Systems Biology
Genomic and phylogenetic profiling of RNA of tick-borne arboviruses in Hainan Island, China
Microbes Infect. 2023 Sep 13:105218. doi: 10.1016/j.micinf.2023.105218. Online ahead of print.
ABSTRACT
Ticks act as vectors and hosts of numerous arboviruses. Examples of medically important arboviruses include the tick-borne encephalitis virus, Crimean Congo hemorrhagic fever, and severe fever with thrombocytopenia syndrome. Recently, some novel arboviruses have been identified in blood specimens of patients with unexplained fever and a history of tick bites in Inner Mongolia. Consequently, tick-borne viruses are a major focus of infectious disease research. However, the spectrum of tick-borne viruses in subtropical areas of China has yet to be sufficiently characterized. In this study, we collected 855 ticks from canine and bovine hosts in four locations in Hainan Province. The ticks were combined into 18 pools according to genus and location. Viral RNA-sequence libraries were subjected to transcriptome sequencing analysis. Molecular clues from metagenomic analyses were used to classify sequence reads into virus species, genera, or families. The diverse viral reads closely associated with mammals were assigned to 12 viral families and important tick-borne viruses, such as Jingmen, Beiji nairovirus, and Colorado tick fever. Our virome and phylogenetic analyses of the arbovirus strains provide basic data for preventing and controlling human infectious diseases caused by tick-borne viruses in the subtropical areas of China.
PMID:37714509 | DOI:10.1016/j.micinf.2023.105218
Metabolomics reveals that PS-NPs promote lung injury by regulating prostaglandin B1 through the cGAS-STING pathway
Chemosphere. 2023 Sep 13:140108. doi: 10.1016/j.chemosphere.2023.140108. Online ahead of print.
ABSTRACT
Nanoplastics have been widely studied as environmental pollutants, which can accumulate in the human body through the food chain or direct contact. Research has shown that nanoplastics can affect the immune system and mitochondrial function, but the underlying mechanisms are unclear. Lungs and macrophages have important immune and metabolic functions. This study explored the effects of 100 nm PS-NPs on innate immunity, mitochondrial function, and cellular metabolism-related pathways in lung (BEAS-2B) cells and macrophages (RAW264.7). The results had shown that PS-NPs exposure caused a decrease in mitochondrial membrane potential, intracellular ROS accumulation, and Ca2+ overload, and activated the cGAS-STING signaling pathway related to innate immunity. These changes had been observed at concentrations of PS-NPs as low as 60 μg/mL, which might have been comparable to environmental levels. Non-target metabolomics and Western Blotting results confirmed that PS-NPs regulated prostaglandin B1 and other metabolites to cause cell damage through the cGAS-STING pathway. Supplementation of prostaglandin B1 alleviated the immune activation and metabolic disturbance caused by PS-NPs exposure. This study identified PS-NPs-induced innate immune activation, mitochondrial dysfunction, and metabolic toxicity pathways, providing new insights into the potential for adverse outcomes of NPs in human life.
PMID:37714480 | DOI:10.1016/j.chemosphere.2023.140108
Integrated BATF transcriptional network regulates suppressive intratumoral regulatory T cells
Sci Immunol. 2023 Sep 15;8(87):eadf6717. doi: 10.1126/sciimmunol.adf6717. Epub 2023 Sep 15.
ABSTRACT
Human regulatory T cells (Tregs) are crucial regulators of tissue repair, autoimmune diseases, and cancer. However, it is challenging to inhibit the suppressive function of Tregs for cancer therapy without affecting immune homeostasis. Identifying pathways that may distinguish tumor-restricted Tregs is important, yet the transcriptional programs that control intratumoral Treg gene expression, and that are distinct from Tregs in healthy tissues, remain largely unknown. We profiled single-cell transcriptomes of CD4+ T cells in tumors and peripheral blood from patients with head and neck squamous cell carcinomas (HNSCC) and those in nontumor tonsil tissues and peripheral blood from healthy donors. We identified a subpopulation of activated Tregs expressing multiple tumor necrosis factor receptor (TNFR) genes (TNFR+ Tregs) that is highly enriched in the tumor microenvironment (TME) compared with nontumor tissue and the periphery. TNFR+ Tregs are associated with worse prognosis in HNSCC and across multiple solid tumor types. Mechanistically, the transcription factor BATF is a central component of a gene regulatory network that governs key aspects of TNFR+ Tregs. CRISPR-Cas9-mediated BATF knockout in human activated Tregs in conjunction with bulk RNA sequencing, immunophenotyping, and in vitro functional assays corroborated the central role of BATF in limiting excessive activation and promoting the survival of human activated Tregs. Last, we identified a suite of surface molecules reflective of the BATF-driven transcriptional network on intratumoral Tregs in patients with HNSCC. These findings uncover a primary transcriptional regulator of highly suppressive intratumoral Tregs, highlighting potential opportunities for therapeutic intervention in cancer without affecting immune homeostasis.
PMID:37713508 | DOI:10.1126/sciimmunol.adf6717
Laboratory evolution, transcriptomics, and modeling reveal mechanisms of paraquat tolerance
Cell Rep. 2023 Sep 13;42(9):113105. doi: 10.1016/j.celrep.2023.113105. Online ahead of print.
ABSTRACT
Relationships between the genome, transcriptome, and metabolome underlie all evolved phenotypes. However, it has proved difficult to elucidate these relationships because of the high number of variables measured. A recently developed data analytic method for characterizing the transcriptome can simplify interpretation by grouping genes into independently modulated sets (iModulons). Here, we demonstrate how iModulons reveal deep understanding of the effects of causal mutations and metabolic rewiring. We use adaptive laboratory evolution to generate E. coli strains that tolerate high levels of the redox cycling compound paraquat, which produces reactive oxygen species (ROS). We combine resequencing, iModulons, and metabolic models to elucidate six interacting stress-tolerance mechanisms: (1) modification of transport, (2) activation of ROS stress responses, (3) use of ROS-sensitive iron regulation, (4) motility, (5) broad transcriptional reallocation toward growth, and (6) metabolic rewiring to decrease NADH production. This work thus demonstrates the power of iModulon knowledge mapping for evolution analysis.
PMID:37713311 | DOI:10.1016/j.celrep.2023.113105
US FDA public meeting: identification of concepts and terminology for multicomponent biomarkers
Biomark Med. 2023 Sep 15. doi: 10.2217/bmm-2023-0351. Online ahead of print.
ABSTRACT
The US FDA convened a virtual public workshop with the goals of obtaining feedback on the terminology needed for effective communication of multicomponent biomarkers and discussing the diverse use of biomarkers observed across the FDA and identifying common issues. The workshop included keynote and background presentations addressing the stated goals, followed by a series of case studies highlighting FDA-wide and external experience regarding the use of multicomponent biomarkers, which provided context for panel discussions focused on common themes, challenges and preferred terminology. The final panel discussion integrated the main concepts from the keynote, background presentations and case studies, laying a preliminary foundation to build consensus around the use and terminology of multicomponent biomarkers.
PMID:37713233 | DOI:10.2217/bmm-2023-0351
Isolation of novel simian adenoviruses from macaques for development of a vector for human gene therapy and vaccines
J Virol. 2023 Sep 15:e0101423. doi: 10.1128/jvi.01014-23. Online ahead of print.
ABSTRACT
Both human and non-human simian adenoviruses (HAdVs and SAdVs, respectively) have been used as gene therapy and vaccine vectors. The high prevalence of HAdVs and the neutralizing antibodies associated with prior infection, may limit HAdV-based vector use in human subjects. To overcome this drawback, a vector derived from a newly isolated and characterized macaque adenovirus was constructed. SAdVs (33.9%) were screened from 115 SAdV fecal samples collected at a zoological park. One novel SAdV was isolated and the whole genome was sequenced and analyzed. The pre-existing neutralizing antibody levels were very low against this isolate (10%). Interestingly, SAdV vector constructs that lack E3 region could not produce infectious progeny in HEK293 cells, suggesting that the E3 region is necessary for SAdV replication. The absence of E3 region could be compensated for by replacement with HAdV-5 E4orf6; the resultant construct could replicate well in HEK293 cells. The enhanced Green Fluorescent Protein (eGFP) was inserted into SAdV E3 region and expressed at high level. One-step growth curve showed that the replication of the SAdVs with HAdV-5 E4orf6 substitution and E1/E3 deletion was similar to that of wild-type SAdVs in HEK293 cells, but the modified SAdVs were replication-deficient in A549 cells which lack HAdV-5 E1A and E1B. Finally, we demonstrated that GZ3-12 could infect cells expressing hCAR or hDSG2 receptors. The successful isolation, characterization, and modification of novel SAdVs provide a potentially important vaccine and gene therapy candidate and a new strategy for the rapid acquisition and development of non-HAdV-based alternative vectors for human health applications. IMPORTANCE Adenoviruses are widely used in gene therapy and vaccine delivery. Due to the high prevalence of human adenoviruses (HAdVs), the pre-existing immunity against HAdVs in humans is common, which limits the wide and repetitive use of HAdV vectors. In contrast, the pre-existing immunity against simian adenoviruses (SAdVs) is low in humans. Therefore, we performed epidemiological investigations of SAdVs in simians and found that the SAdV prevalence was as high as 33.9%. The whole-genome sequencing and sequence analysis showed SAdV diversity and possible cross species transmission. One isolate with low level of pre-existing neutralizing antibodies in humans was used to construct replication-deficient SAdV vectors with E4orf6 substitution and E1/E3 deletion. Interestingly, we found that the E3 region plays a critical role in its replication in human cells, but the absence of this region could be compensated for by the E4orf6 from HAdV-5 and the E1 expression intrinsic to HEK293 cells.
PMID:37712705 | DOI:10.1128/jvi.01014-23
Dynamic organization of cerebellar climbing fiber response and synchrony in multiple functional components reduces dimensions for reinforcement learning
Elife. 2023 Sep 15;12:e86340. doi: 10.7554/eLife.86340. Online ahead of print.
ABSTRACT
Cerebellar climbing fibers convey diverse signals, but how they are organized in the compartmental structure of the cerebellar cortex during learning remains largely unclear. We analyzed a large amount of coordinate-localized two-photon imaging data from cerebellar Crus II in mice undergoing 'Go/No-go' reinforcement learning. Tensor component analysis revealed that a majority of climbing fiber inputs to Purkinje cells were reduced to only four functional components, corresponding to accurate timing control of motor initiation related to a Go cue, cognitive error-based learning, reward processing, and inhibition of erroneous behaviors after a No-go cue. Changes in neural activities during learning of the first two components were correlated with corresponding changes in timing control and error learning across animals, indirectly suggesting causal relationships. Spatial distribution of these components coincided well with boundaries of Aldolase-C/zebrin II expression in Purkinje cells, whereas several components are mixed in single neurons. Synchronization within individual components was bidirectionally regulated according to specific task contexts and learning stages. These findings suggest that, in close collaborations with other brain regions including the inferior olive nucleus, the cerebellum, based on anatomical compartments, reduces dimensions of the learning space by dynamically organizing multiple functional components, a feature that may inspire new-generation AI designs.
PMID:37712651 | DOI:10.7554/eLife.86340
Spatially and temporally distinct Ca 2+ changes in Lotus japonicus roots orient fungal-triggered signalling pathways towards symbiosis or immunity
J Exp Bot. 2023 Sep 15:erad360. doi: 10.1093/jxb/erad360. Online ahead of print.
ABSTRACT
Plants activate an immune or symbiotic response depending on the detection of distinct signals from root-interacting microbes. Both signalling cascades involve Ca 2+ as a central mediator of early signal transduction. In this study, we combined aequorin- and cameleon-based methods to dissect the changes in cytosolic and nuclear Ca 2+ concentration caused by different chitin-derived fungal elicitors in Lotus japonicus roots. Our quantitative analyses highlighted the dual character of the evoked Ca 2+ responses taking advantage of the comparison between different genetic backgrounds: an initial Ca 2+ influx, dependent on the LysM receptor CERK6 and independent of the Common Symbiotic Signalling Pathway (CSSP), is followed by a second CSSP-dependent and CERK6-independent phase, that corresponds to the well-known perinuclear/nuclear Ca 2+ spiking. We show that the expression of immunity marker genes correlates with the amplitude of the first Ca 2+ change, depends on elicitor concentration and is controlled by Ca 2+ storage in the vacuole. Our findings provide an insight into the Ca 2+-mediated signalling mechanisms discriminating plant immunity- and symbiosis-related pathways in the context of their simultaneous activation by single fungal elicitors.
PMID:37712520 | DOI:10.1093/jxb/erad360
Simvastatin induces human gut bacterial cell surface genes
Mol Microbiol. 2023 Sep 15. doi: 10.1111/mmi.15151. Online ahead of print.
ABSTRACT
Drugs intended to target mammalian cells can have broad off-target effects on the human gut microbiota with potential downstream consequences for drug efficacy and side effect profiles. Yet, despite a rich literature on antibiotic resistance, we still know very little about the mechanisms through which commensal bacteria evade non-antibiotic drugs. Here, we focus on statins, one of the most prescribed drug types in the world and an essential tool in the prevention and treatment of high circulating cholesterol levels. Prior work in humans, mice, and cell culture support an off-target effect of statins on human gut bacteria; however, the genetic determinants of statin sensitivity remain unknown. We confirmed that simvastatin inhibits the growth of diverse human gut bacterial strains grown in communities and in pure cultures. Drug sensitivity varied between phyla and was dose-dependent. We selected two representative simvastatin-sensitive species for more in-depth analysis: Eggerthella lenta (phylum: Actinobacteriota) and Bacteroides thetaiotaomicron (phylum: Bacteroidota). Transcriptomics revealed that both bacterial species upregulate genes in response to simvastatin that alter the cell membrane, including fatty acid biogenesis (E. lenta) and drug efflux systems (B. thetaiotaomicron). Transposon mutagenesis identified a key efflux system in B. thetaiotaomicron that enables growth in the presence of statins. Taken together, these results emphasize the importance of the bacterial cell membrane in countering the off-target effects of host-targeted drugs. Continued mechanistic dissection of the various mechanisms through which the human gut microbiota evades drugs will be essential to understand and predict the effects of drug administration in human cohorts and the potential downstream consequences for health and disease.
PMID:37712143 | DOI:10.1111/mmi.15151
Light-initiated 1,3-dipolar cycloaddition between dehydroalanines and tetrazoles: application to late-stage peptide and protein modifications
Chem Sci. 2023 Aug 22;14(35):9418-9426. doi: 10.1039/d3sc02818f. eCollection 2023 Sep 13.
ABSTRACT
As an easily introduced noncoded amino acid with unique electrophilicity distinct from the 20 natural amino acids, dehydroalanine (Dha) is not only a precise protein post-translational modification (PTM) insertion tool, but also a promising multifunctional labelling site for peptides and proteins. However, achieving a balance between the reaction rate and mild reaction conditions has been a major challenge in developing novel Dha-modified strategies. Rapid, efficient, and mild Dha modification strategies are highly desired. Additionally, catalyst-free photocontrollable reactions for Dha-containing peptide and protein modification have yet to be developed. Here, we report a photoinitiated 1,3-dipolar cycloaddition reaction between Dha and 2,5-diaryl tetrazoles. Under low-power UV lamp irradiation, this reaction is completed within minutes without catalysis, resulting in a fluorescent pyrazoline-modified peptide or protein with excellent chemoselectivity for Dha residues. Notably, this reaction exhibits complete site-specificity in the modification of thiostrepton, a natural antimicrobial peptide containing multiple Dha residues (Dha3, Dha16, and Dha17), within 20 minutes in high yields. This is currently the fastest reaction for modifying the Dha residue in thiostrepton with clear site-specificity towards Dha16. This photoinitiated reaction also provides a chemoselective strategy for precise functionalization of proteins. Additionally, the rapidity and efficiency of the reaction minimize UV light damage to the biological reaction system. Combined with fluorogenic properties, this photo-controllable methodology can be applied to live cell imaging, further broadening the application scope of the Dha modification methodology.
PMID:37712045 | PMC:PMC10498508 | DOI:10.1039/d3sc02818f
Editorial: The molecular landscape and promising therapeutic targets in aggressive B-cell non-Hodgkin lymphomas
Front Oncol. 2023 Aug 30;13:1278169. doi: 10.3389/fonc.2023.1278169. eCollection 2023.
NO ABSTRACT
PMID:37711211 | PMC:PMC10499439 | DOI:10.3389/fonc.2023.1278169
Chemoselective Methods for Labeling and Modification of Peptides and Proteins
Org Lett. 2023 Sep 15;25(36):6605-6606. doi: 10.1021/acs.orglett.3c02630.
NO ABSTRACT
PMID:37711046 | DOI:10.1021/acs.orglett.3c02630
Maternal exposure of mice to glyphosate induces depression- and anxiety-like behavior in the offspring via alterations of the gut-brain axis
Sci Total Environ. 2023 Sep 12:167034. doi: 10.1016/j.scitotenv.2023.167034. Online ahead of print.
ABSTRACT
The past decade has been characterized by increased awareness and de-stigmatization of mental health issues, in particular the most common neuropsychiatric disorders depression and anxiety. Further, with growing understanding of neurodevelopmental disorders such as attention deficit and hyperactivity disorder and autism spectrum disorder, the number of diagnosed patients has increased. The pathogenesis of these behavioral disorders is multifactorial and early-life exposure to environmental chemicals has been proposed to be a relevant risk factor that might mediate these effects by disturbances on the gut-brain-axis. However, for glyphosate, the most widely used pesticide worldwide, there are only limited and inconsistent findings that link chronic low-dose exposure in particular during early life to neurobehavioral disorders. Here, we explored the impact of maternal oral glyphosate exposure (0.5 and 50 mg/kg body weight/day) during pregnancy and the lactational period on offspring's behavior, brain gene expression and gut microbiota using a cross-generational mouse model. Behavioral analyses revealed a depression- and anxiety-like behavior as well as social deficits most notably in adult female offspring of glyphosate-exposed dams. Furthermore, the expression of tryptophan hydroxylase 2, an enzyme discussed to be linked to behavioral problems, was reduced in the hippocampus of female offspring and correlated to a glyphosate-induced DNA hypermethylation of the gene. Moreover, maternal glyphosate exposure significantly altered the gut microbiota in the female offspring including a decreased abundance of Akkermansia and increased abundance of Alistipes and Blautia, bacteria involved in tryptophan metabolism and associated with depression- and anxiety-like disorders. Our results suggest that glyphosate might influence the gut-brain axis crosstalk following in-utero and lactational exposure. This study underlines the importance of understanding the impact of exposure to pesticides on the gut-brain axis and further emphasizes the need for microbiome analyses to be compulsorily included in health risk assessments of pesticides.
PMID:37709081 | DOI:10.1016/j.scitotenv.2023.167034
Inferring single-cell transcriptomic dynamics with structured latent gene expression dynamics
Cell Rep Methods. 2023 Sep 2:100581. doi: 10.1016/j.crmeth.2023.100581. Online ahead of print.
ABSTRACT
Gene expression dynamics provide directional information for trajectory inference from single-cell RNA sequencing data. Traditional approaches compute RNA velocity using strict modeling assumptions about transcription and splicing of RNA. This can fail in scenarios where multiple lineages have distinct gene dynamics or where rates of transcription and splicing are time dependent. We present "LatentVelo," an approach to compute a low-dimensional representation of gene dynamics with deep learning. LatentVelo embeds cells into a latent space with a variational autoencoder and models differentiation dynamics on this "dynamics-based" latent space with neural ordinary differential equations. LatentVelo infers a latent regulatory state that controls the dynamics of an individual cell to model multiple lineages. LatentVelo can predict latent trajectories, describing the inferred developmental path for individual cells rather than just local RNA velocity vectors. The dynamics-based embedding batch corrects cell states and velocities, outperforming comparable autoencoder batch correction methods that do not consider gene expression dynamics.
PMID:37708894 | DOI:10.1016/j.crmeth.2023.100581
Dendritic cells as shepherds of T cell immunity in cancer
Immunity. 2023 Sep 8:S1074-7613(23)00370-9. doi: 10.1016/j.immuni.2023.08.014. Online ahead of print.
ABSTRACT
In cancer patients, dendritic cells (DCs) in tumor-draining lymph nodes can present antigens to naive T cells in ways that break immunological tolerance. The clonally expanded progeny of primed T cells are further regulated by DCs at tumor sites. Intratumoral DCs can both provide survival signals to and drive effector differentiation of incoming T cells, thereby locally enhancing antitumor immunity; however, the paucity of intratumoral DCs or their expression of immunoregulatory molecules often limits antitumor T cell responses. Here, we review the current understanding of DC-T cell interactions at both priming and effector sites of immune responses. We place emerging insights into DC functions in tumor immunity in the context of DC development, ontogeny, and functions in other settings and propose that DCs control at least two T cell-associated checkpoints of the cancer immunity cycle. Our understanding of both checkpoints has implications for the development of new approaches to cancer immunotherapy.
PMID:37708889 | DOI:10.1016/j.immuni.2023.08.014
Sex determination and transmission: Leveraging genetic screens to reveal Plasmodium's secrets
Cell Host Microbe. 2023 Sep 13;31(9):1430-1432. doi: 10.1016/j.chom.2023.08.007.
ABSTRACT
Genes and regulatory mechanisms governing malaria parasite transmission and development in mosquitoes are incompletely understood. Recently, Russell and colleagues identified genes required for parasite sexual development. In this issue of Cell Host & Microbe, Ukegbu and colleagues report a genetic approach to study genes enabling parasite survival in mosquito stages.
PMID:37708851 | DOI:10.1016/j.chom.2023.08.007
Fatty acid metabolism-related genes as a novel module biomarker for kidney renal clear cell carcinoma: Bioinformatics modeling with experimental verification
Transl Oncol. 2023 Sep 12;38:101774. doi: 10.1016/j.tranon.2023.101774. Online ahead of print.
ABSTRACT
BACKGROUNDS: Lipid metabolism reprogramming is a hallmark of cancer, however, the associations between fatty acid metabolism (FAM) and kidney renal clear cell carcinoma (KIRC) prognosis are still less investigated.
METHODS: The gene expression and clinical data of KIRC were obtained from TCGA. Using Cox regression and LASSO regression, a novel prognostic risk score model based on FAM-related genes was constructed, and a nomogram for prediction of overall survival rate of patients with KIRC was proposed. The correlation between risk score and the immune cell infiltration, immune-related function and tumor mutation burden (TMB) were explored. Finally, a hub gene was extracted from the model, and RT-qPCR, Western blot, Immunohistochemical, EdU, Scratch assay and Transwell experiments were conducted to validate and decipher the biomarker role of the hub gene in KIRC theranostics.
RESULTS: In this study, a novel risk score model and a nomogram were constructed based on 20 FAM-related genes to predict the prognosis of KIRC patients with AUC>0.7 at 1-, 3-, and 5-years. Patients in different subgroups showed different phenotypes in immune cell infiltration, immune-related function, TMB, and sensitivity to immunotherapy. In particular, the hub gene in the model, i.e., ACADM, was significantly down-expressed in human KIRC samples, and the knockdown of OCLN promoted proliferation, migration and invasion of KIRC cells in vitro.
CONCLUSIONS: In this study, a novel risk score model and a module biomarker based on FAM-related genes were screened for KIRC prognosis. More clinical carcinogenic validations will be performed for future translational applications of the findings.
PMID:37708719 | DOI:10.1016/j.tranon.2023.101774
Effects of low-intensity exercise on spontaneously developed knee osteoarthritis in male senescence-accelerated mouse prone 8
Arthritis Res Ther. 2023 Sep 14;25(1):168. doi: 10.1186/s13075-023-03162-z.
ABSTRACT
BACKGROUND: Osteoarthritis (OA) is a degenerative joint disease associated with aging, which often leads to joint stiffness and disability. Exercise is one of the most important non-pharmacological treatments and is prescribed as an indispensable treatment for OA. However, whether physical exercise is beneficial for preventing the progression of OA symptoms with age is poorly understood. We investigated the effects of exercise on spontaneously developed knee OA using male senescence-accelerated mouse prone 8 (SAMP8).
METHODS: To examine age-related changes in the knee joints of SAMP8, knee articular cartilage changes, synovitis, knee joint flexion and extension angles, swelling, walking ability, and quadriceps muscle atrophy were analyzed at 3, 5, 7, and 9 months. SAMP8 were required to run at a speed of 10 m/min for 15 min/day from 7 to 9 months of age. The knee joint pathologies and symptoms of exercising and non-exercising mice were compared by histological, immunohistochemical, and morphometrical analyses.
RESULTS: The mice presented with various histological changes, including cartilage destruction, osteocyte formation, synovitis, declined joint angles, and swelling. Notably, medial and posterior cartilage destruction was more severe than that of the lateral and anterior cartilage. Knee joint angles were significantly correlated with the histological scores (modified Mankin and OARSI, osteophyte formation and synovial lining cell layer). Exercise did not attenuate cartilage degeneration in the medial and posterior tibial plateau, although the articular cartilage of the anterior and lateral tibial plateau and its histological scores was remained and significantly improved, respectively, by exercise. Exercise suppressed the age-related decline of collagen type II-positive areas in the remaining articular cartilage and improved the OA symptoms. Exercise reduced the expression of monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor (TNF)-α positive macrophages in the synovium.
CONCLUSION: This study revealed that SAMP8 developed spontaneous knee OA with age, which resembled the disease symptoms in humans. Low-intensity exercise temporarily alleviated degeneration of the remaining cartilage, synovitis, and age-related decreases in knee flexion angle, stride length, and muscle atrophy in SAMP8. However, exercise during OA progression with age may cause mechanical stress that could be both beneficial and detrimental to joint health.
PMID:37710278 | DOI:10.1186/s13075-023-03162-z
Comparative genomic analysis of Fusobacterium nucleatum reveals high intra-species diversity and cgmlst marker construction
Gut Pathog. 2023 Sep 14;15(1):43. doi: 10.1186/s13099-023-00570-z.
ABSTRACT
BACKGROUND: Fusobacterium nucleatum is a one of the most important anaerobic opportunistic pathogens in the oral and intestinal tracts of human and animals. It can cause various diseases such as infections, Lemierre's syndrome, oral cancer and colorectal cancer. The comparative genomic studies on the population genome level, have not been reported.
RESULTS: We analyzed all publicly available Fusobacterium nucleatums' genomic data for a comparative genomic study, focusing on the pan-genomic features, virulence genes, plasmid genomes and developed cgmlst molecular markers. We found the pan-genome shows a clear open tendency and most of plasmids in Fusobacterium nucleatum are mainly transmitted intraspecifically.
CONCLUSIONS: Our comparative analysis of Fusobacterium nucleatum systematically revealed the open pan-genomic features and phylogenetic tree based on cgmlst molecular markers. What's more, we also identified common plasmid typing among genomes. We hope that our study will provide a theoretical basis for subsequent functional studies.
PMID:37710263 | DOI:10.1186/s13099-023-00570-z
Conformational coupling of redox-driven Na<sup>+</sup>-translocation in Vibrio cholerae NADH:quinone oxidoreductase
Nat Struct Mol Biol. 2023 Sep 14. doi: 10.1038/s41594-023-01099-0. Online ahead of print.
ABSTRACT
In the respiratory chain, NADH oxidation is coupled to ion translocation across the membrane to build up an electrochemical gradient. In the human pathogen Vibrio cholerae, the sodium-pumping NADH:quinone oxidoreductase (Na+-NQR) generates a sodium gradient by a so far unknown mechanism. Here we show that ion pumping in Na+-NQR is driven by large conformational changes coupling electron transfer to ion translocation. We have determined a series of cryo-EM and X-ray structures of the Na+-NQR that represent snapshots of the catalytic cycle. The six subunits NqrA, B, C, D, E, and F of Na+-NQR harbor a unique set of cofactors that shuttle the electrons from NADH twice across the membrane to quinone. The redox state of a unique intramembranous [2Fe-2S] cluster orchestrates the movements of subunit NqrC, which acts as an electron transfer switch. We propose that this switching movement controls the release of Na+ from a binding site localized in subunit NqrB.
PMID:37710014 | DOI:10.1038/s41594-023-01099-0