Systems Biology
Artificial Intelligence and Computational Biology in Gene Therapy: A Review
Biochem Genet. 2024 Apr 18. doi: 10.1007/s10528-024-10799-1. Online ahead of print.
ABSTRACT
One of the trending fields in almost all areas of science and technology is artificial intelligence. Computational biology and artificial intelligence can help gene therapy in many steps including: gene identification, gene editing, vector design, development of new macromolecules and modeling of gene delivery. There are various tools used by computational biology and artificial intelligence in this field, such as genomics, transcriptomic and proteomics data analysis, machine learning algorithms and molecular interaction studies. These tools can introduce new gene targets, novel vectors, optimized experiment conditions, predict the outcomes and suggest the best solutions to avoid undesired immune responses following gene therapy treatment.
PMID:38635012 | DOI:10.1007/s10528-024-10799-1
DetSpace: a web server for engineering detectable pathways for bio-based chemical production
Nucleic Acids Res. 2024 Apr 18:gkae287. doi: 10.1093/nar/gkae287. Online ahead of print.
ABSTRACT
Tackling climate change challenges requires replacing current chemical industrial processes through the rational and sustainable use of biodiversity resources. To that end, production routes to key bio-based chemicals for the bioeconomy have been identified. However, their production still remains inefficient in terms of titers, rates, and yields; because of the hurdles found when scaling up. In order to make production more efficient, strategies like automated screening and dynamic pathway regulation through biosensors have been applied as part of strain optimization. However, to date, no systematic way exists to design a genetic circuit that is responsive to concentrations of a given target compound. Here, the DetSpace web server provides a set of integrated tools that allows a user to select and design a biological circuit that performs the sensing of a molecule of interest by its enzymatic conversion to a detectable molecule through a transcription factor. In that way, the DetSpace web server allows synthetic biologists to easily design biosensing routes for the dynamic regulation of metabolic pathways in applications ranging from genetic circuits design, screening, production, and bioremediation of bio-based chemicals, to diagnostics and drug delivery.
PMID:38634809 | DOI:10.1093/nar/gkae287
Gut-associated functions are favored during microbiome assembly across a major part of <em>C. elegans</em> life
mBio. 2024 Apr 18:e0001224. doi: 10.1128/mbio.00012-24. Online ahead of print.
ABSTRACT
The microbiome expresses a variety of functions that influence host biology. The range of functions depends on the microbiome's composition, which can change during the host's lifetime due to neutral assembly processes, host-mediated selection, and environmental conditions. To date, the exact dynamics of microbiome assembly, the underlying determinants, and the effects on host-associated functions remain poorly understood. Here, we used the nematode Caenorhabditis elegans and a defined community of fully sequenced, naturally associated bacteria to study microbiome dynamics and functions across a major part of the worm's lifetime of hosts under controlled experimental conditions. Bacterial community composition initially shows strongly declining levels of stochasticity, which increases during later time points, suggesting selective effects in younger animals as opposed to more random processes in older animals. The adult microbiome is enriched in genera Ochrobactrum and Enterobacter compared to the direct substrate and a host-free control environment. Using pathway analysis, metabolic, and ecological modeling, we further find that the lifetime assembly dynamics increase competitive strategies and gut-associated functions in the host-associated microbiome, indicating that the colonizing bacteria benefit the worm. Overall, our study introduces a framework for studying microbiome assembly dynamics based on stochastic, ecological, and metabolic models, yielding new insights into the processes that determine host-associated microbiome composition and function.
IMPORTANCE: The microbiome plays a crucial role in host biology. Its functions depend on the microbiome composition that can change during a host's lifetime. To date, the dynamics of microbiome assembly and the resulting functions still need to be better understood. This study introduces a new approach to characterize the functional consequences of microbiome assembly by modeling both the relevance of stochastic processes and metabolic characteristics of microbial community changes. The approach was applied to experimental time-series data obtained for the microbiome of the nematode Caenorhabditis elegans across the major part of its lifetime. Stochastic processes played a minor role, whereas beneficial bacteria as well as gut-associated functions enriched in hosts. This indicates that the host might actively shape the composition of its microbiome. Overall, this study provides a framework for studying microbiome assembly dynamics and yields new insights into C. elegans microbiome functions.
PMID:38634692 | DOI:10.1128/mbio.00012-24
Lin<sup>-</sup>CD117<sup>+</sup>CD34<sup>+</sup>FcεRI<sup>+</sup> progenitor cells are increased in chronic spontaneous urticaria and predict clinical responsiveness to anti-IgE therapy
Allergy. 2024 Apr 17. doi: 10.1111/all.16127. Online ahead of print.
ABSTRACT
BACKGROUND: Chronic spontaneous urticaria (CSU) is a common, debilitating skin disorder characterized by recurring episodes of raised, itchy and sometimes painful wheals lasting longer than 6 weeks. CSU is mediated by mast cells which are absent from peripheral blood. However, lineage-CD34hiCD117int/hiFcεRI+ cells in blood have previously been shown to represent a mast cell precursor.
METHODS: We enumerated FcεRI-, FcεRI+ and FcεRIhi lineage-CD34+CD117+ cells using flow cytometry in blood of patients with CSU (n = 55), including 12 patients receiving omalizumab and 43 not receiving omalizumab (n = 43). Twenty-two control samples were studied. Disease control and patient response to omalizumab was evaluated using the urticaria control test. We performed single-cell RNA sequencing (scRNA-Seq) on lineage-CD34hiCD117hi blood cells from a subset of patients with CSU (n = 8) and healthy controls (n = 4).
RESULTS: CSU patients had more lineage-CD34+CD117+FcεRI+ blood cells than controls. Lineage-CD34+CD117+FcεRI+ cells were significantly higher in patients with CSU who had an objective clinical response to omalizumab when compared to patients who had poor disease control 90 days after initiation of omalizumab. scRNA-Seq revealed that lineage-CD34+CD117+FcεRI+ cells contained both lymphoid and myeloid progenitor lineages, with omalizumab responsive patients having proportionally more myeloid progenitors. The myeloid progenitor lineage contained small numbers of true mast cell precursors along with more immature FcεRI- and FcεRI+ myeloid progenitors.
CONCLUSION: Increased blood CD34+CD117+FcεRI+ cells may reflect enhanced bone marrow egress in the setting of CSU. High expression of these cells strongly predicts better clinical responses to the anti-IgE therapy, omalizumab.
PMID:38634175 | DOI:10.1111/all.16127
Long-lived proteins and DNA as candidate predictive biomarkers for tissue associated diseases
iScience. 2024 Mar 28;27(4):109642. doi: 10.1016/j.isci.2024.109642. eCollection 2024 Apr 19.
ABSTRACT
Protein turnover is an important mechanism to maintain proteostasis. Long-lived proteins (LLPs) are vulnerable to lose their function due to time-accumulated damages. In this study we employed in vivo stable isotope labeling in mice from birth to postnatal day 89. Quantitative proteomics analysis of ten tissues and plasma identified 2113 LLPs, including widespread and tissue-specific ones. Interestingly, a significant percentage of LLPs was detected in plasma, implying a potential link to age-related cardiovascular diseases. LLPs identified in brains were related to neurodegenerative diseases. In addition, the relative quantification of DNA-derived deoxynucleosides from the same tissues provided information about cellular DNA renewal and showed good correlation with LLPs in the brain. The combined data reveal tissue-specific maps of mouse LLPs that may be involved in pathology due to a low renewal rate and an increased risk of damage. Tissue-derived peripheral LLPs hold promise as biomarkers for aging and age-related diseases.
PMID:38632996 | PMC:PMC11022098 | DOI:10.1016/j.isci.2024.109642
Nuclear RNA homeostasis promotes systems-level coordination of cell fate and senescence
Cell Stem Cell. 2024 Apr 12:S1934-5909(24)00096-1. doi: 10.1016/j.stem.2024.03.015. Online ahead of print.
ABSTRACT
Understanding cellular coordination remains a challenge despite knowledge of individual pathways. The RNA exosome, targeting a wide range of RNA substrates, is often downregulated in cellular senescence. Utilizing an auxin-inducible system, we observed that RNA exosome depletion in embryonic stem cells significantly affects the transcriptome and proteome, causing pluripotency loss and pre-senescence onset. Mechanistically, exosome depletion triggers acute nuclear RNA aggregation, disrupting nuclear RNA-protein equilibrium. This disturbance limits nuclear protein availability and hinders polymerase initiation and engagement, reducing gene transcription. Concurrently, it promptly disrupts nucleolar transcription, ribosomal processes, and nuclear exporting, resulting in a translational shutdown. Prolonged exosome depletion induces nuclear structural changes resembling senescent cells, including aberrant chromatin compaction, chromocenter disassembly, and intensified heterochromatic foci. These effects suggest that the dynamic turnover of nuclear RNA orchestrates crosstalk between essential processes to optimize cellular function. Disruptions in nuclear RNA homeostasis result in systemic functional decline, altering the cell state and promoting senescence.
PMID:38631356 | DOI:10.1016/j.stem.2024.03.015
Dual-role transcription factors stabilize intermediate expression levels
Cell. 2024 Apr 10:S0092-8674(24)00314-3. doi: 10.1016/j.cell.2024.03.023. Online ahead of print.
ABSTRACT
Precise control of gene expression levels is essential for normal cell functions, yet how they are defined and tightly maintained, particularly at intermediate levels, remains elusive. Here, using a series of newly developed sequencing, imaging, and functional assays, we uncover a class of transcription factors with dual roles as activators and repressors, referred to as condensate-forming level-regulating dual-action transcription factors (TFs). They reduce high expression but increase low expression to achieve stable intermediate levels. Dual-action TFs directly exert activating and repressing functions via condensate-forming domains that compartmentalize core transcriptional unit selectively. Clinically relevant mutations in these domains, which are linked to a range of developmental disorders, impair condensate selectivity and dual-action TF activity. These results collectively address a fundamental question in expression regulation and demonstrate the potential of level-regulating dual-action TFs as powerful effectors for engineering controlled expression levels.
PMID:38631355 | DOI:10.1016/j.cell.2024.03.023
Combining LIANA and Tensor-cell2cell to decipher cell-cell communication across multiple samples
Cell Rep Methods. 2024 Apr 10:100758. doi: 10.1016/j.crmeth.2024.100758. Online ahead of print.
ABSTRACT
In recent years, data-driven inference of cell-cell communication has helped reveal coordinated biological processes across cell types. Here, we integrate two tools, LIANA and Tensor-cell2cell, which, when combined, can deploy multiple existing methods and resources to enable the robust and flexible identification of cell-cell communication programs across multiple samples. In this work, we show how the integration of our tools facilitates the choice of method to infer cell-cell communication and subsequently perform an unsupervised deconvolution to obtain and summarize biological insights. We explain how to perform the analysis step by step in both Python and R and provide online tutorials with detailed instructions available at https://ccc-protocols.readthedocs.io/. This workflow typically takes ∼1.5 h to complete from installation to downstream visualizations on a graphics processing unit-enabled computer for a dataset of ∼63,000 cells, 10 cell types, and 12 samples.
PMID:38631346 | DOI:10.1016/j.crmeth.2024.100758
A cross-disease, pleiotropy-driven approach for therapeutic target prioritization and evaluation
Cell Rep Methods. 2024 Apr 15:100757. doi: 10.1016/j.crmeth.2024.100757. Online ahead of print.
ABSTRACT
Cross-disease genome-wide association studies (GWASs) unveil pleiotropic loci, mostly situated within the non-coding genome, each of which exerts pleiotropic effects across multiple diseases. However, the challenge "W-H-W" (namely, whether, how, and in which specific diseases pleiotropy can inform clinical therapeutics) calls for effective and integrative approaches and tools. We here introduce a pleiotropy-driven approach specifically designed for therapeutic target prioritization and evaluation from cross-disease GWAS summary data, with its validity demonstrated through applications to two systems of disorders (neuropsychiatric and inflammatory). We illustrate its improved performance in recovering clinical proof-of-concept therapeutic targets. Importantly, it identifies specific diseases where pleiotropy informs clinical therapeutics. Furthermore, we illustrate its versatility in accomplishing advanced tasks, including pathway crosstalk identification and downstream crosstalk-based analyses. To conclude, our integrated solution helps bridge the gap between pleiotropy studies and therapeutics discovery.
PMID:38631345 | DOI:10.1016/j.crmeth.2024.100757
Integrated lipid metabolomics and proteomics analysis reveal the pathogenesis of polycystic ovary syndrome
J Transl Med. 2024 Apr 17;22(1):364. doi: 10.1186/s12967-024-05167-x.
ABSTRACT
BACKGROUND: Polycystic ovary syndrome (PCOS) is an endocrinological and metabolic disorder that can lead to female infertility. Lipid metabolomics and proteomics are the new disciplines in systems biology aimed to discover metabolic pathway changes in diseases and diagnosis of biomarkers. This study aims to reveal the features of PCOS to explore its pathogenesis at the protein and metabolic level.
METHODS: We collected follicular fluid samples and granulosa cells of women with PCOS and normal women who underwent in vitro fertilization(IVF) and embryo transfer were recruited. The samples were for the lipidomic study and the proteomic study based on the latest metabolomics and proteomics research platform.
RESULTS: Lipid metabolomic analysis revealed abnormal metabolism of glycerides, glycerophospholipids, and sphingomyelin in the FF of PCOS. Differential lipids were strongly linked with the rate of high-quality embryos. In total, 144 differentially expressed proteins were screened in ovarian granulosa cells in women with PCOS compared to controls. Go functional enrichment analysis showed that differential proteins were associated with blood coagulation and lead to follicular development disorders.
CONCLUSION: The results showed that the differential lipid metabolites and proteins in PCOS were closely related to follicle quality,which can be potential biomarkers for oocyte maturation and ART outcomes.
PMID:38632610 | DOI:10.1186/s12967-024-05167-x
Ecosystem services potential is declining across European capital metropolitan areas
Sci Rep. 2024 Apr 17;14(1):8903. doi: 10.1038/s41598-024-59333-8.
ABSTRACT
Ecosystem services (ES) are essential to sustainable development at multiple spatial scales. Monitoring ES potential (ESP) at the metropolitan level is imperative to sustainable cities. We developed a procedure for long-term monitoring of metropolitan ESP dynamics, utilizing open-source land use land cover (LULC) data and the expert matrix method. We compared the ESP results of 38 European Capital Metropolitan Areas (ECMA) regarding biodiversity integrity, drinking water provision, flood protection, air quality, water purification, and recreation & tourism. Our results show significant declines in ESP across ECMA due to LULC alteration between 2006, 2012, and 2018. We found that ECMA in post-socialist European countries like Poland (Warszawa) have experienced high rates of land use transformation with a remarkable impact on ESP. Surprisingly, we found that Fennoscandinan ECMA, like Helsinki, Stockholm, and Oslo which lead the cumulative ESP ranking, faced the ESP reduction of the highest impact in recent years. The correlation analysis of ESP dynamics to urban expansion and population growth rates suggests that inattentive urbanization processes impact ESP more than population growth. We unveil the implications of our results to the EU and global level agendas like the European Nature Conservation Law and the Sustainable Development Goals.
PMID:38632373 | DOI:10.1038/s41598-024-59333-8
Integrative common and rare variant analyses provide insights into the genetic architecture of liver cirrhosis
Nat Genet. 2024 Apr 17. doi: 10.1038/s41588-024-01720-y. Online ahead of print.
ABSTRACT
We report a multi-ancestry genome-wide association study on liver cirrhosis and its associated endophenotypes, alanine aminotransferase (ALT) and γ-glutamyl transferase. Using data from 12 cohorts, including 18,265 cases with cirrhosis, 1,782,047 controls, up to 1 million individuals with liver function tests and a validation cohort of 21,689 cases and 617,729 controls, we identify and validate 14 risk associations for cirrhosis. Many variants are located near genes involved in hepatic lipid metabolism. One of these, PNPLA3 p.Ile148Met, interacts with alcohol intake, obesity and diabetes on the risk of cirrhosis and hepatocellular carcinoma (HCC). We develop a polygenic risk score that associates with the progression from cirrhosis to HCC. By focusing on prioritized genes from common variant analyses, we find that rare coding variants in GPAM associate with lower ALT, supporting GPAM as a potential target for therapeutic inhibition. In conclusion, this study provides insights into the genetic underpinnings of cirrhosis.
PMID:38632349 | DOI:10.1038/s41588-024-01720-y
PU.1 and BCL11B sequentially cooperate with RUNX1 to anchor mSWI/SNF to poise the T cell effector landscape
Nat Immunol. 2024 Apr 17. doi: 10.1038/s41590-024-01807-y. Online ahead of print.
ABSTRACT
Adaptive immunity relies on specialized effector functions elicited by lymphocytes, yet how antigen recognition activates appropriate effector responses through nonspecific signaling intermediates is unclear. Here we examined the role of chromatin priming in specifying the functional outputs of effector T cells and found that most of the cis-regulatory landscape active in effector T cells was poised early in development before the expression of the T cell antigen receptor. We identified two principal mechanisms underpinning this poised landscape: the recruitment of the nucleosome remodeler mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) by the transcription factors RUNX1 and PU.1 to establish chromatin accessibility at T effector loci; and a 'relay' whereby the transcription factor BCL11B succeeded PU.1 to maintain occupancy of the chromatin remodeling complex mSWI/SNF together with RUNX1, after PU.1 silencing during lineage commitment. These mechanisms define modes by which T cells acquire the potential to elicit specialized effector functions early in their ontogeny and underscore the importance of integrating extrinsic cues to the developmentally specified intrinsic program.
PMID:38632339 | DOI:10.1038/s41590-024-01807-y
SARS-CoV-2 remodels the landscape of small non-coding RNAs with infection time and symptom severity
NPJ Syst Biol Appl. 2024 Apr 17;10(1):41. doi: 10.1038/s41540-024-00367-z.
ABSTRACT
The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has significantly impacted global health, stressing the necessity of basic understanding of the host response to this viral infection. In this study, we investigated how SARS-CoV-2 remodels the landscape of small non-coding RNAs (sncRNA) from a large collection of nasopharyngeal swab samples taken at various time points from patients with distinct symptom severity. High-throughput RNA sequencing analysis revealed a global alteration of the sncRNA landscape, with abundance peaks related to species of 21-23 and 32-33 nucleotides. Host-derived sncRNAs, including microRNAs (miRNAs), transfer RNA-derived small RNAs (tsRNAs), and small nucleolar RNA-derived small RNAs (sdRNAs) exhibited significant differential expression in infected patients compared to controls. Importantly, miRNA expression was predominantly down-regulated in response to SARS-CoV-2 infection, especially in patients with severe symptoms. Furthermore, we identified specific tsRNAs derived from Glu- and Gly-tRNAs as major altered elements upon infection, with 5' tRNA halves being the most abundant species and suggesting their potential as biomarkers for viral presence and disease severity prediction. Additionally, down-regulation of C/D-box sdRNAs and altered expression of tinyRNAs (tyRNAs) were observed in infected patients. These findings provide valuable insights into the host sncRNA response to SARS-CoV-2 infection and may contribute to the development of further diagnostic and therapeutic strategies in the clinic.
PMID:38632240 | DOI:10.1038/s41540-024-00367-z
Molecular robotic agents that survey molecular landscapes for information retrieval
Nat Commun. 2024 Apr 17;15(1):3293. doi: 10.1038/s41467-024-46978-2.
ABSTRACT
DNA-based artificial motors have allowed the recapitulation of biological functions and the creation of new features. Here, we present a molecular robotic system that surveys molecular environments and reports spatial information in an autonomous and repeated manner. A group of molecular agents, termed 'crawlers', roam around and copy information from DNA-labeled targets, generating records that reflect their trajectories. Based on a mechanism that allows random crawling, we show that our system is capable of counting the number of subunits in example molecular complexes. Our system can also detect multivalent proximities by generating concatenated records from multiple local interactions. We demonstrate this capability by distinguishing colocalization patterns of three proteins inside fixed cells under different conditions. These mechanisms for examining molecular landscapes may serve as a basis towards creating large-scale detailed molecular interaction maps inside the cell with nanoscale resolution.
PMID:38632239 | DOI:10.1038/s41467-024-46978-2
Modulation of peroxisomal import by the PEX13 SH3 domain and a proximal FxxxF binding motif
Nat Commun. 2024 Apr 18;15(1):3317. doi: 10.1038/s41467-024-47605-w.
ABSTRACT
Import of proteins into peroxisomes depends on PEX5, PEX13 and PEX14. By combining biochemical methods and structural biology, we show that the C-terminal SH3 domain of PEX13 mediates intramolecular interactions with a proximal FxxxF motif. The SH3 domain also binds WxxxF peptide motifs in the import receptor PEX5, demonstrating evolutionary conservation of such interactions from yeast to human. Strikingly, intramolecular interaction of the PEX13 FxxxF motif regulates binding of PEX5 WxxxF/Y motifs to the PEX13 SH3 domain. Crystal structures reveal how FxxxF and WxxxF/Y motifs are recognized by a non-canonical surface on the SH3 domain. The PEX13 FxxxF motif also mediates binding to PEX14. Surprisingly, the potential PxxP binding surface of the SH3 domain does not recognize PEX14 PxxP motifs, distinct from its yeast ortholog. Our data show that the dynamic network of PEX13 interactions with PEX5 and PEX14, mediated by diaromatic peptide motifs, modulates peroxisomal matrix import.
PMID:38632234 | DOI:10.1038/s41467-024-47605-w
wgd v2: a suite of tools to uncover and date ancient polyploidy and whole-genome duplication
Bioinformatics. 2024 Apr 17:btae272. doi: 10.1093/bioinformatics/btae272. Online ahead of print.
ABSTRACT
MOTIVATION: Major improvements in sequencing technologies and genome sequence assembly have led to a huge increase in the number of available genome sequences. In turn, these genome sequences form an invaluable source for evolutionary, ecological, and comparative studies. One kind of analysis that has become routine is the search for traces of ancient polyploidy, particularly for plant genomes, where whole-genome duplication (WGD) is rampant.
RESULTS: Here, we present a major update of a previously developed tool wgd, namely wgd v2, to look for remnants of ancient polyploidy, or WGD. We implemented novel and improved previously developed tools to a) construct KS age distributions for the whole-paranome (collection of all duplicated genes in a genome), b) unravel intra- and inter- genomic collinearity resulting from WGDs, c) fit mixture models to age distributions of gene duplicates, d) correct substitution rate variation for phylogenetic placement of WGDs, and e) date ancient WGDs via phylogenetic dating of WGD-retained gene duplicates. The applicability and feasibility of wgd v2 for the identification and the relative and absolute dating of ancient WGDs is demonstrated using different plant genomes.
AVAILABILITY: wgd v2 is open source and available at https://github.com/heche-psb/wgd.
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
PMID:38632086 | DOI:10.1093/bioinformatics/btae272
Placental senescence pathophysiology is shared between peripartum cardiomyopathy and preeclampsia in mouse and human
Sci Transl Med. 2024 Apr 17;16(743):eadi0077. doi: 10.1126/scitranslmed.adi0077. Epub 2024 Apr 17.
ABSTRACT
Peripartum cardiomyopathy (PPCM) is an idiopathic form of pregnancy-induced heart failure associated with preeclampsia. Circulating factors in late pregnancy are thought to contribute to both diseases, suggesting a common underlying pathophysiological process. However, what drives this process remains unclear. Using serum proteomics, we identified the senescence-associated secretory phenotype (SASP), a marker of cellular senescence associated with biological aging, as the most highly up-regulated pathway in young women with PPCM or preeclampsia. Placentas from women with preeclampsia displayed multiple markers of amplified senescence and tissue aging, as well as overall increased gene expression of 28 circulating proteins that contributed to SASP pathway enrichment in serum samples from patients with preeclampsia or PPCM. The most highly expressed placental SASP factor, activin A, was associated with cardiac dysfunction or heart failure severity in women with preeclampsia or PPCM. In a murine model of PPCM induced by cardiomyocyte-specific deletion of the gene encoding peroxisome proliferator-activated receptor γ coactivator-1α, inhibiting activin A signaling in the early postpartum period with a monoclonal antibody to the activin type II receptor improved heart function. In addition, attenuating placental senescence with the senolytic compound fisetin in late pregnancy improved cardiac function in these animals. These findings link senescence biology to cardiac dysfunction in pregnancy and help to elucidate the pathogenesis underlying cardiovascular diseases of pregnancy.
PMID:38630848 | DOI:10.1126/scitranslmed.adi0077
RIPK3 deficiency blocks R-2-hydroxyglutarate-induced necroptosis in IDH-mutated AML cells
Sci Adv. 2024 Apr 19;10(16):eadi1782. doi: 10.1126/sciadv.adi1782. Epub 2024 Apr 17.
ABSTRACT
Mutant isocitrate dehydrogenases (IDHs) produce R-2-hydroxyglutarate (R-2HG), which inhibits the growth of most acute myeloid leukemia (AML) cells. Here, we showed that necroptosis, a form of programmed cell death, contributed to the antileukemia activity of R-2HG. Mechanistically, R-2HG competitively inhibited the activity of lysine demethylase 2B (KDM2B), an α-ketoglutarate-dependent dioxygenase. KDM2B inhibition increased histone 3 lysine 4 trimethylation levels and promoted the expression of receptor-interacting protein kinase 1 (RIPK1), which consequently caused necroptosis in AML cells. The expression of RIPK3 was silenced because of DNA methylation in IDH-mutant (mIDH) AML cells, resulting in R-2HG resistance. Decitabine up-regulated RIPK3 expression and repaired endogenous R-2HG-induced necroptosis pathway in mIDH AML cells. Together, R-2HG induced RIPK1-dependent necroptosis via KDM2B inhibition in AML cells. The loss of RIPK3 protected mIDH AML cells from necroptosis. Restoring RIPK3 expression to exert R-2HG's intrinsic antileukemia effect will be a potential therapeutic strategy in patients with AML.
PMID:38630819 | DOI:10.1126/sciadv.adi1782
Identification of Bis(methylsulfanyl)methane and Furan-2(5<em>H</em>)-one as Volatile Marker Compounds for the Differentiation of the White Truffle Species <em>Tuber magnatum</em> and <em>Tuber borchii</em>
J Agric Food Chem. 2024 Apr 17. doi: 10.1021/acs.jafc.4c00714. Online ahead of print.
ABSTRACT
Some truffles are expensive and, therefore, are prone to food fraud. A particular problem is the differentiation of high-priced Tuber magnatum truffles from cheaper Tuber borchii truffles, both of which are white truffles with similar morphological characteristics. Using an untargeted approach, the volatiles isolated from samples of both species were screened for potential marker compounds by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS) and statistical analysis of the obtained semiquantitative data. Results suggested bis(methylsulfanyl)methane and furan-2(5H)-one as compounds characterizing T. magnatum and T. borchii, respectively. Exact quantitation of both volatiles by conventional one-dimensional gas chromatography-mass spectrometry in combination with stable isotopologues of the target compounds as internal standards confirmed both as marker compounds. The method is suitable to be used in the routine analysis for the objective species differentiation of T. magnatum and T. borchii.
PMID:38630649 | DOI:10.1021/acs.jafc.4c00714