Systems Biology
Non-Mass Spectrometric Targeted Single-Cell Metabolomics
Trends Analyt Chem. 2023 Nov;168:117300. doi: 10.1016/j.trac.2023.117300. Epub 2023 Sep 20.
ABSTRACT
Metabolic assays serve as pivotal tools in biomedical research, offering keen insights into cellular physiological and pathological states. While mass spectrometry (MS)-based metabolomics remains the gold standard for comprehensive, multiplexed analyses of cellular metabolites, innovative technologies are now emerging for the targeted, quantitative scrutiny of metabolites and metabolic pathways at the single-cell level. In this review, we elucidate an array of these advanced methodologies, spanning synthetic and surface chemistry techniques, imaging-based methods, and electrochemical approaches. We summarize the rationale, design principles, and practical applications for each method, and underscore the synergistic benefits of integrating single-cell metabolomics (scMet) with other single-cell omics technologies. Concluding, we identify prevailing challenges in the targeted scMet arena and offer a forward-looking commentary on future avenues and opportunities in this rapidly evolving field.
PMID:37840599 | PMC:PMC10569257 | DOI:10.1016/j.trac.2023.117300
A Remotely Coached Multimodal Lifestyle Intervention for Alzheimer's Disease Ameliorates Functional and Cognitive Outcomes
J Alzheimers Dis. 2023 Oct 6. doi: 10.3233/JAD-230403. Online ahead of print.
ABSTRACT
BACKGROUND: Comprehensive treatment of Alzheimer's disease and related dementias (ADRD) requires not only pharmacologic treatment but also management of existing medical conditions and lifestyle modifications including diet, cognitive training, and exercise. Personalized, multimodal therapies are needed to best prevent and treat Alzheimer's disease (AD).
OBJECTIVE: The Coaching for Cognition in Alzheimer's (COCOA) trial was a prospective randomized controlled trial to test the hypothesis that a remotely coached multimodal lifestyle intervention would improve early-stage AD.
METHODS: Participants with early-stage AD were randomized into two arms. Arm 1 (N = 24) received standard of care. Arm 2 (N = 31) additionally received telephonic personalized coaching for multiple lifestyle interventions. The primary outcome was a test of the hypothesis that the Memory Performance Index (MPI) change over time would be better in the intervention arm than in the control arm. The Functional Assessment Staging Test was assessed for a secondary outcome. COCOA collected psychometric, clinical, lifestyle, genomic, proteomic, metabolomic, and microbiome data at multiple timepoints (dynamic dense data) across two years for each participant.
RESULTS: The intervention arm ameliorated 2.1 [1.0] MPI points (mean [SD], p = 0.016) compared to the control over the two-year intervention. No important adverse events or side effects were observed.
CONCLUSION: Multimodal lifestyle interventions are effective for ameliorating cognitive decline and have a larger effect size than pharmacological interventions. Dietary changes and exercise are likely to be beneficial components of multimodal interventions in many individuals. Remote coaching is an effective intervention for early stage ADRD. Remote interventions were effective during the COVID pandemic.
PMID:37840487 | DOI:10.3233/JAD-230403
EU legal proposal for genome-edited crops hints at a science-based approach
Trends Plant Sci. 2023 Oct 13:S1360-1385(23)00307-2. doi: 10.1016/j.tplants.2023.09.014. Online ahead of print.
ABSTRACT
The European Commission (EC) recently published a legislative proposal that hints at a science-based approach to the regulation of genome-editing applications in crops in the EU. This would be in line with legislation in an increasing number of countries worldwide, but further science-based advice on implementation will be essential.
PMID:37839926 | DOI:10.1016/j.tplants.2023.09.014
High-resolution structural proteomics of mitochondria using the 'Build and Retrieve' methodology
Mol Cell Proteomics. 2023 Oct 13:100666. doi: 10.1016/j.mcpro.2023.100666. Online ahead of print.
ABSTRACT
The application of integrated systems biology to the field of structural biology is a promising new direction, although it is still in the infant stages of development. Here we report the use of single particle cryo-electron microscopy (cryo-EM) to identify multiple proteins from three enriched heterogeneous fractions prepared from human liver mitochondrial lysate. We simultaneously identify and solve high-resolution structures of nine essential mitochondrial enzymes with key metabolic functions, including fatty acid catabolism, reactive oxidative species clearance and amino acid metabolism. Our methodology also identified multiple distinct members of the acyl-CoA dehydrogenase family. This work highlights the potential of cryo-EM to explore tissue proteomics at the atomic level.
PMID:37839702 | DOI:10.1016/j.mcpro.2023.100666
Quantifying the impact of dynamic plant-environment interactions on metabolic regulation
J Plant Physiol. 2023 Oct 7;290:154116. doi: 10.1016/j.jplph.2023.154116. Online ahead of print.
ABSTRACT
A plant's genome encodes enzymes, transporters and many other proteins which constitute metabolism. Interactions of plants with their environment shape their growth, development and resilience towards adverse conditions. Although genome sequencing technologies and applications have experienced triumphantly rapid development during the last decades, enabling nowadays a fast and cheap sequencing of full genomes, prediction of metabolic phenotypes from genotype × environment interactions remains, at best, very incomplete. The main reasons are a lack of understanding of how different levels of molecular organisation depend on each other, and how they are constituted and expressed within a setup of growth conditions. Phenotypic plasticity, e.g., of the genetic model plant Arabidopsis thaliana, has provided important insights into plant-environment interactions and the resulting genotype x phenotype relationships. Here, we summarize previous and current findings about plant development in a changing environment and how this might be shaped and reflected in metabolism and its regulation. We identify current challenges in the study of plant development and metabolic regulation and provide an outlook of how methodological workflows might support the application of findings made in model systems to crops and their cultivation.
PMID:37839392 | DOI:10.1016/j.jplph.2023.154116
DNA Origami: Interrogating the Nano-Landscape of Immune Receptor Activation
Biophys J. 2023 Oct 13:S0006-3495(23)00649-5. doi: 10.1016/j.bpj.2023.10.013. Online ahead of print.
ABSTRACT
The immune response is orchestrated by elaborate protein interaction networks that interweave ligand-mediated receptor reorganization with signaling cascades. While the biochemical processes have been extensively investigated, delineating the biophysical principles governing immune receptor activation has remained challenging due to design limitations of traditional ligand display platforms. These constraints have been overcome by advances in DNA origami nanotechnology, enabling unprecedented control over ligand geometry on configurable scaffolds. It is now possible to systematically dissect the independent roles of ligand stoichiometry, spatial distribution, and rigidity in immune receptor activation, signaling, and cooperativity. In this review, we highlight pioneering efforts in manipulating the ligand presentation landscape to understand immune receptor triggering and to engineer functional immune responses.
PMID:37838832 | DOI:10.1016/j.bpj.2023.10.013
c-Jun as a one-way valve at the naive to primed interface
Cell Biosci. 2023 Oct 14;13(1):191. doi: 10.1186/s13578-023-01141-0.
ABSTRACT
BACKGROUND: c-Jun is a proto-oncogene functioning as a transcription factor to activate gene expression under many physiological and pathological conditions, particularly in somatic cells. However, its role in early embryonic development remains unknown.
RESULTS: Here, we show that c-Jun acts as a one-way valve to preserve the primed state and impair reversion to the naïve state. c-Jun is induced during the naive to primed transition, and it works to stabilize the chromatin structure and inhibit the reverse transition. Loss of c-Jun has surprisingly little effect on the naïve to primed transition, and no phenotypic effect on primed cells, however, in primed cells the loss of c-Jun leads to a failure to correctly close naïve-specific enhancers. When the primed cells are induced to reprogram to a naïve state, these enhancers are more rapidly activated when c-Jun is lost or impaired, and the conversion is more efficient.
CONCLUSIONS: The results of this study indicate that c-Jun can function as a chromatin stabilizer in primed EpiSCs, to maintain the epigenetic cell type state and act as a one-way valve for cell fate conversions.
PMID:37838693 | DOI:10.1186/s13578-023-01141-0
Genome editing of wood for sustainable pulping
Trends Plant Sci. 2023 Oct 12:S1360-1385(23)00334-5. doi: 10.1016/j.tplants.2023.10.007. Online ahead of print.
ABSTRACT
Wood is an abundant and renewable feedstock for pulping and biorefining, but the aromatic polymer lignin greatly limits its efficient use. Sulis et al. recently reported a multiplex CRISPR editing strategy targeting multiple lignin biosynthetic genes to achieve combined lignin modifications, improve wood properties, and make pulping more sustainable.
PMID:37838517 | DOI:10.1016/j.tplants.2023.10.007
The Role of Autophagy in Hypoxia-Induced Radioresistance
Radiother Oncol. 2023 Oct 12:109951. doi: 10.1016/j.radonc.2023.109951. Online ahead of print.
ABSTRACT
Radiotherapy is a widely used treatment modality against cancer, and although survival rates are increasing, radioresistant properties of tumours remain a significant barrier for curative treatment. Tumour hypoxia is one of the main contributors to radioresistance and is common in most solid tumours. Hypoxia is responsible for many molecular changes within the cell which helps tumours to survive under such challenging conditions. These hypoxia-induced molecular changes are predominantly coordinated by the hypoxia inducible factor (HIF) and have been linked with the ability to confer resistance to radiation-induced cell death. To overcome this obstacle research has been directed towards autophagy, a cellular process involved in self degradation and recycling of macromolecules, as HIF plays a large role in its coordination under hypoxic conditions. The role that autophagy has following radiotherapy treatment is conflicted with evidence of both cytoprotective and cytotoxic effects. This literature review aims to explore the intricate relationship between radiotherapy, hypoxia, and autophagy in the context of cancer treatment. It provides valuable insights into the potential of targeting autophagy as a therapeutic strategy to improve the response of hypoxic tumours to radiotherapy.
PMID:37838322 | DOI:10.1016/j.radonc.2023.109951
Role of Semaphorin 3A in Kidney Development and Diseases
Diagnostics (Basel). 2023 Sep 25;13(19):3038. doi: 10.3390/diagnostics13193038.
ABSTRACT
Kidney diseases are worldwide public health problems affecting millions of people. However, there are still limited therapeutic options against kidney diseases. Semaphorin 3A (SEMA3A) is a secreted and membrane-associated protein, which regulates diverse functions, including immune regulation, cell survival, migration and angiogenesis, thus involving in the several pathogeneses of diseases, including eyes and neurons, as well as kidneys. SEMA3A is expressed in podocytes and tubular cells in the normal adult kidney, and recent evidence has revealed that excess SEMA3A expression and the subsequent signaling pathway aggravate kidney injury in a variety of kidney diseases, including nephrotic syndrome, diabetic nephropathy, acute kidney injury, and chronic kidney disease. In addition, several reports have demonstrated that the inhibition of SEMA3A ameliorated kidney injury via a reduction in cell apoptosis, fibrosis and inflammation; thus, SEMA3A may be a potential therapeutic target for kidney diseases. In this review article, we summarized the current knowledge regarding the role of SEMA3A in kidney pathophysiology and their potential use in kidney diseases.
PMID:37835781 | DOI:10.3390/diagnostics13193038
A Network of 17 Microtubule-Related Genes Highlights Functional Deregulations in Breast Cancer
Cancers (Basel). 2023 Oct 6;15(19):4870. doi: 10.3390/cancers15194870.
ABSTRACT
A wide panel of microtubule-associated proteins and kinases is involved in coordinated regulation of the microtubule cytoskeleton and may thus represent valuable molecular markers contributing to major cellular pathways deregulated in cancer. We previously identified a panel of 17 microtubule-related (MT-Rel) genes that are differentially expressed in breast tumors showing resistance to taxane-based chemotherapy. In the present study, we evaluated the expression, prognostic value and functional impact of these genes in breast cancer. We show that 14 MT-Rel genes (KIF4A, ASPM, KIF20A, KIF14, TPX2, KIF18B, KIFC1, AURKB, KIF2C, GTSE1, KIF15, KIF11, RACGAP1, STMN1) are up-regulated in breast tumors compared with adjacent normal tissue. Six of them (KIF4A, ASPM, KIF20A, KIF14, TPX2, KIF18B) are overexpressed by more than 10-fold in tumor samples and four of them (KIF11, AURKB, TPX2 and KIFC1) are essential for cell survival. Overexpression of all 14 genes, and underexpression of 3 other MT-Rel genes (MAST4, MAPT and MTUS1) are associated with poor breast cancer patient survival. A Systems Biology approach highlighted three major functional networks connecting the 17 MT-Rel genes and their partners, which are centered on spindle assembly, chromosome segregation and cytokinesis. Our studies identified mitotic Aurora kinases and their substrates as major targets for therapeutic approaches against breast cancer.
PMID:37835564 | DOI:10.3390/cancers15194870
Absolute Quantification of Pan-Cancer Plasma Proteomes Reveals Unique Signature in Multiple Myeloma
Cancers (Basel). 2023 Sep 28;15(19):4764. doi: 10.3390/cancers15194764.
ABSTRACT
Mass spectrometry based on data-independent acquisition (DIA) has developed into a powerful quantitative tool with a variety of implications, including precision medicine. Combined with stable isotope recombinant protein standards, this strategy provides confident protein identification and precise quantification on an absolute scale. Here, we describe a comprehensive targeted proteomics approach to profile a pan-cancer cohort consisting of 1800 blood plasma samples representing 15 different cancer types. We successfully performed an absolute quantification of 253 proteins in multiplex. The assay had low intra-assay variability with a coefficient of variation below 20% (CV = 17.2%) for a total of 1013 peptides quantified across almost two thousand injections. This study identified a potential biomarker panel of seven protein targets for the diagnosis of multiple myeloma patients using differential expression analysis and machine learning. The combination of markers, including the complement C1 complex, JCHAIN, and CD5L, resulted in a prediction model with an AUC of 0.96 for the identification of multiple myeloma patients across various cancer patients. All these proteins are known to interact with immunoglobulins.
PMID:37835457 | DOI:10.3390/cancers15194764
The Potential of Hormonal Therapies for Treatment of Triple-Negative Breast Cancer
Cancers (Basel). 2023 Sep 24;15(19):4702. doi: 10.3390/cancers15194702.
ABSTRACT
Triple-negative breast cancer (TNBC) is considered one of the most aggressive forms of breast cancer with poor survival rates compared to other breast cancer subtypes. TNBC is characterized by the absence of the estrogen receptor alpha, progesterone receptor, and the human epidermal growth factor receptor 2, limiting those viable treatment options available to patients with other breast cancer subtypes. Furthermore, due to the particularly high heterogeneity of TNBC, conventional treatments such as chemotherapy are not universally effective, leading to drug resistance and intolerable side effects. Thus, there is a pressing need to discover new therapies beneficial to TNBC patients. This review highlights current findings regarding the roles of three steroid hormone receptors, estrogen receptor beta, the androgen receptor, and the glucocorticoid receptor, in the progression of TNBC. In addition, we discussed several ongoing and completed clinical trials targeting these hormone receptors in TNBC patients.
PMID:37835396 | DOI:10.3390/cancers15194702
PD-1/PD-L1 Inhibitors Response in Triple-Negative Breast Cancer: Can Long Noncoding RNAs Be Associated?
Cancers (Basel). 2023 Sep 22;15(19):4682. doi: 10.3390/cancers15194682.
ABSTRACT
As immune checkpoint inhibitors (ICI) emerge as a paradigm-shifting treatment option for patients with advanced or metastatic cancer, there is a growing demand for biomarkers that can distinguish which patients are likely to benefit. In the case of triple-negative breast cancer (TNBC), characterized by a lack of therapeutic targets, pembrolizumab approval for high-risk early-stage disease occurred regardless of PD-L1 status, which keeps the condition in a biomarker limbus. In this review, we highlight the participation of long non-coding RNAs (lncRNAs) in the regulation of the PD-1/PD-L1 pathway, as well as in the definition of prognostic immune-related signatures in many types of tumors, aiming to shed light on molecules that deserve further investigation for a potential role as biomarkers. We also conducted a bioinformatic analysis to investigate lncRNAs already investigated in PD-1/PDL-1 pathways in other cancer types, considering the TNBC molecular context. In this sense, from the generated data, we evidence here two lncRNAs, UCA1 and HCP5, which have not yet been identified in the context of the tumoral immune response in breast cancer. These candidates can be further explored to verify their use as biomarkers for ICI response. In this article, we present an updated review regarding the use of lncRNA as biomarkers of response to ICI, highlighting the versatility of using these molecules.
PMID:37835376 | DOI:10.3390/cancers15194682
Aggregation, Transmission, and Toxicity of the Microtubule-Associated Protein Tau: A Complex Comprehension
Int J Mol Sci. 2023 Oct 9;24(19):15023. doi: 10.3390/ijms241915023.
ABSTRACT
The microtubule-associated protein tau is an intrinsically disordered protein containing a few short and transient secondary structures. Tau physiologically associates with microtubules (MTs) for its stabilization and detaches from MTs to regulate its dynamics. Under pathological conditions, tau is abnormally modified, detaches from MTs, and forms protein aggregates in neuronal and glial cells. Tau protein aggregates can be found in a number of devastating neurodegenerative diseases known as "tauopathies", such as Alzheimer's disease (AD), frontotemporal dementia (FTD), corticobasal degeneration (CBD), etc. However, it is still unclear how the tau protein is compacted into ordered protein aggregates, and the toxicity of the aggregates is still debated. Fortunately, there has been considerable progress in the study of tau in recent years, particularly in the understanding of the intercellular transmission of pathological tau species, the structure of tau aggregates, and the conformational change events in the tau polymerization process. In this review, we summarize the concepts of tau protein aggregation and discuss the views on tau protein transmission and toxicity.
PMID:37834471 | DOI:10.3390/ijms241915023
Omics and Multi-Omics in IBD: No Integration, No Breakthroughs
Int J Mol Sci. 2023 Oct 5;24(19):14912. doi: 10.3390/ijms241914912.
ABSTRACT
The recent advent of sophisticated technologies like sequencing and mass spectroscopy platforms combined with artificial intelligence-powered analytic tools has initiated a new era of "big data" research in various complex diseases of still-undetermined cause and mechanisms. The investigation of these diseases was, until recently, limited to traditional in vitro and in vivo biological experimentation, but a clear switch to in silico methodologies is now under way. This review tries to provide a comprehensive assessment of state-of-the-art knowledge on omes, omics and multi-omics in inflammatory bowel disease (IBD). The notion and importance of omes, omics and multi-omics in both health and complex diseases like IBD is introduced, followed by a discussion of the various omics believed to be relevant to IBD pathogenesis, and how multi-omics "big data" can generate new insights translatable into useful clinical tools in IBD such as biomarker identification, prediction of remission and relapse, response to therapy, and precision medicine. The pitfalls and limitations of current IBD multi-omics studies are critically analyzed, revealing that, regardless of the types of omes being analyzed, the majority of current reports are still based on simple associations of descriptive retrospective data from cross-sectional patient cohorts rather than more powerful longitudinally collected prospective datasets. Given this limitation, some suggestions are provided on how IBD multi-omics data may be optimized for greater clinical and therapeutic benefit. The review concludes by forecasting the upcoming incorporation of multi-omics analyses in the routine management of IBD.
PMID:37834360 | DOI:10.3390/ijms241914912
Mitochondrial Metabolism in the Spotlight: Maintaining Balanced RNAP III Activity Ensures Cellular Homeostasis
Int J Mol Sci. 2023 Sep 29;24(19):14763. doi: 10.3390/ijms241914763.
ABSTRACT
RNA polymerase III (RNAP III) holoenzyme activity and the processing of its products have been linked to several metabolic dysfunctions in lower and higher eukaryotes. Alterations in the activity of RNAP III-driven synthesis of non-coding RNA cause extensive changes in glucose metabolism. Increased RNAP III activity in the S. cerevisiae maf1Δ strain is lethal when grown on a non-fermentable carbon source. This lethal phenotype is suppressed by reducing tRNA synthesis. Neither the cause of the lack of growth nor the underlying molecular mechanism have been deciphered, and this area has been awaiting scientific explanation for a decade. Our previous proteomics data suggested mitochondrial dysfunction in the strain. Using model mutant strains maf1Δ (with increased tRNA abundance) and rpc128-1007 (with reduced tRNA abundance), we collected data showing major changes in the TCA cycle metabolism of the mutants that explain the phenotypic observations. Based on 13C flux data and analysis of TCA enzyme activities, the present study identifies the flux constraints in the mitochondrial metabolic network. The lack of growth is associated with a decrease in TCA cycle activity and downregulation of the flux towards glutamate, aspartate and phosphoenolpyruvate (PEP), the metabolic intermediate feeding the gluconeogenic pathway. rpc128-1007, the strain that is unable to increase tRNA synthesis due to a mutation in the C128 subunit, has increased TCA cycle activity under non-fermentable conditions. To summarize, cells with non-optimal activity of RNAP III undergo substantial adaptation to a new metabolic state, which makes them vulnerable under specific growth conditions. Our results strongly suggest that balanced, non-coding RNA synthesis that is coupled to glucose signaling is a fundamental requirement to sustain a cell's intracellular homeostasis and flexibility under changing growth conditions. The presented results provide insight into the possible role of RNAP III in the mitochondrial metabolism of other cell types.
PMID:37834211 | DOI:10.3390/ijms241914763
Exploring HERV-K (HML-2) Influence in Cancer and Prospects for Therapeutic Interventions
Int J Mol Sci. 2023 Sep 27;24(19):14631. doi: 10.3390/ijms241914631.
ABSTRACT
This review investigates the intricate role of human endogenous retroviruses (HERVs) in cancer development and progression, explicitly focusing on HERV-K (HML-2). This paper sheds light on the latest research advancements and potential treatment strategies by examining the historical context of HERVs and their involvement in critical biological processes such as embryonic development, immune response, and disease progression. This review covers computational modeling for drug-target binding assessment, systems biology modeling for simulating HERV-K viral cargo dynamics, and using antiviral drugs to combat HERV-induced diseases. The findings presented in this review contribute to our understanding of HERV-mediated disease mechanisms and provide insights into future therapeutic approaches. They emphasize why HERV-K holds significant promise as a biomarker and a target.
PMID:37834078 | DOI:10.3390/ijms241914631
Genome-Wide Analysis of Stress-Responsive Genes and Alternative Splice Variants in <em>Arabidopsis</em> Roots under Osmotic Stresses
Int J Mol Sci. 2023 Sep 26;24(19):14580. doi: 10.3390/ijms241914580.
ABSTRACT
Plant roots show distinct gene-expression profiles from those of shoots under abiotic stress conditions. In this study, we performed mRNA sequencing (mRNA-Seq) to analyze the transcriptional profiling of Arabidopsis roots under osmotic stress conditions-high salinity (NaCl) and drought (mannitol). The roots demonstrated significantly distinct gene-expression changes from those of the aerial parts under both the NaCl and the mannitol treatment. We identified 68 closely connected transcription-factor genes involved in osmotic stress-signal transduction in roots. Well-known abscisic acid (ABA)-dependent and/or ABA-independent osmotic stress-responsive genes were not considerably upregulated in the roots compared to those in the aerial parts, indicating that the osmotic stress response in the roots may be regulated by other uncharacterized stress pathways. Moreover, we identified 26 osmotic-stress-responsive genes with distinct expressions of alternative splice variants in the roots. The quantitative reverse-transcription polymerase chain reaction further confirmed that alternative splice variants, such as those for ANNAT4, MAGL6, TRM19, and CAD9, were differentially expressed in the roots, suggesting that alternative splicing is an important regulatory mechanism in the osmotic stress response in roots. Altogether, our results suggest that tightly connected transcription-factor families, as well as alternative splicing and the resulting splice variants, are involved in the osmotic stress response in roots.
PMID:37834024 | DOI:10.3390/ijms241914580
Mathematical Modeling Support for Lung Cancer Therapy-A Short Review
Int J Mol Sci. 2023 Sep 25;24(19):14516. doi: 10.3390/ijms241914516.
ABSTRACT
The paper presents a review of models that can be used to describe dynamics of lung cancer growth and its response to treatment at both cell population and intracellular processes levels. To address the latter, models of signaling pathways associated with cellular responses to treatment are overviewed. First, treatment options for lung cancer are discussed, and main signaling pathways and regulatory networks are briefly reviewed. Then, approaches used to model specific therapies are discussed. Following that, models of intracellular processes that are crucial in responses to therapies are presented. The paper is concluded with a discussion of the applicability of the presented approaches in the context of lung cancer.
PMID:37833963 | DOI:10.3390/ijms241914516