Systems Biology
Boosting NAD preferentially blunts Th17 inflammation via arginine biosynthesis and redox control in healthy and psoriasis subjects
Cell Rep Med. 2023 Aug 9:101157. doi: 10.1016/j.xcrm.2023.101157. Online ahead of print.
ABSTRACT
To evaluate whether nicotinamide adenine dinucleotide-positive (NAD+) boosting modulates adaptive immunity, primary CD4+ T cells from healthy control and psoriasis subjects were exposed to vehicle or nicotinamide riboside (NR) supplementation. NR blunts interferon γ (IFNγ) and interleukin (IL)-17 secretion with greater effects on T helper (Th) 17 polarization. RNA sequencing (RNA-seq) analysis implicates NR blunting of sequestosome 1 (sqstm1/p62)-coupled oxidative stress. NR administration increases sqstm1 and reduces reactive oxygen species (ROS) levels. Furthermore, NR activates nuclear factor erythroid 2-related factor 2 (Nrf2), and genetic knockdown of nrf2 and the Nrf2-dependent gene, sqstm1, diminishes NR amelioratory effects. Metabolomics analysis identifies that NAD+ boosting increases arginine and fumarate biosynthesis, and genetic knockdown of argininosuccinate lyase ameliorates NR effects on IL-17 production. Hence NR via amino acid metabolites orchestrates Nrf2 activation, augments CD4+ T cell antioxidant defenses, and attenuates Th17 responsiveness. Oral NR supplementation in healthy volunteers similarly increases serum arginine, sqstm1, and antioxidant enzyme gene expression and blunts Th17 immune responsiveness, supporting evaluation of NAD+ boosting in CD4+ T cell-linked inflammation.
PMID:37586364 | DOI:10.1016/j.xcrm.2023.101157
Archival single-cell genomics reveals persistent subclones during DCIS progression
Cell. 2023 Aug 10:S0092-8674(23)00802-4. doi: 10.1016/j.cell.2023.07.024. Online ahead of print.
ABSTRACT
Ductal carcinoma in situ (DCIS) is a common precursor of invasive breast cancer. Our understanding of its genomic progression to recurrent disease remains poor, partly due to challenges associated with the genomic profiling of formalin-fixed paraffin-embedded (FFPE) materials. Here, we developed Arc-well, a high-throughput single-cell DNA-sequencing method that is compatible with FFPE materials. We validated our method by profiling 40,330 single cells from cell lines, a frozen tissue, and 27 FFPE samples from breast, lung, and prostate tumors stored for 3-31 years. Analysis of 10 patients with matched DCIS and cancers that recurred 2-16 years later show that many primary DCIS had already undergone whole-genome doubling and clonal diversification and that they shared genomic lineages with persistent subclones in the recurrences. Evolutionary analysis suggests that most DCIS cases in our cohort underwent an evolutionary bottleneck, and further identified chromosome aberrations in the persistent subclones that were associated with recurrence.
PMID:37586362 | DOI:10.1016/j.cell.2023.07.024
Maize and heat stress: Physiological, genetic, and molecular insights
Plant Genome. 2023 Aug 16:e20378. doi: 10.1002/tpg2.20378. Online ahead of print.
ABSTRACT
Global mean temperature is increasing at a rapid pace due to the rapid emission of greenhouse gases majorly from anthropogenic practices and predicted to rise up to 1.5°C above the pre-industrial level by the year 2050. The warming climate is affecting global crop production by altering biochemical, physiological, and metabolic processes resulting in poor growth, development, and reduced yield. Maize is susceptible to heat stress, particularly at the reproductive and early grain filling stages. Interestingly, heat stress impact on crops is closely regulated by associated environmental covariables such as humidity, vapor pressure deficit, soil moisture content, and solar radiation. Therefore, heat stress tolerance is considered as a complex trait, which requires multiple levels of regulations in plants. Exploring genetic diversity from landraces and wild accessions of maize is a promising approach to identify novel donors, traits, quantitative trait loci (QTLs), and genes, which can be introgressed into the elite cultivars. Indeed, genome wide association studies (GWAS) for mining of potential QTL(s) and dominant gene(s) is a major route of crop improvement. Conversely, mutation breeding is being utilized for generating variation in existing populations with narrow genetic background. Besides breeding approaches, augmented production of heat shock factors (HSFs) and heat shock proteins (HSPs) have been reported in transgenic maize to provide heat stress tolerance. Recent advancements in molecular techniques including clustered regularly interspaced short palindromic repeats (CRISPR) would expedite the process for developing thermotolerant maize genotypes.
PMID:37587553 | DOI:10.1002/tpg2.20378
Nuclear genetic control of mtDNA copy number and heteroplasmy in humans
Nature. 2023 Aug 16. doi: 10.1038/s41586-023-06426-5. Online ahead of print.
ABSTRACT
Mitochondrial DNA (mtDNA) is a maternally inherited, high-copy-number genome required for oxidative phosphorylation1. Heteroplasmy refers to the presence of a mixture of mtDNA alleles in an individual and has been associated with disease and ageing. Mechanisms underlying common variation in human heteroplasmy, and the influence of the nuclear genome on this variation, remain insufficiently explored. Here we quantify mtDNA copy number (mtCN) and heteroplasmy using blood-derived whole-genome sequences from 274,832 individuals and perform genome-wide association studies to identify associated nuclear loci. Following blood cell composition correction, we find that mtCN declines linearly with age and is associated with variants at 92 nuclear loci. We observe that nearly everyone harbours heteroplasmic mtDNA variants obeying two principles: (1) heteroplasmic single nucleotide variants tend to arise somatically and accumulate sharply after the age of 70 years, whereas (2) heteroplasmic indels are maternally inherited as mixtures with relative levels associated with 42 nuclear loci involved in mtDNA replication, maintenance and novel pathways. These loci may act by conferring a replicative advantage to certain mtDNA alleles. As an illustrative example, we identify a length variant carried by more than 50% of humans at position chrM:302 within a G-quadruplex previously proposed to mediate mtDNA transcription/replication switching2,3. We find that this variant exerts cis-acting genetic control over mtDNA abundance and is itself associated in-trans with nuclear loci encoding machinery for this regulatory switch. Our study suggests that common variation in the nuclear genome can shape variation in mtCN and heteroplasmy dynamics across the human population.
PMID:37587338 | DOI:10.1038/s41586-023-06426-5
Cell fate determinant Llgl1 is required for propagation of acute myeloid leukemia
Leukemia. 2023 Aug 16. doi: 10.1038/s41375-023-02005-9. Online ahead of print.
ABSTRACT
Scribble complex proteins can influence cell fate decisions and self-renewal capacity of hematopoietic cells. While specific cellular functions of Scribble complex members are conserved in mammalian hematopoiesis, they appear to be highly context dependent. Using CRISPR/Cas9-based genetic screening, we have identified Scribble complex-related liabilities in AML including LLGL1. Despite its reported suppressive function in HSC self-renewal, inactivation of LLGL1 in AML confirms its relevant role for proliferative capacity and development of AML. Its function was conserved in human and murine models of AML and across various genetic backgrounds. Inactivation of LLGL1 results in loss of stemness-associated gene-expression including HoxA-genes and induces a GMP-like phenotype in the leukemia stem cell compartment. Re-expression of HoxA9 facilitates functional and phenotypic rescue. Collectively, these data establish LLGL1 as a specific dependency and putative target in AML and emphasizes its cell-type specific functions.
PMID:37587260 | DOI:10.1038/s41375-023-02005-9
Association of the human gut microbiota with vascular stiffness
Sci Rep. 2023 Aug 16;13(1):13348. doi: 10.1038/s41598-023-40178-6.
ABSTRACT
Gut microbiota metabolites have been mechanistically linked to inflammatory pathway activation and atherosclerosis, which are major causes of vascular stiffness (VS). Aiming to investigate if the gut microbiome might be involved in VS development, we performed a cross-sectional study (n = 3,087), nested within the population-based European Prospective Investigations into Cancer and Nutrition (EPIC) Potsdam. We investigated the correlation of the gut microbiota (alpha diversity and taxa abundance) with 3 vascular stiffness measures: carotid-femoral (PWV), aortic augmentation index (AIX) and ankle-brachial index (ABI). Shannon index was not significantly associated with VS but the number of observed Amplicon Sequence Variants (ASV) was positively associated with PWV and AIX. We found a total of 19 ASVs significantly associated with at least one VS measure in multivariable-adjusted models. One ASV (classified as Sutterella wadsworthensis) was associated with 2 VS measures, AIX (- 0.11 ± 0.04) and PWV (-0.14 ± 0.03). Other examples of ASVs associated with VS were Collinsella aerofaciens, previously reported to be affected by diet and Bacteroides uniformis, commercially available as probiotics. In conclusion, our study suggests a potential role of individual components of the gut microbiota in the aetiology of VS.
PMID:37587126 | DOI:10.1038/s41598-023-40178-6
Effects of astaxanthin on expression of apoptosis and oxidative stress related genes in H<sub>2</sub>O<sub>2</sub> induced oxidative stress BE(2)-C human neuroblastoma cell line
Prep Biochem Biotechnol. 2023 Aug 10:1-8. doi: 10.1080/10826068.2023.2243506. Online ahead of print.
ABSTRACT
Antioxidants may affect the apoptosis induced by oxidative stress experimental models. The present study was conducted to investigate the effects of astaxanthin on expression of apoptosis and oxidative stress-related genes in H2O2 induced oxidative stress BE(2)-C human neuroblastoma cell line. This experimental study consisted of six groups including control, H2O2 induced oxidative stress control, 100 mM vitamin C intervention, 25 μM astaxanthin intervention (Ax1), 50 μM astaxanthin intervention (Ax2) and 100 μM astaxanthin intervention (Ax3). Real-time PCR was used to study the expression of BAX, BCL2, Caspase3 (CAS3), P53, peroxisome proliferator-activated receptor γ (PPARγ), superoxide dismutase (SOD), glutathione peroxidase 1 (GPX), catalase (CAT) and nuclear factor erythroid 2-related factor 2 (NRF2). According to the results, among the apoptosis-related genes, CAS3 was down-regulated in groups vitamin C, Ax1 and Ax2 compared with H2O2 group, while P53 was down-regulated only in group vitamin C (P < 0.05). Among the oxidative stress-related genes, GPX was up-regulated in groups Ax1, Ax2 and Ax3 compared with H2O2 group, while all the experimental groups showed up-regulation for CAT and NRF2 (P < 0.05). In conclusion, astaxanthin as a powerful antioxidant could inhibit apoptosis via amelioration of CAS3 gene which might be through amelioration of some antioxidant-related genes.
PMID:37585718 | DOI:10.1080/10826068.2023.2243506
Neighborhood Watch: Genomic epidemiology of SARS-CoV-2 variants circulating in a German federal state, Mecklenburg-Western Pomerania, in 2020-2022
Emerg Microbes Infect. 2023 Aug 10:2245916. doi: 10.1080/22221751.2023.2245916. Online ahead of print.
ABSTRACT
Global and even national genome surveillance approaches do not provide the resolution necessary for rapid and accurate direct response by local public health authorities. Hence, a regional network of microbiological laboratories in collaboration with the health departments of all districts of the German federal state of Mecklenburg-Western Pomerania (M-V) was formed to investigate the regional molecular epidemiology of circulating SARS-CoV-2 lineages between 11/2020 and 03/2022. More than 4750 samples from all M-V counties were sequenced using Illumina and Nanopore technologies. Overall, 3493 (73.5%) sequences fulfilled quality criteria for time-resolved and/or spatially-resolved maximum likelihood phylogenic analyses and k-mean/ median clustering (KMC). We identified 116 different Pangolin virus lineages that can be assigned to 16 Nextstrain clades. The ten most frequently detected virus lineages belonged to B.1.1.7, AY.122, AY.43, BA.1, B.1.617.2, BA.1.1, AY.9.2, AY.4, P.1 and AY.126. Time-resolved phylogenetic analyses showed the occurrence of virus clades as determined worldwide, but with a substantial delay of one to two months. Further spatio-temporal phylogenetic analyses revealed a regional outbreak of a Gamma variant limited to western M-V counties. Finally, KMC elucidated a successive introduction of the various virus lineages into M-V, possibly triggered by vacation periods with increased (inter-) national travel activities. The COVID-19 pandemic in M-V was shaped by a combination of several SARS-CoV-2 introductions, lockdown measures, restrictive quarantine of patients and the lineage specific replication rate. Complementing global and national surveillance, regional surveillance adds value by providing a higher level of surveillance resolution tailored to local health authorities.
PMID:37585712 | DOI:10.1080/22221751.2023.2245916
cyjShiny: A cytoscape.js R Shiny Widget for network visualization and analysis
PLoS One. 2023 Aug 16;18(8):e0285339. doi: 10.1371/journal.pone.0285339. eCollection 2023.
ABSTRACT
cyjShiny is an open-source R package that allows users to embed network visualization into Shiny apps and R Markdown documents. cyjShiny (https://github.com/cytoscape/cyjShiny) builds on the cytoscape.js Javascript graph library. Additionally, the package provides helper functions to convert common R data representations (e.g., data.frame) into forms compatible with cytoscape.js.
PMID:37585474 | DOI:10.1371/journal.pone.0285339
Don't show us your instrument park: Give us your students/give us to your students!
Microb Biotechnol. 2023 Aug 16. doi: 10.1111/1751-7915.14326. Online ahead of print.
NO ABSTRACT
PMID:37585211 | DOI:10.1111/1751-7915.14326
IL-6 translation is a therapeutic target of human cytokine release syndrome
J Exp Med. 2023 Nov 6;220(11):e20230577. doi: 10.1084/jem.20230577. Epub 2023 Aug 16.
ABSTRACT
Chimeric antigen receptor (CAR) T therapies have achieved remarkable success for treating hematologic malignancies, yet are often accompanied by severe cytokine release syndrome (CRS). Here, an accidental clinical observation raised the possibility that metoprolol, an FDA-approved β1 adrenergic receptor blocker widely used for cardiovascular conditions, may alleviate CAR T-induced CRS. Metoprolol effectively blocked IL-6 production in human monocytes through unexpected mechanisms of action of targeting IL-6 protein translation but not IL6 mRNA expression. Mechanistically, metoprolol diminished IL-6 protein synthesis via attenuating eEF2K-eEF2 axis-regulated translation elongation. Furthermore, an investigator-initiated phase I/II clinical trial demonstrated a favorable safety profile of metoprolol in CRS management and showed that metoprolol significantly alleviated CAR T-induced CRS without compromising CAR T efficacy. These results repurposed metoprolol, a WHO essential drug, as a potential therapeutic for CRS and implicated IL-6 translation as a mechanistic target of metoprolol, opening venues for protein translation-oriented drug developments for human inflammatory diseases.
PMID:37584653 | DOI:10.1084/jem.20230577
Comprehensive interrogation of human skeletal muscle reveals a dissociation between insulin resistance and mitochondrial capacity
Am J Physiol Endocrinol Metab. 2023 Aug 16. doi: 10.1152/ajpendo.00143.2023. Online ahead of print.
ABSTRACT
Insulin resistance and blunted mitochondrial capacity in skeletal muscle are often synonymous; however, this association remains controversial. The aim of this study was to perform an in-depth multi-factorial comparison of skeletal muscle mitochondrial capacity between individuals who were lean and active (Active- n = 9), individuals with obesity (Obese- n = 9) and individuals with Obesity, insulin resistance and type 2 diabetes (T2D- n = 22). Mitochondrial capacity was assessed by ex vivo mitochondrial respiration with fatty-acid and glycolytic supported protocols adjusted for mitochondrial content (mtDNA and citrate synthase activity). Supercomplex assembly was measured by BN-PAGE and immunoblot. TCA cycle intermediates were assessed with targeted metabolomics. Exploratory transcriptomics and DNA methylation analyses were performed to uncover molecular differences affecting mitochondrial function among the three groups. We reveal no discernable differences in skeletal muscle mitochondrial content, mitochondrial capacity, supercomplex assembly, TCA cycle intermediates and mitochondrial molecular profiles between obese individuals with and without T2D that had comparable levels of confounding factors (BMI, age, aerobic capacity). We highlight that lean, active individuals have greater; mitochondrial content, mitochondrial capacity, supercomplex assembly and TCA cycle intermediates. These phenotypical changes are reflected at the level of DNA methylation and gene transcription. The collective observation of comparable muscle mitochondrial capacity in individuals with obesity and T2D (vs. individuals without T2D) underscores a dissociation from skeletal muscle insulin resistance.
PMID:37584609 | DOI:10.1152/ajpendo.00143.2023
Adult-born granule cells improve stimulus encoding and discrimination in the dentate gyrus
Elife. 2023 Aug 16;12:e80250. doi: 10.7554/eLife.80250. Online ahead of print.
ABSTRACT
Heterogeneity plays an important role in diversifying neural responses to support brain function. Adult neurogenesis provides the dentate gyrus with a heterogeneous population of granule cells (GCs) that were born and developed their properties at different times. Immature GCs have distinct intrinsic and synaptic properties than mature GCs and are needed for correct encoding and discrimination in spatial tasks. How immature GCs enhance the encoding of information to support these functions is not well understood. Here, we record the responses to fluctuating current injections of GCs of different ages in mouse hippocampal slices to study how they encode stimuli. Immature GCs produce unreliable responses compared to mature GCs, exhibiting imprecise spike timings across repeated stimulation. We use a statistical model to describe the stimulus-response transformation performed by GCs of different ages. We fit this model to the data and obtain parameters that capture GCs encoding properties. Parameter values from this fit re ect the maturational differences of the population and indicate that immature GCs perform a differential encoding of stimuli. To study how this age heterogeneity influences encoding by a population, we perform stimulus decoding using populations that contain GCs of different ages. We find that, despite their individual unreliability, immature GCs enhance the fidelity of the signal encoded by the population and improve the discrimination of similar time dependent stimuli. Thus, the observed heterogeneity confers the population with enhanced encoding capabilities.
PMID:37584478 | DOI:10.7554/eLife.80250
Are fibrinaloid microclots a cause of autoimmunity in Long Covid and other post-infection diseases?
Biochem J. 2023 Aug 16;480(15):1217-1240. doi: 10.1042/BCJ20230241.
ABSTRACT
It is now well established that the blood-clotting protein fibrinogen can polymerise into an anomalous form of fibrin that is amyloid in character; the resultant clots and microclots entrap many other molecules, stain with fluorogenic amyloid stains, are rather resistant to fibrinolysis, can block up microcapillaries, are implicated in a variety of diseases including Long COVID, and have been referred to as fibrinaloids. A necessary corollary of this anomalous polymerisation is the generation of novel epitopes in proteins that would normally be seen as 'self', and otherwise immunologically silent. The precise conformation of the resulting fibrinaloid clots (that, as with prions and classical amyloid proteins, can adopt multiple, stable conformations) must depend on the existing small molecules and metal ions that the fibrinogen may (and is some cases is known to) have bound before polymerisation. Any such novel epitopes, however, are likely to lead to the generation of autoantibodies. A convergent phenomenology, including distinct conformations and seeding of the anomalous form for initiation and propagation, is emerging to link knowledge in prions, prionoids, amyloids and now fibrinaloids. We here summarise the evidence for the above reasoning, which has substantial implications for our understanding of the genesis of autoimmunity (and the possible prevention thereof) based on the primary process of fibrinaloid formation.
PMID:37584410 | DOI:10.1042/BCJ20230241
In the Spotlight-Established Researcher
J Exp Zool B Mol Dev Evol. 2023 Aug 16. doi: 10.1002/jez.b.23219. Online ahead of print.
NO ABSTRACT
PMID:37584214 | DOI:10.1002/jez.b.23219
Defining cardiac functional recovery in end-stage heart failure at single-cell resolution
Nat Cardiovasc Res. 2023 Apr;2(4):399-416. doi: 10.1038/s44161-023-00260-8. Epub 2023 Apr 6.
ABSTRACT
Recovery of cardiac function is the holy grail of heart failure therapy yet is infrequently observed and remains poorly understood. In this study, we performed single-nucleus RNA sequencing from patients with heart failure who recovered left ventricular systolic function after left ventricular assist device implantation, patients who did not recover and non-diseased donors. We identified cell-specific transcriptional signatures of recovery, most prominently in macrophages and fibroblasts. Within these cell types, inflammatory signatures were negative predictors of recovery, and downregulation of RUNX1 was associated with recovery. In silico perturbation of RUNX1 in macrophages and fibroblasts recapitulated the transcriptional state of recovery. Cardiac recovery mediated by BET inhibition in mice led to decreased macrophage and fibroblast Runx1 expression and diminished chromatin accessibility within a Runx1 intronic peak and acquisition of human recovery signatures. These findings suggest that cardiac recovery is a unique biological state and identify RUNX1 as a possible therapeutic target to facilitate cardiac recovery.
PMID:37583573 | PMC:PMC10426763 | DOI:10.1038/s44161-023-00260-8
Proteomic Characterization of Wheat Protein Fractions Taken at Different Baking Conditions
J Agric Food Chem. 2023 Aug 15. doi: 10.1021/acs.jafc.3c02100. Online ahead of print.
ABSTRACT
Food processing conditions affect the structure, solubility, and therefore accurate detection of gluten proteins. We investigated the influence of dough, bread, and pretzel making on the composition of different wheat protein fractions obtained by Osborne fractionation. The albumin/globulin, gliadin, and glutenin fractions from flour, dough, crispbread, bread, and pretzel were analyzed using RP-HPLC, SDS-PAGE, and untargeted nanoLC-MS/MS. This approach enabled an in-depth profiling of the fractionated proteomes and related compositional changes to processing conditions (mixing, heat, and alkali treatment). Overall, heat treatment demonstrated the most pronounced effect. Label-free quantitation revealed significant changes in the relative abundances of 82 proteins within the fractions of bread crumb and crust in comparison to flour. Certain gluten proteins showed shifts or reductions in particular fractions, indicating their incorporation into the gluten network through SS and non-SS cross-links. Other gluten proteins were enriched, suggesting their limited involvement in the gluten network formation.
PMID:37582505 | DOI:10.1021/acs.jafc.3c02100
A novel immune modulator IM33 mediates a glia-gut-neuronal axis that controls lifespan
Neuron. 2023 Aug 7:S0896-6273(23)00543-3. doi: 10.1016/j.neuron.2023.07.010. Online ahead of print.
ABSTRACT
Aging is a complex process involving various systems and behavioral changes. Altered immune regulation, dysbiosis, oxidative stress, and sleep decline are common features of aging, but their interconnection is poorly understood. Using Drosophila, we discover that IM33, a novel immune modulator, and its mammalian homolog, secretory leukocyte protease inhibitor (SLPI), are upregulated in old flies and old mice, respectively. Knockdown of IM33 in glia elevates the gut reactive oxygen species (ROS) level and alters gut microbiota composition, including increased Lactiplantibacillus plantarum abundance, leading to a shortened lifespan. Additionally, dysbiosis induces sleep fragmentation through the activation of insulin-producing cells in the brain, which is mediated by the binding of Lactiplantibacillus plantarum-produced DAP-type peptidoglycan to the peptidoglycan recognition protein LE (PGRP-LE) receptor. Therefore, IM33 plays a role in the glia-microbiota-neuronal axis, connecting neuroinflammation, dysbiosis, and sleep decline during aging. Identifying molecular mediators of these processes could lead to the development of innovative strategies for extending lifespan.
PMID:37582366 | DOI:10.1016/j.neuron.2023.07.010
Single-cell multi-omics defines the cell-type-specific impact of splicing aberrations in human hematopoietic clonal outgrowths
Cell Stem Cell. 2023 Aug 9:S1934-5909(23)00257-6. doi: 10.1016/j.stem.2023.07.012. Online ahead of print.
ABSTRACT
RNA splicing factors are recurrently mutated in clonal blood disorders, but the impact of dysregulated splicing in hematopoiesis remains unclear. To overcome technical limitations, we integrated genotyping of transcriptomes (GoT) with long-read single-cell transcriptomics and proteogenomics for single-cell profiling of transcriptomes, surface proteins, somatic mutations, and RNA splicing (GoT-Splice). We applied GoT-Splice to hematopoietic progenitors from myelodysplastic syndrome (MDS) patients with mutations in the core splicing factor SF3B1. SF3B1mut cells were enriched in the megakaryocytic-erythroid lineage, with expansion of SF3B1mut erythroid progenitor cells. We uncovered distinct cryptic 3' splice site usage in different progenitor populations and stage-specific aberrant splicing during erythroid differentiation. Profiling SF3B1-mutated clonal hematopoiesis samples revealed that erythroid bias and cell-type-specific cryptic 3' splice site usage in SF3B1mut cells precede overt MDS. Collectively, GoT-Splice defines the cell-type-specific impact of somatic mutations on RNA splicing, from early clonal outgrowths to overt neoplasia, directly in human samples.
PMID:37582363 | DOI:10.1016/j.stem.2023.07.012
Predicting the impact of sequence motifs on gene regulation using single-cell data
Genome Biol. 2023 Aug 15;24(1):189. doi: 10.1186/s13059-023-03021-9.
ABSTRACT
The binding of transcription factors at proximal promoters and distal enhancers is central to gene regulation. Identifying regulatory motifs and quantifying their impact on expression remains challenging. Using a convolutional neural network trained on single-cell data, we infer putative regulatory motifs and cell type-specific importance. Our model, scover, explains 29% of the variance in gene expression in multiple mouse tissues. Applying scover to distal enhancers identified using scATAC-seq from the developing human brain, we identify cell type-specific motif activities in distal enhancers. Scover can identify regulatory motifs and their importance from single-cell data where all parameters and outputs are easily interpretable.
PMID:37582793 | DOI:10.1186/s13059-023-03021-9