Systems Biology
Altered Expression of hsa_circ_0001445 and hsa_circ_0020397 in Breast Cancer Representing Associations with BMI and Reproductive Factors
Arch Iran Med. 2022 Dec 1;25(12):817-827. doi: 10.34172/aim.2022.127.
ABSTRACT
BACKGROUND: Circular RNAs (circRNAs), one of the recent subclasses of non-coding RNAs (ncRNAs), show pivotal functions in regulation of gene expression and have significant roles in malignancies including breast cancer (BC). This study was aimed to assess the hsa_circ_0001445 and hsa_circ_0020397 expression and role in BC, as well as the potential circRNA/miRNA/mRNA crosstalk in these contexts.
METHODS: The expression of hsa_circ_0001445 and hsa_circ_0020397 in 50 breast tumors and 50 normal tissues adjacent to the tumors was investigated using quantitative real-time polymerase chain reaction (qRT-PCR). Finally, bioinformatics analyses were used to uncover hsa_circ_0001445, hsa_circ_0020397-miRNA-mRNA potential regulatory networks.
RESULTS: The hsa_circ_0001445 expression was considerably downregulated in malignant tissues compared to their normal counterparts (P=0.020), while the hsa_circ_0020397 showed an upregulated pattern (P<0.001). Additionally, it was observed that the higher expression of hsa_circ_0001445 was associated with hair dye avoidance (P=0.034) and normal body mass index (BMI) (P=0.016) while hsa_circ_0020397 over-expression had an important association with a lack of vitamin D consumption (P=0.039). On the other hand, lower expression of hsa_circ_0001445 was significantly associated with age at menarche ˂14 years (P=0.027). Our study also revealed that the two circRNAs have potential ability to regulate key mRNAs and miRNAs in competing endogenous RNA (ceRNA) networks.
CONCLUSION: It is suggested that hsa_circ_0001445 and hsa_circ_0020397 with two opposite roles may be involved in BC development through sponging some miRNAs regulating ceRNA networks. However, their molecular interactions should be validated by further functional studies.
PMID:37543909 | DOI:10.34172/aim.2022.127
Engineering low-salt growth Halomonas Bluephagenesis for cost-effective bioproduction combined with adaptive evolution
Metab Eng. 2023 Aug 3:S1096-7176(23)00115-5. doi: 10.1016/j.ymben.2023.08.001. Online ahead of print.
ABSTRACT
Halophilic Halomonas bluephagenesis has been engineered to produce various added-value bio-compounds with reduced costs. However, the salt-stress regulatory mechanism remained unclear. H. bluephagenesis was randomly mutated to obtain low-salt growing mutants via atmospheric and room temperature plasma (ARTP). The resulted H. bluephagenesis TDH4A1B5 was constructed with the chromosomal integration of polyhydroxyalkanoates (PHA) synthesis operon phaCAB and deletion of phaP1 gene encoding PHA synthesis associated protein phasin, forming H. bluephagenesis TDH4A1B5P, which led to increased production of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-4-hydrobutyrate) (P34HB) by over 1.4-fold. H. bluephagenesis TDH4A1B5P also enhanced production of ectoine and threonine by 50% and 77%, respectively. A total 101 genes related to salinity tolerance was identified and verified via comparative genomic analysis among four ARTP mutated H. bluephagenesis strains. Recombinant H. bluephagenesis TDH4A1B5P was further engineered for PHA production utilizing sodium acetate or gluconate as sole carbon source. Over 33% cost reduction of PHA production could be achieved using recombinant H. bluephagenesis TDH4A1B5P. This study successfully developed a low-salt tolerant chassis H. bluephagenesis TDH4A1B5P and revealed salt-stress related genes of halophilic host strains.
PMID:37543135 | DOI:10.1016/j.ymben.2023.08.001
Persistence and dynamic structures of diverse cephalosporinase genes in nontyphoidal Salmonella in cross-sectional surveillance in Taiwan
Int J Antimicrob Agents. 2023 Aug 3:106944. doi: 10.1016/j.ijantimicag.2023.106944. Online ahead of print.
ABSTRACT
Nontyphoidal Salmonella (NTS) is a major foodborne pathogen causing from acute gastroenteritis to bacteremia, particularly in pediatric and elderly patients. Antimicrobial resistance of NTS, especially resistance to extended-spectrum cephalosporins, has emerged over the past decades. Thirteen NTS isolates resistant to ceftriaxone or cefotaxime were collected from a teaching hospital in Taipei, and another three from a tertiary hospital, in New Taipei City, Taiwan, from September 2018 to December 2019. Ten other archived isolates from 2000 to 2017 were also obtained. Serogroup B, C2 and E were significantly associated with ampicillin resistance. Over 90% of these 26 isolates are susceptible to carbapenems and colistin. Genomic epidemiology of these isolates shows that blaCMY-2-harboring isolates in different serovars were prevalent over two decades, presumably resulting from highly mobile IncI1 plasmid harboring blaCMY-2. One type of the IncI1 plasmids contained a mobile element, IS26, which might be involved in acquisition of antimicrobial resistance genes. Two emerging serovars, S. Goldcoast ST358 harboring blaCTX-M-55 on IncHI2 plasmids and S. Anatum ST64 harboring blaDHA-1 on IncA/C2 plasmids persisted in Taiwan possibly through clonal spread. Integration of complete or partial plasmid sequences into host chromosomes or multiplications of the antimicrobial resistance genes also appears to be mediated by IS26, in the two emerging clones. The dynamic movement of cephalosporinase genes mediated by IS26 in NTS is of great concern.
PMID:37543120 | DOI:10.1016/j.ijantimicag.2023.106944
High-throughput functional characterization of combinations of transcriptional activators and repressors
Cell Syst. 2023 Aug 2:S2405-4712(23)00186-2. doi: 10.1016/j.cels.2023.07.001. Online ahead of print.
ABSTRACT
Despite growing knowledge of the functions of individual human transcriptional effector domains, much less is understood about how multiple effector domains within the same protein combine to regulate gene expression. Here, we measure transcriptional activity for 8,400 effector domain combinations by recruiting them to reporter genes in human cells. In our assay, weak and moderate activation domains synergize to drive strong gene expression, whereas combining strong activators often results in weaker activation. In contrast, repressors combine linearly and produce full gene silencing, and repressor domains often overpower activation domains. We use this information to build a synthetic transcription factor whose function can be tuned between repression and activation independent of recruitment to target genes by using a small-molecule drug. Altogether, we outline the basic principles of how effector domains combine to regulate gene expression and demonstrate their value in building precise and flexible synthetic biology tools. A record of this paper's transparent peer review process is included in the supplemental information.
PMID:37543039 | DOI:10.1016/j.cels.2023.07.001
Towards integrative plant pathology
Curr Opin Plant Biol. 2023 Aug 3;75:102430. doi: 10.1016/j.pbi.2023.102430. Online ahead of print.
ABSTRACT
The field of plant pathology has revealed many of the mechanisms underlying the arms race, providing crucial knowledge and genetic resources for improving plant health. Although the host-microbe interaction seemingly favors rapidly evolving pathogens, it has also generated a vast evolutionary history of largely unexplored plant immunodiversity. We review studies that characterize the scope and distribution of genetic and ecological diversity in model and non-model systems with specific reference to pathogen effector diversity, plant immunodiversity in both cultivated species and their wild relatives, and diversity in the plant-associated microbiota. We show how the study of evolutionary and ecological processes can reveal patterns of genetic convergence, conservation, and diversification, and that this diversity is increasingly tractable in both experimental and translational systems. Perhaps most importantly, these patterns of diversity provide largely untapped resources that can be deployed for the rational engineering of durable resistance for sustainable agriculture.
PMID:37542739 | DOI:10.1016/j.pbi.2023.102430
MtrA modulates Mycobacterium tuberculosis cell division in host microenvironments to mediate intrinsic resistance and drug tolerance
Cell Rep. 2023 Aug 4;42(8):112875. doi: 10.1016/j.celrep.2023.112875. Online ahead of print.
ABSTRACT
The success of Mycobacterium tuberculosis (Mtb) is largely attributed to its ability to physiologically adapt and withstand diverse localized stresses within host microenvironments. Here, we present a data-driven model (EGRIN 2.0) that captures the dynamic interplay of environmental cues and genome-encoded regulatory programs in Mtb. Analysis of EGRIN 2.0 shows how modulation of the MtrAB two-component signaling system tunes Mtb growth in response to related host microenvironmental cues. Disruption of MtrAB by tunable CRISPR interference confirms that the signaling system regulates multiple peptidoglycan hydrolases, among other targets, that are important for cell division. Further, MtrA decreases the effectiveness of antibiotics by mechanisms of both intrinsic resistance and drug tolerance. Together, the model-enabled dissection of complex MtrA regulation highlights its importance as a drug target and illustrates how EGRIN 2.0 facilitates discovery and mechanistic characterization of Mtb adaptation to specific host microenvironments within the host.
PMID:37542718 | DOI:10.1016/j.celrep.2023.112875
Serum Proteomic Analysis of Peripartum Cardiomyopathy Reveals Distinctive Dysregulation of Inflammatory and Cholesterol Metabolism Pathways
JACC Heart Fail. 2023 Jul 18:S2213-1779(23)00310-4. doi: 10.1016/j.jchf.2023.05.031. Online ahead of print.
ABSTRACT
BACKGROUND: The pathophysiology of peripartum cardiomyopathy (PPCM) and its distinctive biological features remain incompletely understood. High-throughput serum proteomic profiling, a powerful tool to gain insights into the pathophysiology of diseases at a systems biology level, has never been used to investigate PPCM relative to nonischemic cardiomyopathy.
OBJECTIVES: To characterize the pathophysiology of PPCM through serum proteomic analysis.
METHODS: Aptamer-based proteomic analysis (SomaScan 7K) was performed on serum samples from women with PPCM (n = 67), women with nonischemic nonperipartum cardiomyopathy (NPCM) (n = 31), and age-matched healthy peripartum and nonperipartum women (n = 10 each). Serum samples were obtained from the IPAC (Investigation of Pregnancy-Associated Cardiomyopathy) and IMAC2 (Intervention in Myocarditis and Acute Cardiomyopathy) studies.
RESULTS: Principal component analysis revealed unique clustering of each patient group (P for difference <0.001). Biological pathway analyses of differentially measured proteins in PPCM relative to NPCM, before and after normalization to pertinent healthy controls, highlighted specific dysregulation of inflammatory pathways in PPCM, including the upregulation of the cholesterol metabolism-related anti-inflammatory pathway liver-X receptor/retinoid-X receptor (LXR/RXR) (P < 0.01, Z-score 1.9-2.1). Cardiac recovery by 12 months in PPCM was associated with the downregulation of pro-inflammatory pathways and the upregulation of LXR/RXR, and an additional RXR-dependent pathway involved in the regulation of inflammation and metabolism, peroxisome proliferator-activated receptor α/RXRα signaling.
CONCLUSIONS: Serum proteomic profiling of PPCM relative to NPCM and healthy controls indicated that PPCM is a distinct disease entity characterized by the unique dysregulation of inflammation-related pathways and cholesterol metabolism-related anti-inflammatory pathways. These findings provide insight into the pathophysiology of PPCM and point to novel potential therapeutic targets.
PMID:37542511 | DOI:10.1016/j.jchf.2023.05.031
Yet another acetate in the wall - RWA-C regulates wood xylan acetylation in poplar
Plant Physiol. 2023 Aug 5:kiad442. doi: 10.1093/plphys/kiad442. Online ahead of print.
NO ABSTRACT
PMID:37542475 | DOI:10.1093/plphys/kiad442
Binding of Viral Nuclear Localization Signal Peptides to Importin-α Nuclear Transport Protein
Biophys J. 2023 Aug 3:S0006-3495(23)00475-7. doi: 10.1016/j.bpj.2023.07.024. Online ahead of print.
ABSTRACT
Using all-atom replica-exchange molecular dynamics simulations, we mapped the mechanisms of binding of the nuclear localization signal (NLS) sequence from Venezuelan equine encephalitis virus (VEEV) capsid protein to importin-α (impα) transport protein. Our objective was to identify the VEEV NLS sequence fragment that confers native, experimentally resolved binding to impα as well as to study associated binding energetics and conformational ensembles. The two selected VEEV NLS peptide fragments, KKPK and KKPKKE, show strikingly different binding mechanisms. The minNLS peptide KKPK binds non-natively and non-specifically by adopting five diverse conformational clusters with low similarity to the X-ray structure 3VE6 of NLS-impα complex. Despite prevalence of non-native interactions, the minNLS peptide still largely binds to the impα major NLS binding site. In contrast, the coreNLS peptide KKPKKE binds specifically and natively adopting a largely homogeneous binding ensemble with a dominant, highly native-like conformational cluster. The coreNLS peptide retains most of native binding interactions, including π-cation contacts and a tryptophan cage. While KKPK binding is governed by a complex multistate free energy landscape featuring transitions between multiple binding poses, the coreNLS peptide free energy map is simple, exhibiting a single dominant native-like bound basin. We argue that the origin of the coreNLS peptide binding specificity is several electrostatic interactions formed by the two C-terminal amino acids, Lys10 and Glu11, with impα. The coreNLS sequence is then sufficient for native binding, but none of the amino acids flanking minNLS, including Lys10 and Glu11, are strictly necessary for the native pose. Our analysis indicate that the VEEV coreNLS sequence is virtually unique among human and viral proteins interacting with impα making it a potential target for VEEV-specific inhibitors.
PMID:37542371 | DOI:10.1016/j.bpj.2023.07.024
Metagenomic surveillance uncovers diverse and novel viral taxa in febrile patients from Nigeria
Nat Commun. 2023 Aug 4;14(1):4693. doi: 10.1038/s41467-023-40247-4.
ABSTRACT
Effective infectious disease surveillance in high-risk regions is critical for clinical care and pandemic preemption; however, few clinical diagnostics are available for the wide range of potential human pathogens. Here, we conduct unbiased metagenomic sequencing of 593 samples from febrile Nigerian patients collected in three settings: i) population-level surveillance of individuals presenting with symptoms consistent with Lassa Fever (LF); ii) real-time investigations of outbreaks with suspected infectious etiologies; and iii) undiagnosed clinically challenging cases. We identify 13 distinct viruses, including the second and third documented cases of human blood-associated dicistrovirus, and a highly divergent, unclassified dicistrovirus that we name human blood-associated dicistrovirus 2. We show that pegivirus C is a common co-infection in individuals with LF and is associated with lower Lassa viral loads and favorable outcomes. We help uncover the causes of three outbreaks as yellow fever virus, monkeypox virus, and a noninfectious cause, the latter ultimately determined to be pesticide poisoning. We demonstrate that a local, Nigerian-driven metagenomics response to complex public health scenarios generates accurate, real-time differential diagnoses, yielding insights that inform policy.
PMID:37542071 | DOI:10.1038/s41467-023-40247-4
Increased body weight in mice with fragile X messenger ribonucleoprotein 1 (Fmr1) gene mutation is associated with hypothalamic dysfunction
Sci Rep. 2023 Aug 4;13(1):12666. doi: 10.1038/s41598-023-39643-z.
ABSTRACT
Mutations in the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene are linked to Fragile X Syndrome, the most common monogenic cause of intellectual disability and autism. People affected with mutations in FMR1 have higher incidence of obesity, but the mechanisms are largely unknown. In the current study, we determined that male Fmr1 knockout mice (KO, Fmr1-/y), but not female Fmr1-/-, exhibit increased weight when compared to wild-type controls, similarly to humans with FMR1 mutations. No differences in food or water intake were found between groups; however, male Fmr1-/y display lower locomotor activity, especially during their active phase. Moreover, Fmr1-/y have olfactory dysfunction determined by buried food test, although they exhibit increased compulsive behavior, determined by marble burying test. Since olfactory brain regions communicate with hypothalamic regions that regulate food intake, including POMC neurons that also regulate locomotion, we examined POMC neuron innervation and numbers in Fmr1-/y mice. POMC neurons express Fmrp, and POMC neurons in Fmr1-/y have higher inhibitory GABAergic synaptic inputs. Consistent with increased inhibitory innervation, POMC neurons in the Fmr1-/y mice exhibit lower activity, based on cFOS expression. Notably, Fmr1-/y mice have fewer POMC neurons than controls, specifically in the rostral arcuate nucleus, which could contribute to decreased locomotion and increased body weight. These results suggest a role for Fmr1 in the regulation of POMC neuron function and the etiology of Fmr1-linked obesity.
PMID:37542065 | DOI:10.1038/s41598-023-39643-z
The AT-hook is an evolutionarily conserved auto-regulatory domain of SWI/SNF required for cell lineage priming
Nat Commun. 2023 Aug 4;14(1):4682. doi: 10.1038/s41467-023-40386-8.
ABSTRACT
The SWI/SNF ATP-dependent chromatin remodeler is a master regulator of the epigenome, controlling pluripotency and differentiation. Towards the C-terminus of the catalytic subunit of SWI/SNF is a motif called the AT-hook that is evolutionary conserved. The AT-hook is present in many chromatin modifiers and generally thought to help anchor them to DNA. We observe however that the AT-hook regulates the intrinsic DNA-stimulated ATPase activity aside from promoting SWI/SNF recruitment to DNA or nucleosomes by increasing the reaction velocity a factor of 13 with no accompanying change in substrate affinity (KM). The changes in ATP hydrolysis causes an equivalent change in nucleosome movement, confirming they are tightly coupled. The catalytic subunit's AT-hook is required in vivo for SWI/SNF remodeling activity in yeast and mouse embryonic stem cells. The AT-hook in SWI/SNF is required for transcription regulation and activation of stage-specific enhancers critical in cell lineage priming. Similarly, growth assays suggest the AT-hook is required in yeast SWI/SNF for activation of genes involved in amino acid biosynthesis and metabolizing ethanol. Our findings highlight the importance of studying SWI/SNF attenuation versus eliminating the catalytic subunit or completely shutting down its enzymatic activity.
PMID:37542049 | DOI:10.1038/s41467-023-40386-8
P53-response circRNA_0006420 aggravates lung cancer radiotherapy resistance by promoting formation of HUR/PTBP1 complex
J Adv Res. 2023 Aug 2:S2090-1232(23)00203-5. doi: 10.1016/j.jare.2023.07.011. Online ahead of print.
ABSTRACT
BACKGROUND: p53 wild-type lung cancer cells can develop radiation resistance. Circular RNA (circRNA) consists of a family of transcripts with exclusive structures. circRNA is critical in tumorigenesis and is a potential biomarker or therapeutic target. It is uncertain how circRNA expression and functions are regulated post-radiation in p53 wild-type cancer cells.
METHODS: A549 or H1299 cells were divided into p53-wt and p53-KO groups by CRISPR/Cas9; both groups were subjected to 4Gy ionizing radiation (IR: p53-wt-IR and p53-KO-IR). RNA-seq, CCK8, cell cycle, and other functional and mechanism experiments were performed in vivo. p53 gene knockout mice were generated to test the cell results in vitro.
RESULTS: circRNAs were found in differential groups. circRNA_0006420 (IRSense) was upregulated in p53-wt cells but had the same expression level as p53-KO cells after radiation, indicating that p53 silencing prevents its upregulation after IR. In the presence of p53, upregulated IRSense post-radiation induces G2/M arrest by regulating DNA damage repair (DDR) pathway-related proteins. Meanwhile, upregulated IRSense post-radiation aggravates the radiation-induced epithelial-mesenchymal transition (EMT). Interestingly, in the presence of p53, it promotes IRSense/HUR/PTBP1 complex formation resulting in the promotion of the radiation-induced EMT. Moreover, c-Jun regulates the upregulation of p53 transcription after radiation treatment. For these lung cancer cells with p53, upregulated IRSense aggravates lung cancer cell proliferation and increases radiation resistance by interacting with HUR (ElAV-like protein 1) and PTBP1 (polypyrimidine tract-binding protein 1) in the nucleus.
CONCLUSIONS: Lung cancer cells retaining p53 may upregulate circRNA_0006420 (IRSense) expression post radiation to form an IRSense/HUR/PTBP1 complex leading to radiotherapy resistance. This study furthers our understanding of the roles of circRNA in regulating the effect of radiotherapy and provides novel therapeutic avenues for effective clinical lung cancer therapies.
PMID:37541584 | DOI:10.1016/j.jare.2023.07.011
A cell therapy approach to restore microglial Trem2 function in a mouse model of Alzheimer's disease
Cell Stem Cell. 2023 Aug 3;30(8):1043-1053.e6. doi: 10.1016/j.stem.2023.07.006.
ABSTRACT
Alzheimer's disease (AD) remains one of the grand challenges facing human society. Much controversy exists around the complex and multifaceted pathogenesis of this prevalent disease. Given strong human genetic evidence, there is little doubt, however, that microglia play an important role in preventing degeneration of neurons. For example, loss of function of the microglial gene Trem2 renders microglia dysfunctional and causes an early-onset neurodegenerative syndrome, and Trem2 variants are among the strongest genetic risk factors for AD. Thus, restoring microglial function represents a rational therapeutic approach. Here, we show that systemic hematopoietic cell transplantation followed by enhancement of microglia replacement restores microglial function in a Trem2 mutant mouse model of AD.
PMID:37541210 | DOI:10.1016/j.stem.2023.07.006
A single-cell transcriptional landscape of immune cells shows disease-specific changes of T cell and macrophage populations in human achalasia
Nat Commun. 2023 Aug 4;14(1):4685. doi: 10.1038/s41467-023-39750-5.
ABSTRACT
Achalasia is a rare motility disorder of the esophagus caused by the gradual degeneration of myenteric neurons. Immune-mediated ganglionitis has been proposed to underlie the loss of myenteric neurons. Here, we measure the immune cell transcriptional profile of paired lower esophageal sphincter (LES) tissue and blood samples in achalasia and controls using single-cell RNA sequencing (scRNA-seq). In achalasia, we identify a pattern of expanded immune cells and a specific transcriptional phenotype, especially in LES tissue. We show C1QC+ macrophages and tissue-resident memory T cells (TRM), especially ZNF683+ CD8+ TRM and XCL1+ CD4+ TRM, are significantly expanded and localized surrounding the myenteric plexus in the LES tissue of achalasia. C1QC+ macrophages are transcriptionally similar to microglia of the central nervous system and have a neurodegenerative dysfunctional phenotype in achalasia. TRM also expresses transcripts of dysregulated immune responses in achalasia. Moreover, inflammation increases with disease progression since immune cells are more activated in type I compared with type II achalasia. Thus, we profile the immune cell transcriptional landscape and identify C1QC+ macrophages and TRM as disease-associated immune cell subsets in achalasia.
PMID:37542039 | DOI:10.1038/s41467-023-39750-5
A comparative proteomics analysis of four contact allergens in THP-1 cells shows distinct alterations in key metabolic pathways
Toxicol Appl Pharmacol. 2023 Aug 2:116650. doi: 10.1016/j.taap.2023.116650. Online ahead of print.
ABSTRACT
Allergic contact dermatitis (ACD) is the predominant form of immunotoxicity in humans. The sensitizing potential of chemicals can be assessed in vitro. However, a better mechanistic understanding could improve the current OECD validated test battery. The aim of this study was to get insights into toxicity mechanisms of four contact allergens, p-benzoquinone (BQ), 2,4-dinitrochlorobenzene (DNCB), p-nitrobenzyl bromide (NBB) and NiSO4, by analyzing differential proteome alterations in THP-1 cells using two common proteomics workflows, stable isotope labeling by amino acids in cell culture (SILAC) and label-free quantification (LFQ). Here, SILAC was found to deliver more robust results. Overall, the four allergens induced similar responses in THP-1 cells, which underwent profound metabolic reprogramming, including a striking upregulation of the TCA cycle accompanied by pronounced induction of the Nrf2 oxidative stress response pathway. The magnitude of induction varied between the allergens with DNCB and NBB being most potent. A considerable overlap between transcriptome-based signatures of the GARD assay and the proteins identified in our study was found. When comparing the results of this study to a previous proteomics study in human primary monocyte-derived dendritic cells, we found a rather low share in regulated proteins. However, on pathway level, the overlap was high, indicating that affected pathways rather than single proteins are more eligible to investigate proteomic changes induced by contact allergens. Overall, this study confirms the potential of proteomics to obtain a profound mechanistic understanding, which may help improving existing in vitro assays for skin sensitization.
PMID:37541627 | DOI:10.1016/j.taap.2023.116650
ADVANCEMENTS IN SYNTHETIC BIOLOGY-BASED BACTERIAL CANCER THERAPY: A MODULAR DESIGN APPROACH
Crit Rev Oncol Hematol. 2023 Aug 2:104088. doi: 10.1016/j.critrevonc.2023.104088. Online ahead of print.
ABSTRACT
Synthetic biology aims to program living bacteria cells with artificial genetic circuits for user-defined functions, transforming them into powerful tools with numerous applications in various fields, including oncology. Cancer treatments have serious side effects on patients due to the systemic action of the drugs involved. To address this, new systems that provide localized antitumoral action while minimizing damage to healthy tissues are required. Bacteria, often considered pathogenic agents, have been used as cancer treatments since the early 20th century. Advances in genetic engineering, synthetic biology, microbiology, and oncology have improved bacterial therapies, making them safer and more effective. Here we proposed six modules for a successful synthetic biology-based bacterial cancer therapy, the modules include Payload, Release, Tumor-targeting, Biocontainment, Memory, and Genetic Circuit Stability Module. These will ensure antitumor activity, safety for the environment and patient, prevent bacterial colonization, maintain cell stability, and prevent loss or defunctionalization of the genetic circuit.
PMID:37541537 | DOI:10.1016/j.critrevonc.2023.104088
Tff2 defines transit-amplifying pancreatic acinar progenitors that lack regenerative potential and are protective against Kras-driven carcinogenesis
Cell Stem Cell. 2023 Aug 3;30(8):1091-1109.e7. doi: 10.1016/j.stem.2023.07.002.
ABSTRACT
While adult pancreatic stem cells are thought not to exist, it is now appreciated that the acinar compartment harbors progenitors, including tissue-repairing facultative progenitors (FPs). Here, we study a pancreatic acinar population marked by trefoil factor 2 (Tff2) expression. Long-term lineage tracing and single-cell RNA sequencing (scRNA-seq) analysis of Tff2-DTR-CreERT2-targeted cells defines a transit-amplifying progenitor (TAP) population that contributes to normal homeostasis. Following acute and chronic injury, Tff2+ cells, distinct from FPs, undergo depopulation but are eventually replenished. At baseline, oncogenic KrasG12D-targeted Tff2+ cells are resistant to PDAC initiation. However, KrasG12D activation in Tff2+ cells leads to survival and clonal expansion following pancreatitis and a cancer stem/progenitor cell-like state. Selective ablation of Tff2+ cells prior to KrasG12D activation in Mist1+ acinar or Dclk1+ FP cells results in enhanced tumorigenesis, which can be partially rescued by adenoviral Tff2 treatment. Together, Tff2 defines a pancreatic TAP population that protects against Kras-driven carcinogenesis.
PMID:37541213 | DOI:10.1016/j.stem.2023.07.002
TET2-mediated mRNA demethylation regulates leukemia stem cell homing and self-renewal
Cell Stem Cell. 2023 Aug 3;30(8):1072-1090.e10. doi: 10.1016/j.stem.2023.07.001.
ABSTRACT
TET2 is recurrently mutated in acute myeloid leukemia (AML) and its deficiency promotes leukemogenesis (driven by aggressive oncogenic mutations) and enhances leukemia stem cell (LSC) self-renewal. However, the underlying cellular/molecular mechanisms have yet to be fully understood. Here, we show that Tet2 deficiency significantly facilitates leukemogenesis in various AML models (mediated by aggressive or less aggressive mutations) through promoting homing of LSCs into bone marrow (BM) niche to increase their self-renewal/proliferation. TET2 deficiency in AML blast cells increases expression of Tetraspanin 13 (TSPAN13) and thereby activates the CXCR4/CXCL12 signaling, leading to increased homing/migration of LSCs into BM niche. Mechanistically, TET2 deficiency results in the accumulation of methyl-5-cytosine (m5C) modification in TSPAN13 mRNA; YBX1 specifically recognizes the m5C modification and increases the stability and expression of TSPAN13 transcripts. Collectively, our studies reveal the functional importance of TET2 in leukemogenesis, leukemic blast cell migration/homing, and LSC self-renewal as an mRNA m5C demethylase.
PMID:37541212 | DOI:10.1016/j.stem.2023.07.001
DRG afferents that mediate physiologic and pathologic mechanosensation from the distal colon
Cell. 2023 Aug 3;186(16):3368-3385.e18. doi: 10.1016/j.cell.2023.07.007.
ABSTRACT
The properties of dorsal root ganglia (DRG) neurons that innervate the distal colon are poorly defined, hindering our understanding of their roles in normal physiology and gastrointestinal (GI) disease. Here, we report genetically defined subsets of colon-innervating DRG neurons with diverse morphologic and physiologic properties. Four colon-innervating DRG neuron populations are mechanosensitive and exhibit distinct force thresholds to colon distension. The highest threshold population, selectively labeled using Bmpr1b genetic tools, is necessary and sufficient for behavioral responses to high colon distension, which is partly mediated by the mechanosensory ion channel Piezo2. This Aδ-HTMR population mediates behavioral over-reactivity to colon distension caused by inflammation in a model of inflammatory bowel disease. Thus, like cutaneous DRG mechanoreceptor populations, colon-innervating mechanoreceptors exhibit distinct anatomical and physiological properties and tile force threshold space, and genetically defined colon-innervating HTMRs mediate pathophysiological responses to colon distension, revealing a target population for therapeutic intervention.
PMID:37541195 | DOI:10.1016/j.cell.2023.07.007