Systems Biology
Network Biology Analyses and Dynamic Modeling of Gene Regulatory Networks under Drought Stress Reveal Major Transcriptional Regulators in <em>Arabidopsis</em>
Int J Mol Sci. 2023 Apr 16;24(8):7349. doi: 10.3390/ijms24087349.
ABSTRACT
Drought is one of the most serious abiotic stressors in the environment, restricting agricultural production by reducing plant growth, development, and productivity. To investigate such a complex and multifaceted stressor and its effects on plants, a systems biology-based approach is necessitated, entailing the generation of co-expression networks, identification of high-priority transcription factors (TFs), dynamic mathematical modeling, and computational simulations. Here, we studied a high-resolution drought transcriptome of Arabidopsis. We identified distinct temporal transcriptional signatures and demonstrated the involvement of specific biological pathways. Generation of a large-scale co-expression network followed by network centrality analyses identified 117 TFs that possess critical properties of hubs, bottlenecks, and high clustering coefficient nodes. Dynamic transcriptional regulatory modeling of integrated TF targets and transcriptome datasets uncovered major transcriptional events during the course of drought stress. Mathematical transcriptional simulations allowed us to ascertain the activation status of major TFs, as well as the transcriptional intensity and amplitude of their target genes. Finally, we validated our predictions by providing experimental evidence of gene expression under drought stress for a set of four TFs and their major target genes using qRT-PCR. Taken together, we provided a systems-level perspective on the dynamic transcriptional regulation during drought stress in Arabidopsis and uncovered numerous novel TFs that could potentially be used in future genetic crop engineering programs.
PMID:37108512 | DOI:10.3390/ijms24087349
Automatic Generation of SBML Kinetic Models from Natural Language Texts Using GPT
Int J Mol Sci. 2023 Apr 14;24(8):7296. doi: 10.3390/ijms24087296.
ABSTRACT
Kinetic modeling is an essential tool in systems biology research, enabling the quantitative analysis of biological systems and predicting their behavior. However, the development of kinetic models is a complex and time-consuming process. In this article, we propose a novel approach called KinModGPT, which generates kinetic models directly from natural language text. KinModGPT employs GPT as a natural language interpreter and Tellurium as an SBML generator. We demonstrate the effectiveness of KinModGPT in creating SBML kinetic models from complex natural language descriptions of biochemical reactions. KinModGPT successfully generates valid SBML models from a range of natural language model descriptions of metabolic pathways, protein-protein interaction networks, and heat shock response. This article demonstrates the potential of KinModGPT in kinetic modeling automation.
PMID:37108453 | DOI:10.3390/ijms24087296
New Insights on Metabolic Features of <em>Bacillus subtilis</em> Based on Multistrain Genome-Scale Metabolic Modeling
Int J Mol Sci. 2023 Apr 11;24(8):7091. doi: 10.3390/ijms24087091.
ABSTRACT
Bacillus subtilis is an effective workhorse for the production of many industrial products. The high interest aroused by B. subtilis has guided a large metabolic modeling effort of this species. Genome-scale metabolic models (GEMs) are powerful tools for predicting the metabolic capabilities of a given organism. However, high-quality GEMs are required in order to provide accurate predictions. In this work, we construct a high-quality, mostly manually curated genome-scale model for B. subtilis (iBB1018). The model was validated by means of growth performance and carbon flux distribution and provided significantly more accurate predictions than previous models. iBB1018 was able to predict carbon source utilization with great accuracy while identifying up to 28 metabolites as potential novel carbon sources. The constructed model was further used as a tool for the construction of the panphenome of B. subtilis as a species, by means of multistrain genome-scale reconstruction. The panphenome space was defined in the context of 183 GEMs representative of 183 B. subtilis strains and the array of carbon sources sustaining growth. Our analysis highlights the large metabolic versatility of the species and the important role of the accessory metabolism as a driver of the panphenome, at a species level.
PMID:37108252 | DOI:10.3390/ijms24087091
The "Asthma-Polycystic Ovary Overlap Syndrome" and the Therapeutic Role of Myo-Inositol
Int J Mol Sci. 2023 Apr 9;24(8):6959. doi: 10.3390/ijms24086959.
ABSTRACT
Asthma is a heterogeneous inflammatory disease characterized by abnormalities in immune response. Due to the inherent complexity of the disease and the presence of comorbidities, asthma control is often difficult to obtain. In asthmatic patients, an increased prevalence of irregular menstrual cycles, infertility, obesity, and insulin resistance has been reported. Given that these conditions are also common in patients with polycystic ovary syndrome (PCOS), we propose the definition of "asthma-PCOS overlap syndrome" to indicate a medical condition which shares characteristics of both diseases. The aim of this review is to analyze the links between asthma and PCOS and evaluate the therapeutic role of myo-inositol, a natural compound currently utilized in patients with PCOS, in the management of asthma patients.
PMID:37108123 | DOI:10.3390/ijms24086959
Analysis of Viral Promoters for Transgene Expression and of the Effect of 5'-UTRs on Alternative Translational Start Sites in <em>Chlamydomonas</em>
Genes (Basel). 2023 Apr 21;14(4):948. doi: 10.3390/genes14040948.
ABSTRACT
Microalgae biotechnology has the potential to produce high quality bioproducts in a sustainable manner. Here, Chlamydomonas reinhardtii has shown great potential as a host for biotechnological exploitation. However, low expression of nuclear transgenes is still a problem and needs to be optimized. In many model organisms, viral promoters are used to drive transgene expression at high levels. However, no viruses are known to infect Chlamydomonas, and known viral promoters are not functional. Recently, two different lineages of giant viruses were identified in the genomes of Chlamydomonas reinhardtii field isolates. In this work, we tested six potentially strong promoters from these viral genomes for their ability to drive transgene expression in Chlamydomonas. We used ble, NanoLUC, and mCherry as reporter genes, and three native benchmark promoters as controls. None of the viral promoters drove expression of any reporter gene beyond background. During our study, we found that mCherry variants are produced by alternative in-frame translational start sites in Chlamydomonas. We show that this problem can be overcome by mutating the responsible methionine codons to codons for leucine and by using the 5'-UTR of βTUB2 instead of the 5'-UTRs of PSAD or RBCS2. Apparently, the βTUB2 5'-UTR promotes the use of the first start codon. This could be mediated by the formation of a stem-loop between sequences of the βTUB2 5'-UTR and sequences downstream of the first AUG in the mCherry reporter, potentially increasing the dwell time of the scanning 40S subunit on the first AUG and thus decreasing the probability of leaky scanning.
PMID:37107706 | DOI:10.3390/genes14040948
PMIDigest: Interactive Review of Large Collections of PubMed Entries to Distill Relevant Information
Genes (Basel). 2023 Apr 19;14(4):942. doi: 10.3390/genes14040942.
ABSTRACT
Scientific knowledge is being accumulated in the biomedical literature at an unprecedented pace. The most widely used database with biomedicine-related article abstracts, PubMed, currently contains more than 36 million entries. Users performing searches in this database for a subject of interest face thousands of entries (articles) that are difficult to process manually. In this work, we present an interactive tool for automatically digesting large sets of PubMed articles: PMIDigest (PubMed IDs digester). The system allows for classification/sorting of articles according to different criteria, including the type of article and different citation-related figures. It also calculates the distribution of MeSH (medical subject headings) terms for categories of interest, providing in a picture of the themes addressed in the set. These MeSH terms are highlighted in the article abstracts in different colors depending on the category. An interactive representation of the interarticle citation network is also presented in order to easily locate article "clusters" related to particular subjects, as well as their corresponding "hub" articles. In addition to PubMed articles, the system can also process a set of Scopus or Web of Science entries. In summary, with this system, the user can have a "bird's eye view" of a large set of articles and their main thematic tendencies and obtain additional information not evident in a plain list of abstracts.
PMID:37107700 | DOI:10.3390/genes14040942
Computational Biology Helps Understand How Polyploid Giant Cancer Cells Drive Tumor Success
Genes (Basel). 2023 Mar 26;14(4):801. doi: 10.3390/genes14040801.
ABSTRACT
Precision and organization govern the cell cycle, ensuring normal proliferation. However, some cells may undergo abnormal cell divisions (neosis) or variations of mitotic cycles (endopolyploidy). Consequently, the formation of polyploid giant cancer cells (PGCCs), critical for tumor survival, resistance, and immortalization, can occur. Newly formed cells end up accessing numerous multicellular and unicellular programs that enable metastasis, drug resistance, tumor recurrence, and self-renewal or diverse clone formation. An integrative literature review was carried out, searching articles in several sites, including: PUBMED, NCBI-PMC, and Google Academic, published in English, indexed in referenced databases and without a publication time filter, but prioritizing articles from the last 3 years, to answer the following questions: (i) "What is the current knowledge about polyploidy in tumors?"; (ii) "What are the applications of computational studies for the understanding of cancer polyploidy?"; and (iii) "How do PGCCs contribute to tumorigenesis?"
PMID:37107559 | DOI:10.3390/genes14040801
Phenolic Biotransformations in Wheatgrass Juice after Primary and Secondary Fermentation
Foods. 2023 Apr 12;12(8):1624. doi: 10.3390/foods12081624.
ABSTRACT
Fermented wheatgrass juice was prepared using a two-stage fermentation process by employing Saccharomyces cerevisiae and recombinant Pediococcus acidilactici BD16 (alaD+). During fermentation, a reddish-brown hue appeared in wheatgrass juice due to production of different types of red pigments. The fermented wheatgrass juice has considerably higher content of anthocyanins, total phenols and beta-carotenes as compared to unfermented wheatgrass juice. It has low ethanol content, which might be ascribed to the presence of certain phytolignans in wheatgrass juice. Several yeast-mediated phenolic transformations (such as bioconversion of coumaric acid, hydroxybenzoic acid, hydroxycinnamic acid and quinic acid into respective derivatives; glycosylation and prenylation of flavonoids; glycosylation of lignans; sulphonation of phenols; synthesis of carotenoids, diarylnonanoids, flavanones, stilbenes, steroids, quinolones, di- and tri-terpenoids and tannin) were identified in fermented wheatgrass juice using an untargeted liquid chromatography (LC)-mass spectrometry (MS)-matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF)/time-of-flight (TOF) technique. The recombinant P. acidilactici BD16 (alaD+) also supported flavonoid and lignin glycosylation; benzoic acid, hydroxycoumaric acid and quinic acid derivatization; and synthesis of anthraquinones, sterols and triterpenes with therapeutic benefits. The information presented in this manuscript may be utilized to elucidate the importance of Saccharomyces cerevisiae and P. acidilactici BD16 (alaD+) mediated phenolic biotransformations in developing functional food supplements such as fermented wheatgrass juice.
PMID:37107419 | DOI:10.3390/foods12081624
Structural Identifiability and Observability of Microbial Community Models
Bioengineering (Basel). 2023 Apr 17;10(4):483. doi: 10.3390/bioengineering10040483.
ABSTRACT
Biological communities are populations of various species interacting in a common location. Microbial communities, which are formed by microorganisms, are ubiquitous in nature and are increasingly used in biotechnological and biomedical applications. They are nonlinear systems whose dynamics can be accurately described by models of ordinary differential equations (ODEs). A number of ODE models have been proposed to describe microbial communities. However, the structural identifiability and observability of most of them-that is, the theoretical possibility of inferring their parameters and internal states by observing their output-have not been determined yet. It is important to establish whether a model possesses these properties, because, in their absence, the ability of a model to make reliable predictions may be compromised. Hence, in this paper, we analyse these properties for the main families of microbial community models. We consider several dimensions and measurements; overall, we analyse more than a hundred different configurations. We find that some of them are fully identifiable and observable, but a number of cases are structurally unidentifiable and/or unobservable under typical experimental conditions. Our results help in deciding which modelling frameworks may be used for a given purpose in this emerging area, and which ones should be avoided.
PMID:37106670 | DOI:10.3390/bioengineering10040483
Circulating Extracellular-Vesicle-Incorporated MicroRNAs as Potential Biomarkers for Ischemic Stroke in Patients With Cancer
J Stroke. 2023 May 2. doi: 10.5853/jos.2022.02327. Online ahead of print.
ABSTRACT
BACKGROUND AND PURPOSE: This study aimed to evaluate whether extracellular-vesicle-incorporated microRNAs (miRNAs) are potential biomarkers for cancer-related stroke.
METHODS: This cohort study compared patients with active cancer who had embolic stroke of unknown sources (cancer-stroke group) with patients with only cancer, patients with only stroke, and healthy individuals (control groups). The expression profiles of miRNAs encapsulated in plasma exosomes and microvesicles were evaluated using microarray and validated using quantitative real-time polymerase chain reaction. The XENO-QTM miRNA assay technology was used to determine the absolute copy numbers of individual miRNAs in an external validation cohort.
RESULTS: This study recruited 220 patients, of which 45 had cancer-stroke, 76 were healthy controls, 39 were cancer controls, and 60 were stroke controls. Three miRNAs (miR-205-5p, miR-645, and miR-646) were specifically incorporated into microvesicles in patients with cancer-related stroke, cancer controls, and stroke controls. The area under the receiver operating characteristic curves of these three miRNAs were 0.7692-0.8510 for the differentiation of patients with cancer-stroke from cancer-controls and 0.8077-0.8846 for the differentiation of patients with cancer-stroke from stroke controls. The levels of several miRNAs were elevated in the plasma exosomes of patients with cancer, but were lower than those in plasma microvesicles. An in vivo study showed that systemic injection of miR-205-5p promoted the development of arterial thrombosis and elevation of D-dimer levels. Conclusion Stroke due to cancer-related coagulopathy was associated with deregulated expression of miRNAs, particularly microvesicle-incorporated miR-205-5p, miR-645, and miR-646. Further prospective studies of extracellular-vesicle-incorporated miRNAs are required to confirm the diagnostic role of miRNAs in patients with stroke and to screen the roles of miRNAs in patients with cancer.
PMID:37106564 | DOI:10.5853/jos.2022.02327
Sodium thiosulfate refuels the hepatic antioxidant pool reducing ischemia-reperfusion-induced liver injury
Free Radic Biol Med. 2023 Apr 25:S0891-5849(23)00382-9. doi: 10.1016/j.freeradbiomed.2023.04.012. Online ahead of print.
ABSTRACT
Ischemia-reperfusion injury is a critical liver condition during hepatic transplantation, trauma, or shock. An ischemic deprivation of antioxidants and energy characterizes liver injury in such cases. In the face of increased reactive oxygen production, hepatocytes are vulnerable to the reperfusion driving ROS generation and multiple cell-death mechanisms. In this study, we investigate the importance of hydrogen sulfide as part of the liver's antioxidant pool and the therapeutic potency of the hydrogen sulfide donors sodium sulfide (Na2S, fast releasing) and sodium thiosulfate (STS, Na2S2O3, slow releasing). The mitoprotection and toxicity of STS and Na2S were investigated on isolated mitochondria and a liver perfusion oxidative stress model by adding text-butyl hydroperoxide and hydrogen sulfide donors. The respiratory capacity of mitochondria, hepatocellular released LDH, glutathione, and lipid-peroxide levels were quantified. In addition, wild-type and cystathionine-γ-lyase knockout mice were subjected to warm selective ischemia-reperfusion injury by clamping the main inflow for 1 h followed by reperfusion of 1 or 24 h. A subset of animals was treated with STS shortly before reperfusion. Glutathione, plasma ALT, and lipid-peroxide levels were investigated alongside mitochondrial changes in structure (electron microscopy) and function (intravital microscopy). Liver tissue necrosis quantified 24 h after reperfusion indicates the net effects of the treatment on the organ. STS refuels and protects the endogenous antioxidant pool during liver ischemia-reperfusion injury. In addition, STS-mediated ROS scavenging significantly reduced lipid peroxidation and mitochondrial damage, resulting in better molecular and histopathological preservation of the liver tissue architecture. STS prevents tissue damage in liver ischemia-reperfusion injury by increasing the liver's antioxidant pool, thereby protecting mitochondrial integrity.
PMID:37105418 | DOI:10.1016/j.freeradbiomed.2023.04.012
Bloated Claims in Biomedical Research Publications: Implications for Science and Society
Am J Med. 2023 Apr 25:S0002-9343(23)00264-4. doi: 10.1016/j.amjmed.2023.04.010. Online ahead of print.
NO ABSTRACT
PMID:37105245 | DOI:10.1016/j.amjmed.2023.04.010
TLR8 agonist Motolimod-induced inflammatory death for treatment of acute myeloid leukemia
Biomed Pharmacother. 2023 Apr 25;163:114759. doi: 10.1016/j.biopha.2023.114759. Online ahead of print.
ABSTRACT
The clinical treatment of AML is dominated by "7 + 3" therapy, but it often shows great toxicity and limited therapeutic efficacy in application. Therefore, it is urgent to develop novel therapeutic strategies to achieve safe and efficient treatment of AML. Small-molecule inhibitors have the characteristics of high specificity, low off-target toxicity and remarkable therapeutic effect, and are receiving more and more attention in tumor therapy. In this study, we screened a library of 1972 FDA-approved small molecular compounds for those that induced the inflammatory death of AML cells, among which the TLR8 agonist Motolimod (MTL) showed stronger anti-AML activity in the animal model but slight affection on normal lymphocytes in control mice. In terms of mechanism, cellular experiments in AML cell lines proved that TLR8 and LKB1/AMPK are the key distinct mechanisms for MTL triggered caspase-3-dependent cell death and the expression of a large number of inflammatory factors. In conclusion, our findings identified the immunoactivator MTL as a single agent exerting significant anti-AML activity in vitro and in vivo, with strong potential for clinical translation.
PMID:37105077 | DOI:10.1016/j.biopha.2023.114759
Discovery of a miniaturized PROTAC with potent activity and high selectivity
Bioorg Chem. 2023 Apr 21;136:106556. doi: 10.1016/j.bioorg.2023.106556. Online ahead of print.
ABSTRACT
The approved small-molecule inhibitors of anaplastic lymphoma kinase (ALK) have shown remarkable efficacy in some subset of cancer patients. However, the numerous ALK mutants or fusion partners are resistant to such drugs, greatly limiting their application in clinic. Despite the drug design strategy of proteolysis-targeting chimera (PROTAC) holds great potential to overcome drug resistance in theory, there are obvious disadvantages for the reported PROTACs that include high molecular weight, long linkers, difficult synthesis routes as well as insufficient evidence in activity for diverse ALK mutants. In this study, we designed and synthesized a miniaturized PROTAC of ALK named AP-1 following the principle of minimalist design. Two simple chemical units of ligands and a minimized linker with only two atoms were selected for synthesis of AP-1. At cellular level, AP-1 successfully degraded three types of ALK mutants including NPM-ALK, EML4-ALK and F1174L mutation ALK form with potent activity, high selectivity in ALK-positive cells. In xenograft mouse model, AP-1 showed the stronger antitumor efficacy than ceritinib as well as ALK degraders reported in literatures. AP-1 with an extremely simple PROTAC structure can be served as an effective candidate drug for therapy of various types of ALK-positive cancers. And the design principle of AP-1 has a good guiding significance for overcoming the disadvantages such as excessive molecular weight and poor solubility of PROTAC.
PMID:37105002 | DOI:10.1016/j.bioorg.2023.106556
Retraction Note: Systematic analyses reveal long non-coding RNA (PTAF)-mediated promotion of EMT and invasion-metastasis in serous ovarian cancer
Mol Cancer. 2023 Apr 28;22(1):78. doi: 10.1186/s12943-023-01779-x.
NO ABSTRACT
PMID:37106357 | DOI:10.1186/s12943-023-01779-x
Mapping the functional interactions at the tumor-immune checkpoint interface
Commun Biol. 2023 Apr 27;6(1):462. doi: 10.1038/s42003-023-04777-3.
ABSTRACT
The interactions between tumor intrinsic processes and immune checkpoints can mediate immune evasion by cancer cells and responses to immunotherapy. It is, however, challenging to identify functional interactions due to the prohibitively complex molecular landscape of the tumor-immune interfaces. We address this challenge with a statistical analysis framework, immuno-oncology gene interaction maps (ImogiMap). ImogiMap quantifies and statistically validates tumor-immune checkpoint interactions based on their co-associations with immune-associated phenotypes. The outcome is a catalog of tumor-immune checkpoint interaction maps for diverse immune-associated phenotypes. Applications of ImogiMap recapitulate the interaction of SERPINB9 and immune checkpoints with interferon gamma (IFNγ) expression. Our analyses suggest that CD86-CD70 and CD274-CD70 immunoregulatory interactions are significantly associated with IFNγ expression in uterine corpus endometrial carcinoma and basal-like breast cancer, respectively. The open-source ImogiMap software and user-friendly web application will enable future applications of ImogiMap. Such applications may guide the discovery of previously unknown tumor-immune interactions and immunotherapy targets.
PMID:37106127 | DOI:10.1038/s42003-023-04777-3
Lipid-coated mesoporous silica nanoparticles for anti-viral applications via delivery of CRISPR-Cas9 ribonucleoproteins
Sci Rep. 2023 Apr 27;13(1):6873. doi: 10.1038/s41598-023-33092-4.
ABSTRACT
Emerging and re-emerging viral pathogens present a unique challenge for anti-viral therapeutic development. Anti-viral approaches with high flexibility and rapid production times are essential for combating these high-pandemic risk viruses. CRISPR-Cas technologies have been extensively repurposed to treat a variety of diseases, with recent work expanding into potential applications against viral infections. However, delivery still presents a major challenge for these technologies. Lipid-coated mesoporous silica nanoparticles (LCMSNs) offer an attractive delivery vehicle for a variety of cargos due to their high biocompatibility, tractable synthesis, and amenability to chemical functionalization. Here, we report the use of LCMSNs to deliver CRISPR-Cas9 ribonucleoproteins (RNPs) that target the Niemann-Pick disease type C1 gene, an essential host factor required for entry of the high-pandemic risk pathogen Ebola virus, demonstrating an efficient reduction in viral infection. We further highlight successful in vivo delivery of the RNP-LCMSN platform to the mouse liver via systemic administration.
PMID:37105997 | DOI:10.1038/s41598-023-33092-4
Expression-based subtypes define pathologic response to neoadjuvant immune-checkpoint inhibitors in muscle-invasive bladder cancer
Nat Commun. 2023 Apr 27;14(1):2126. doi: 10.1038/s41467-023-37568-9.
ABSTRACT
Checkpoint immunotherapy (CPI) has increased survival for some patients with advanced-stage bladder cancer (BCa). However, most patients do not respond. Here, we characterized the tumor and immune microenvironment in pre- and post-treatment tumors from the PURE01 neoadjuvant pembrolizumab immunotherapy trial, using a consolidative approach that combined transcriptional and genetic profiling with digital spatial profiling. We identify five distinctive genetic and transcriptomic programs and validate these in an independent neoadjuvant CPI trial to identify the features of response or resistance to CPI. By modeling the regulatory network, we identify the histone demethylase KDM5B as a repressor of tumor immune signaling pathways in one resistant subtype (S1, Luminal-excluded) and demonstrate that inhibition of KDM5B enhances immunogenicity in FGFR3-mutated BCa cells. Our study identifies signatures associated with response to CPI that can be used to molecularly stratify patients and suggests therapeutic alternatives for subtypes with poor response to neoadjuvant immunotherapy.
PMID:37105962 | DOI:10.1038/s41467-023-37568-9
Bacterial spore germination receptors are nutrient-gated ion channels
Science. 2023 Apr 28;380(6643):387-391. doi: 10.1126/science.adg9829. Epub 2023 Apr 27.
ABSTRACT
Bacterial spores resist antibiotics and sterilization and can remain metabolically inactive for decades, but they can rapidly germinate and resume growth in response to nutrients. Broadly conserved receptors embedded in the spore membrane detect nutrients, but how spores transduce these signals remains unclear. Here, we found that these receptors form oligomeric membrane channels. Mutations predicted to widen the channel initiated germination in the absence of nutrients, whereas those that narrow it prevented ion release and germination in response to nutrients. Expressing receptors with widened channels during vegetative growth caused loss of membrane potential and cell death, whereas the addition of germinants to cells expressing wild-type receptors triggered membrane depolarization. Therefore, germinant receptors act as nutrient-gated ion channels such that ion release initiates exit from dormancy.
PMID:37104613 | DOI:10.1126/science.adg9829
Integrating gene annotation with orthology inference at scale
Science. 2023 Apr 28;380(6643):eabn3107. doi: 10.1126/science.abn3107. Epub 2023 Apr 28.
ABSTRACT
Annotating coding genes and inferring orthologs are two classical challenges in genomics and evolutionary biology that have traditionally been approached separately, limiting scalability. We present TOGA (Tool to infer Orthologs from Genome Alignments), a method that integrates structural gene annotation and orthology inference. TOGA implements a different paradigm to infer orthologous loci, improves ortholog detection and annotation of conserved genes compared with state-of-the-art methods, and handles even highly fragmented assemblies. TOGA scales to hundreds of genomes, which we demonstrate by applying it to 488 placental mammal and 501 bird assemblies, creating the largest comparative gene resources so far. Additionally, TOGA detects gene losses, enables selection screens, and automatically provides a superior measure of mammalian genome quality. TOGA is a powerful and scalable method to annotate and compare genes in the genomic era.
PMID:37104600 | DOI:10.1126/science.abn3107