. IMID diagnoses did not appear to be significant risk factors themselves, but results were limited by small sample size, and vasculitis had high feature importance in LR. IMMs did not appear to be significant, but less frequently used IMMs were limited by sample size. XGB outperformed LR, with the area under the receiver operating characteristic curve for models across different time periods and outcomes ranging from 0·77 to 0·92.
INTERPRETATION: Our results suggest that age, chronic comorbidities, and not being fully vaccinated might be greater risk factors for severe COVID-19 outcomes in patients with IMIDs than the use of IMMs or the IMIDs themselves. Overall, there is a need to take age and comorbidities into consideration when developing COVID-19 guidelines for patients with IMIDs. Further research is needed for specific IMIDs (including IMID severity at the time of SARS-CoV-2 infection) and IMMs (considering dosage and timing before a patient's first COVID-19 infection).
FUNDING: Pfizer, Novartis, Janssen, and the National Institutes of Health.
PMID:38670740 | DOI:10.1016/S2589-7500(24)00021-9
Decoding the forces that shape muscle stem cell function
Curr Top Dev Biol. 2024;158:279-306. doi: 10.1016/bs.ctdb.2024.02.009. Epub 2024 Mar 5.
ABSTRACT
Skeletal muscle is a force-producing organ composed of muscle tissues, connective tissues, blood vessels, and nerves, all working in synergy to enable movement and provide support to the body. While robust biomechanical descriptions of skeletal muscle force production at the body or tissue level exist, little is known about force application on microstructures within the muscles, such as cells. Among various cell types, skeletal muscle stem cells reside in the muscle tissue environment and play a crucial role in driving the self-repair process when muscle damage occurs. Early evidence indicates that the fate and function of skeletal muscle stem cells are controlled by both biophysical and biochemical factors in their microenvironments, but much remains to accomplish in quantitatively describing the biophysical muscle stem cell microenvironment. This book chapter aims to review current knowledge on the influence of biophysical stresses and landscape properties on muscle stem cells in heath, aging, and diseases.
PMID:38670710 | DOI:10.1016/bs.ctdb.2024.02.009
Key Odorants Forming Aroma of Polish Mead: Influence of the Raw Material and Manufacturing Processes
J Agric Food Chem. 2024 Apr 26. doi: 10.1021/acs.jafc.4c01276. Online ahead of print.
ABSTRACT
Mead was analyzed by using the concept of molecular sensory science for the identification of key odorants. A total of 29 odor-active compounds were identified in mead by using gas chromatography olfactometry (GCO). Flavor dilution (FD) factors of identified compounds ranged from 1 to 16,384, compounds with FD factors ≥32 were quantitated by using stable isotopically substituted odorants as internal standards or external standard method, and odor activity values (OAVs) were calculated. Fifteen compounds showed OAVs ≥1: aldehydes (2-phenylacetaldehyde, 3-(methylsulfanyl)propanal), 4-hydroxy-3-methoxybenzaldehyde), esters (ethyl 3-methylbutanoate, ethyl propanoate, ethyl octanoate), alcohols (2-phenylethan-1-ol, 3- and 2-methylbutan-1-ol, 3-(methylsulyfanyl)propan-1-ol), furanons (4-hydroxy-2,5-dimethylfuran-3(2H)-one, 3-hydroxy-4,5-dimethylfuran-2(5H)-one), acids (3- and 2-methylbutanoic acid, acetic acid), 1,1-diethoxyethane, and 4-methylphenol. 2-Phenylacetaldehyde (OAV, 3100) was suggested as the compound with the biggest influence on the aroma of mead, followed by 4-hydroxy-2,5-dimethylfuran-3(2H)-one (OAV, 1900), 3-(methylsulfanyl)propanal (OAV, 890), and 2-phenylethan-1-ol (OAV, 680). Quantitative olfactory profile analysis revealed strong honey, malty, and alcoholic impressions. Omission experiments revealed that 3-(methylsulfanyl)propanal, 2-phenylethan-1-ol, 4-hydroxy-2,5-dimethylfuran-3(2H)-one, ethyl propanoate, ethyl 3-methylbutanoate, 2-phenylacetaldehyde, 3- and 2-methylbutanoic acid, 3-hydroxy-4,5-dimethylfuran-2(5H)-one, and 4-hydroxy-3-methoxybenzaldehyde were the key odorants in the mead. Determining concentrations of key odorants in important production steps showed that the fermentation and maturation stages had the strongest effect on the formation of mead aroma.
PMID:38670543 | DOI:10.1021/acs.jafc.4c01276
ProtoCode: Leveraging large language models (LLMs) for automated generation of machine-readable PCR protocols from scientific publications
SLAS Technol. 2024 Apr 24:100134. doi: 10.1016/j.slast.2024.100134. Online ahead of print.
ABSTRACT
Protocol standardization and sharing are crucial for reproducibility in life sciences. In spite of numerous efforts for standardized protocol description, adherence to these standards in literature remains largely inconsistent. Curation of protocols are especially challenging due to the labor intensive process, requiring expert domain knowledge of each experimental procedure. Recent advancements in Large Language Models (LLMs) offer a promising solution to interpret and curate knowledge from complex scientific literature. In this work, we develop ProtoCode, a tool leveraging fine-tune LLMs to curate protocols into intermediate representation formats which can be interpretable by both human and machine interfaces. Our proof-of-concept, focused on polymerase chain reaction (PCR) protocols, retrieves information from PCR protocols at an accuracy ranging 69-100% depending on the information content. In all tested protocols, we demonstrate that ProtoCode successfully converts literature-based protocols into correct operational files for multiple thermal cycler systems. In conclusion, ProtoCode can alleviate labor intensive curation and standardization of life science protocols to enhance research reproducibility by providing a reliable, automated means to process and standardize protocols. ProtoCode is freely available as a web server at https://curation.taxila.io/ProtoCode/.
PMID:38670311 | DOI:10.1016/j.slast.2024.100134
Respiratory syncytial virus seasonality in China: implications for intervention
Lancet Glob Health. 2024 Apr 23:S2214-109X(24)00135-9. doi: 10.1016/S2214-109X(24)00135-9. Online ahead of print.
NO ABSTRACT
PMID:38670133 | DOI:10.1016/S2214-109X(24)00135-9
Analysis of synthetic cellular barcodes in the genome and transcriptome with BARtab and bartools
Cell Rep Methods. 2024 Apr 19:100763. doi: 10.1016/j.crmeth.2024.100763. Online ahead of print.
ABSTRACT
Cellular barcoding is a lineage-tracing methodology that couples heritable synthetic barcodes to high-throughput sequencing, enabling the accurate tracing of cell lineages across a range of biological contexts. Recent studies have extended these methods by incorporating lineage information into single-cell or spatial transcriptomics readouts. Leveraging the rich biological information within these datasets requires dedicated computational tools for dataset pre-processing and analysis. Here, we present BARtab, a portable and scalable Nextflow pipeline, and bartools, an open-source R package, designed to provide an integrated end-to-end cellular barcoding analysis toolkit. BARtab and bartools contain methods to simplify the extraction, quality control, analysis, and visualization of lineage barcodes from population-level, single-cell, and spatial transcriptomics experiments. We showcase the utility of our integrated BARtab and bartools workflow via the analysis of exemplar bulk, single-cell, and spatial transcriptomics experiments containing cellular barcoding information.
PMID:38670101 | DOI:10.1016/j.crmeth.2024.100763
Multi-omic profiling reveals the endogenous and neoplastic responses to immunotherapies in cutaneous T cell lymphoma
Cell Rep Med. 2024 Apr 22:101527. doi: 10.1016/j.xcrm.2024.101527. Online ahead of print.
ABSTRACT
Cutaneous T cell lymphomas (CTCLs) are skin cancers with poor survival rates and limited treatments. While immunotherapies have shown some efficacy, the immunological consequences of administering immune-activating agents to CTCL patients have not been systematically characterized. We apply a suite of high-dimensional technologies to investigate the local, cellular, and systemic responses in CTCL patients receiving either mono- or combination anti-PD-1 plus interferon-gamma (IFN-γ) therapy. Neoplastic T cells display no evidence of activation after immunotherapy. IFN-γ induces muted endogenous immunological responses, while anti-PD-1 elicits broader changes, including increased abundance of CLA+CD39+ T cells. We develop an unbiased multi-omic profiling approach enabling discovery of immune modules stratifying patients. We identify an enrichment of activated regulatory CLA+CD39+ T cells in non-responders and activated cytotoxic CLA+CD39+ T cells in leukemic patients. Our results provide insights into the effects of immunotherapy in CTCL patients and a generalizable framework for multi-omic analysis of clinical trials.
PMID:38670099 | DOI:10.1016/j.xcrm.2024.101527
Limits of economy and fidelity for programmable assembly of size-controlled triply periodic polyhedra
Proc Natl Acad Sci U S A. 2024 Apr 30;121(18):e2315648121. doi: 10.1073/pnas.2315648121. Epub 2024 Apr 26.
ABSTRACT
We propose and investigate an extension of the Caspar-Klug symmetry principles for viral capsid assembly to the programmable assembly of size-controlled triply periodic polyhedra, discrete variants of the Primitive, Diamond, and Gyroid cubic minimal surfaces. Inspired by a recent class of programmable DNA origami colloids, we demonstrate that the economy of design in these crystalline assemblies-in terms of the growth of the number of distinct particle species required with the increased size-scale (e.g., periodicity)-is comparable to viral shells. We further test the role of geometric specificity in these assemblies via dynamical assembly simulations, which show that conditions for simultaneously efficient and high-fidelity assembly require an intermediate degree of flexibility of local angles and lengths in programmed assembly. Off-target misassembly occurs via incorporation of a variant of disclination defects, generalized to the case of hyperbolic crystals. The possibility of these topological defects is a direct consequence of the very same symmetry principles that underlie the economical design, exposing a basic tradeoff between design economy and fidelity of programmable, size controlled assembly.
PMID:38669182 | DOI:10.1073/pnas.2315648121