Systems Biology

Deciphering the complete human-monkeypox virus interactome: Identifying immune responses and potential drug targets

Thu, 2023-04-13 06:00

Front Immunol. 2023 Mar 27;14:1116988. doi: 10.3389/fimmu.2023.1116988. eCollection 2023.

ABSTRACT

Monkeypox virus (MPXV) is a dsDNA virus, belonging to Poxviridae family. The outbreak of monkeypox disease in humans is critical in European and Western countries, owing to its origin in African regions. The highest number of cases of the disease were found in the United States, followed by Spain and Brazil. Understanding the complete infection mechanism of diverse MPXV strains and their interaction with humans is important for therapeutic drug development, and to avoid any future epidemics. Using computational systems biology, we deciphered the genome-wide protein-protein interactions (PPIs) between 22 MPXV strains and human proteome. Based on phylogenomics and disease severity, 3 different strains of MPXV: Zaire-96-I-16, MPXV-UK_P2, and MPXV_USA_2022_MA001 were selected for comparative functional analysis of the proteins involved in the interactions. On an average, we predicted around 92,880 non-redundant PPIs between human and MPXV proteomes, involving 8014 host and 116 pathogen proteins from the 3 strains. The gene ontology (GO) enrichment analysis revealed 10,624 common GO terms in which the host proteins of 3 strains were highly enriched. These include significant GO terms such as platelet activation (GO:0030168), GABA-A receptor complex (GO:1902711), and metalloendopeptidase activity (GO:0004222). The host proteins were also significantly enriched in calcium signaling pathway (hsa04020), MAPK signaling pathway (hsa04010), and inflammatory mediator regulation of TRP channels (hsa04750). These significantly enriched GO terms and KEGG pathways are known to be implicated in immunomodulatory and therapeutic role in humans during viral infection. The protein hubs analysis revealed that most of the MPXV proteins form hubs with the protein kinases and AGC kinase C-terminal domains. Furthermore, subcellular localization revealed that most of the human proteins were localized in cytoplasm (29.22%) and nucleus (26.79%). A few drugs including Fostamatinib, Tamoxifen and others were identified as potential drug candidates against the monkeypox virus disease. This study reports the genome-scale PPIs elucidation in human-monkeypox virus pathosystem, thus facilitating the research community with functional insights into the monkeypox disease infection mechanism and augment the drug development.

PMID:37051239 | PMC:PMC10083500 | DOI:10.3389/fimmu.2023.1116988

Categories: Literature Watch

Understanding spatiotemporal coupling of gene expression using single molecule RNA imaging technologies

Thu, 2023-04-13 06:00

Transcription. 2023 Apr 12:1-22. doi: 10.1080/21541264.2023.2199669. Online ahead of print.

ABSTRACT

Across all kingdoms of life, gene regulatory mechanisms underlie cellular adaptation to ever-changing environments. Regulation of gene expression adjusts protein synthesis and, in turn, cellular growth. Messenger RNAs are key molecules in the process of gene expression. Our ability to quantitatively measure mRNA expression in single cells has improved tremendously over the past decades. This revealed an unexpected coordination between the steps that control the life of an mRNA, from transcription to degradation. Here, we provide an overview of the state-of-the-art imaging approaches for measurement and quantitative understanding of gene expression, starting from the early visualizations of single genes by electron microscopy to current fluorescence-based approaches in single cells, including live-cell RNA-imaging approaches to FISH-based spatial transcriptomics across model organisms. We also highlight how these methods have shaped our current understanding of the spatiotemporal coupling between transcriptional and post-transcriptional events in prokaryotes. We conclude by discussing future challenges of this multidisciplinary field.Abbreviations: mRNA: messenger RNA; rRNA: ribosomal rDNA; tRNA: transfer RNA; sRNA: small RNA; FISH: fluorescence in situ hybridization; RNP: ribonucleoprotein; smFISH: single RNA molecule FISH; smiFISH: single molecule inexpensive FISH; HCR-FISH: Hybridization Chain-Reaction-FISH; RCA: Rolling Circle Amplification; seqFISH: Sequential FISH; MERFISH: Multiplexed error robust FISH; UTR: Untranslated region; RBP: RNA binding protein; FP: fluorescent protein; eGFP: enhanced GFP, MCP: MS2 coat protein; PCP: PP7 coat protein; MB: Molecular beacons; sgRNA: single guide RNA.

PMID:37050882 | DOI:10.1080/21541264.2023.2199669

Categories: Literature Watch

What Hides in the Heights? The Case of the Iberian Endemism <em>Bromus picoeuropeanus</em>

Thu, 2023-04-13 06:00

Plants (Basel). 2023 Apr 1;12(7):1531. doi: 10.3390/plants12071531.

ABSTRACT

Bromus picoeuropeanus is a recently described species belonging to a complex genus of grasses. It inhabits stony soils at heights ranging from 1600 to 2200 m in Picos de Europa (Cantabrian Mountains, northern Spain). This species is morphologically very similar to B. erectus, partially sharing its presumed distribution range. We aim to determine the relationship between these species and their altitudinal ranges in Picos de Europa and the Cantabrian Mountains by conducting phylogenetic analyses based on nuclear (ETS and ITS) and chloroplastic (trnL) markers. Phylogenetic trees were inferred by Maximum Likelihood and Bayesian Inference. Haplotype networks were estimated based on the plastid marker. Although the ITS topologies could not generate exclusive clades for these species, the ETS analyses generated highly supported B. picoeuropeanus exclusive clades, which included locations outside its altitudinal putative range. The ETS-ITS and ETS-ITS-trnL topologies generated B. picoeuropeanus exclusive clades, whereas the trnL-based trees and haplotype networks were unable to discriminate B. erectus and B. picoeuropeanus. This evidence suggests that B. picoeuropeanus is a separate species with a larger distribution than previously thought, opening new questions regarding the evolution of B. erectus and other similar species in European mountainous systems. However, more information is needed regarding B. picoeuropeanus susceptibility to temperature rises.

PMID:37050157 | DOI:10.3390/plants12071531

Categories: Literature Watch

14-Substituted Diquinothiazines as a New Group of Anticancer Agents

Thu, 2023-04-13 06:00

Molecules. 2023 Apr 5;28(7):3248. doi: 10.3390/molecules28073248.

ABSTRACT

A series of novel double-angularly condensed diquinothiazines with aminoalkyl, amidoalkyl, sulfonamidoalkyl, and substituted phenyl groups was designed, synthesized, and evaluated for their anticancer activity against four selected human tumor cell lines (HTC116, SH-SY5Y, A549, and H1299). The cytotoxicity of the novel diquinothiazines was investigated against BEAS-2B cells. The activities of the compounds were compared to etoposide. Among them, compounds with aminoalkyl and phenyl groups showed excellent broad-spectrum anticancer activity. The most active 14-(methylthiophenyl)diquinothiazine, 3c, showed low cytotoxicity against BEAS-2B cells and high activity against tumor cell lines HTC116, SH-SY5Y, A549, and H1299, with IC50 values of 2.3 µM, 2.7 µM, 17.2 µM, and 2.7 µM, respectively (etopiside 8.6 µM, 3.9 µM, 44.8 µM, and 0.6, respectively). Live long-term microscopic observations of cell survival using the starting molecule M0 were also performed. Flow cytometry showed the proapoptotic effects of the studied diquinothiazines. Inhibition of the cell cycle in the S phase was observed, which is associated with damage to nucleic acids and connected to DNA replication arrest.

PMID:37050010 | DOI:10.3390/molecules28073248

Categories: Literature Watch

Chronic Kidney Disease-State of Either "Too Much" or "Too Little"

Thu, 2023-04-13 06:00

Nutrients. 2023 Mar 24;15(7):1587. doi: 10.3390/nu15071587.

ABSTRACT

Chronic kidney disease (CKD) is a world-wide phenomenon with an increasing incidence and prevalence [...].

PMID:37049428 | DOI:10.3390/nu15071587

Categories: Literature Watch

Editorial for Special Issue "Cancer Treatment via Nanotherapy"

Thu, 2023-04-13 06:00

Nanomaterials (Basel). 2023 Mar 24;13(7):1153. doi: 10.3390/nano13071153.

ABSTRACT

Effective cancer treatment remains one of the greatest medical challenges [...].

PMID:37049247 | DOI:10.3390/nano13071153

Categories: Literature Watch

Cracking the Code of Neuronal Cell Fate

Thu, 2023-04-13 06:00

Cells. 2023 Mar 30;12(7):1057. doi: 10.3390/cells12071057.

ABSTRACT

Transcriptional regulation is fundamental to most biological processes and reverse-engineering programs can be used to decipher the underlying programs. In this review, we describe how genomics is offering a systems biology-based perspective of the intricate and temporally coordinated transcriptional programs that control neuronal apoptosis and survival. In addition to providing a new standpoint in human pathology focused on the regulatory program, cracking the code of neuronal cell fate may offer innovative therapeutic approaches focused on downstream targets and regulatory networks. Similar to computers, where faults often arise from a software bug, neuronal fate may critically depend on its transcription program. Thus, cracking the code of neuronal life or death may help finding a patch for neurodegeneration and cancer.

PMID:37048129 | DOI:10.3390/cells12071057

Categories: Literature Watch

Loss-of-Function Variants in <em>DRD1</em> in Infantile Parkinsonism-Dystonia

Thu, 2023-04-13 06:00

Cells. 2023 Mar 30;12(7):1046. doi: 10.3390/cells12071046.

ABSTRACT

The human dopaminergic system is vital for a broad range of neurological processes, including the control of voluntary movement. Here we report a proband presenting with clinical features of dopamine deficiency: severe infantile parkinsonism-dystonia, characterised by frequent oculogyric crises, dysautonomia and global neurodevelopmental impairment. CSF neurotransmitter analysis was unexpectedly normal. Triome whole-genome sequencing revealed a homozygous variant (c.110C>A, (p.T37K)) in DRD1, encoding the most abundant dopamine receptor (D1) in the central nervous system, most highly expressed in the striatum. This variant was absent from gnomAD, with a CADD score of 27.5. Using an in vitro heterologous expression system, we determined that DRD1-T37K results in loss of protein function. Structure-function modelling studies predicted reduced substrate binding, which was confirmed in vitro. Exposure of mutant protein to the selective D1 agonist Chloro APB resulted in significantly reduced cyclic AMP levels. Numerous D1 agonists failed to rescue the cellular defect, reflected clinically in the patient, who had no benefit from dopaminergic therapy. Our study identifies DRD1 as a new disease-associated gene, suggesting a crucial role for the D1 receptor in motor control.

PMID:37048120 | DOI:10.3390/cells12071046

Categories: Literature Watch

Evolution-Informed Strategies for Combating Drug Resistance in Cancer

Thu, 2023-04-13 06:00

Int J Mol Sci. 2023 Apr 4;24(7):6738. doi: 10.3390/ijms24076738.

ABSTRACT

The ever-changing nature of cancer poses the most difficult challenge oncologists face today. Cancer's remarkable adaptability has inspired many to work toward understanding the evolutionary dynamics that underlie this disease in hopes of learning new ways to fight it. Eco-evolutionary dynamics of a tumor are not accounted for in most standard treatment regimens, but exploiting them would help us combat treatment-resistant effectively. Here, we outline several notable efforts to exploit these dynamics and circumvent drug resistance in cancer.

PMID:37047714 | DOI:10.3390/ijms24076738

Categories: Literature Watch

The Efficacy of Tumor Mutation Burden as a Biomarker of Response to Immune Checkpoint Inhibitors

Thu, 2023-04-13 06:00

Int J Mol Sci. 2023 Apr 4;24(7):6710. doi: 10.3390/ijms24076710.

ABSTRACT

Cancer is one of the leading causes of death in the world; therefore, extensive research has been dedicated to exploring potential therapeutics, including immune checkpoint inhibitors (ICIs). Initially, programmed-death ligand-1 was the biomarker utilized to predict the efficacy of ICIs. However, its heterogeneous expression in the tumor microenvironment, which is critical to cancer progression, promoted the exploration of the tumor mutation burden (TMB). Research in various cancers, such as melanoma and lung cancer, has shown an association between high TMB and response to ICIs, increasing its predictive value. However, the TMB has failed to predict ICI response in numerous other cancers. Therefore, future research is needed to analyze the variations between cancer types and establish TMB cutoffs in order to create a more standardized methodology for using the TMB clinically. In this review, we aim to explore current research on the efficacy of the TMB as a biomarker, discuss current approaches to overcoming immunoresistance to ICIs, and highlight new trends in the field such as liquid biopsies, next generation sequencing, chimeric antigen receptor T-cell therapy, and personalized tumor vaccines.

PMID:37047684 | DOI:10.3390/ijms24076710

Categories: Literature Watch

Signatures of Co-Deregulated Genes and Their Transcriptional Regulators in Kidney Cancers

Thu, 2023-04-13 06:00

Int J Mol Sci. 2023 Mar 31;24(7):6577. doi: 10.3390/ijms24076577.

ABSTRACT

There are several studies on the deregulated gene expression profiles in kidney cancer, with varying results depending on the tumor histology and other parameters. None of these, however, have identified the networks that the co-deregulated genes (co-DEGs), across different studies, create. Here, we reanalyzed 10 Gene Expression Omnibus (GEO) studies to detect and annotate co-deregulated signatures across different subtypes of kidney cancer or in single-gene perturbation experiments in kidney cancer cells and/or tissue. Using a systems biology approach, we aimed to decipher the networks they form along with their upstream regulators. Differential expression and upstream regulators, including transcription factors [MYC proto-oncogene (MYC), CCAAT enhancer binding protein delta (CEBPD), RELA proto-oncogene, NF-kB subunit (RELA), zinc finger MIZ-type containing 1 (ZMIZ1), negative elongation factor complex member E (NELFE) and Kruppel-like factor 4 (KLF4)] and protein kinases [Casein kinase 2 alpha 1 (CSNK2A1), mitogen-activated protein kinases 1 (MAPK1) and 14 (MAPK14), Sirtuin 1 (SIRT1), Cyclin dependent kinases 1 (CDK1) and 4 (CDK4), Homeodomain interacting protein kinase 2 (HIPK2) and Extracellular signal-regulated kinases 1 and 2 (ERK1/2)], were computed using the Characteristic Direction, as well as GEO2Enrichr and X2K, respectively, and further subjected to GO and KEGG pathways enrichment analyses. Furthermore, using CMap, DrugMatrix and the LINCS L1000 chemical perturbation databases, we highlight putative repurposing drugs, including Etoposide, Haloperidol, BW-B70C, Triamterene, Chlorphenesin, BRD-K79459005 and β-Estradiol 3-benzoate, among others, that may reverse the expression of the identified co-DEGs in kidney cancers. Of these, the cytotoxic effects of Etoposide, Catecholamine, Cyclosporin A, BW-B70C and Lasalocid sodium were validated in vitro. Overall, we identified critical co-DEGs across different subtypes in kidney cancer, and our results provide an innovative framework for their potential use in the future.

PMID:37047552 | DOI:10.3390/ijms24076577

Categories: Literature Watch

Exploring Potential Biomarkers and Molecular Mechanisms of Ischemic Cardiomyopathy and COVID-19 Comorbidity Based on Bioinformatics and Systems Biology

Thu, 2023-04-13 06:00

Int J Mol Sci. 2023 Mar 30;24(7):6511. doi: 10.3390/ijms24076511.

ABSTRACT

Cardiovascular complications combined with COVID-19 (SARS-CoV-2) lead to a poor prognosis in patients. The common pathogenesis of ischemic cardiomyopathy (ICM) and COVID-19 is still unclear. Here, we explored potential molecular mechanisms and biomarkers for ICM and COVID-19. Common differentially expressed genes (DEGs) of ICM (GSE5406) and COVID-19 (GSE164805) were identified using GEO2R. We performed enrichment and protein-protein interaction analyses and screened key genes. To confirm the diagnostic performance for these hub genes, we used external datasets (GSE116250 and GSE211979) and plotted ROC curves. Transcription factor and microRNA regulatory networks were constructed for the validated hub genes. Finally, drug prediction and molecular docking validation were performed using cMAP. We identified 81 common DEGs, many of which were enriched in terms of their relation to angiogenesis. Three DEGs were identified as key hub genes (HSP90AA1, HSPA9, and SRSF1) in the protein-protein interaction analysis. These hub genes had high diagnostic performance in the four datasets (AUC > 0.7). Mir-16-5p and KLF9 transcription factor co-regulated these hub genes. The drugs vindesine and ON-01910 showed good binding performance to the hub genes. We identified HSP90AA1, HSPA9, and SRSF1 as markers for the co-pathogenesis of ICM and COVID-19, and showed that co-pathogenesis of ICM and COVID-19 may be related to angiogenesis. Vindesine and ON-01910 were predicted as potential therapeutic agents. Our findings will contribute to a deeper understanding of the comorbidity of ICM with COVID-19.

PMID:37047484 | DOI:10.3390/ijms24076511

Categories: Literature Watch

Non-Ceruloplasmin Copper Identifies a Subtype of Alzheimer's Disease (CuAD): Characterization of the Cognitive Profile and Case of a CuAD Patient Carrying an <em>RGS7</em> Stop-Loss Variant

Thu, 2023-04-13 06:00

Int J Mol Sci. 2023 Mar 28;24(7):6377. doi: 10.3390/ijms24076377.

ABSTRACT

Alzheimer's disease (AD) is a type of dementia whose cause is incompletely defined. Copper (Cu) involvement in AD etiology was confirmed by a meta-analysis on about 6000 participants, showing that Cu levels were decreased in AD brain specimens, while Cu and non-bound ceruloplasmin Cu (non-Cp Cu) levels were increased in serum/plasma samples. Non-Cp Cu was advocated as a stratification add-on biomarker of a Cu subtype of AD (CuAD subtype). To further circumstantiate this concept, we evaluated non-Cp Cu reliability in classifying subtypes of AD based on the characterization of the cognitive profile. The stratification of the AD patients into normal AD (non-Cp Cu ≤ 1.6 µmol/L) and CuAD (non-Cp Cu > 1.6 µmol/L) showed a significant difference in executive function outcomes, even though patients did not differ in disease duration and severity. Among the Cu-AD patients, a 76-year-old woman showed significantly abnormal levels in the Cu panel and underwent whole exome sequencing. The CuAD patient was detected with possessing the homozygous (c.1486T > C; p.(Ter496Argext*19) stop-loss variant in the RGS7 gene (MIM*602517), which encodes for Regulator of G Protein Signaling 7. Non-Cp Cu as an add-on test in the AD diagnostic pathway can provide relevant information about the underlying pathological processes in subtypes of AD and suggest specific therapeutic options.

PMID:37047347 | DOI:10.3390/ijms24076377

Categories: Literature Watch

Mesenchymal Stromal Cells as a Driver of Inflammaging

Thu, 2023-04-13 06:00

Int J Mol Sci. 2023 Mar 28;24(7):6372. doi: 10.3390/ijms24076372.

ABSTRACT

Life expectancy and age-related diseases burden increased significantly over the past few decades. Age-related conditions are commonly discussed in a very limited paradigm of depleted cellular proliferation and maturation with exponential accumulation of senescent cells. However, most recent evidence showed that the majority of age-associated ailments, i.e., diabetes mellitus, cardiovascular diseases and neurodegeneration. These diseases are closely associated with tissue nonspecific inflammation triggered and controlled by mesenchymal stromal cell secretion. Mesenchymal stromal cells (MSCs) are known as the most common type of cells for therapeutic approaches in clinical practice. Side effects and complications of MSC-based treatments increased interest in the MSCs secretome as an alternative concept for validation tests in regenerative medicine. The most recent data also proposed it as an ideal tool for cell-free regenerative therapy and tissue engineering. However, senescent MSCs secretome was shown to hold the role of 'key-driver' in inflammaging. We aimed to review the immunomodulatory effects of the MSCs-secretome during cell senescence and provide eventual insight into the interpretation of its beneficial biological actions in inflammaging-associated diseases.

PMID:37047346 | DOI:10.3390/ijms24076372

Categories: Literature Watch

The Role of Inositols in the Hyperandrogenic Phenotypes of PCOS: A Re-Reading of Larner's Results

Thu, 2023-04-13 06:00

Int J Mol Sci. 2023 Mar 27;24(7):6296. doi: 10.3390/ijms24076296.

ABSTRACT

Polycystic ovarian syndrome (PCOS) is the most common endocrinological disorder in women, in which, besides chronic anovulation/oligomenorrhea and ovarian cysts, hyperandrogenism plays a critical role in a large fraction of subjects. Inositol isomers-myo-Inositol and D-Chiro-Inositol-have recently been pharmacologically effective in managing many PCOS symptoms while rescuing ovarian fertility. However, some disappointing clinical results prompted the reconsideration of their specific biological functions. Surprisingly, D-Chiro-Ins stimulates androgen synthesis and decreases the ovarian estrogen pathway; on the contrary, myo-Ins activates FSH response and aromatase activity, finally mitigating ovarian hyperandrogenism. However, when the two isomers are given in association-according to the physiological ratio of 40:1-patients could benefit from myo-Ins enhanced FSH and estrogen responsiveness, while taking advantage of the insulin-sensitizing effects displayed mostly by D-Chiro-Ins. We need not postulate insulin resistance to explain PCOS pathogenesis, given that insulin hypersensitivity is likely a shared feature of PCOS ovaries. Indeed, even in the presence of physiological insulin stimulation, the PCOS ovary synthesizes D-Chiro-Ins four times more than that measured in control theca cells. The increased D-Chiro-Ins within the ovary is detrimental in preserving steroidogenic control, and this failure can easily explain why treatment strategies based upon high D-Chiro-Ins have been recognized as poorly effective. Within this perspective, two factors emerge as major determinants in PCOS: hyperandrogenism and reduced aromatase expression. Therefore, PCOS could no longer be considered a disease only due to increased androgen synthesis without considering the contemporary downregulation of aromatase and FSH receptors. Furthermore, these findings suggest that inositols can be specifically effective only for those PCOS phenotypes featured by hyperandrogenism.

PMID:37047265 | DOI:10.3390/ijms24076296

Categories: Literature Watch

Beta-Caryophyllene Modifies Intracellular Lipid Composition in a Cell Model of Hepatic Steatosis by Acting through CB2 and PPAR Receptors

Thu, 2023-04-13 06:00

Int J Mol Sci. 2023 Mar 23;24(7):6060. doi: 10.3390/ijms24076060.

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease; however, no specific pharmacological therapy has yet been approved for this condition. Plant-derived extracts can be an important source for the development of new drugs. The aim of this study was to investigate the effects of (E)-β-caryophyllene (BCP), a phytocannabinoid recently found to be beneficial against metabolic diseases, on HepG2 steatotic hepatocytes. Using a fluorescence-based lipid quantification assay and GC-MS analysis, we show that BCP is able to decrease lipid accumulation in steatotic conditions and to change the typical steatotic lipid profile by primarily reducing saturated fatty acids. By employing specific antagonists, we demonstrate that BCP action is mediated by multiple receptors: CB2 cannabinoid receptor, peroxisome proliferator-activated receptor α (PPARα) and γ (PPARγ). Interestingly, BCP was able to counteract the increase in CB2 and the reduction in PPARα receptor expression observed in steatotic conditions. Moreover, through immunofluorescence and confocal microscopy, we demonstrate that CB2 receptors are mainly intracellularly localized and that BCP is internalized in HepG2 cells with a maximum peak at 2 h, suggesting a direct interaction with intracellular receptors. The results obtained with BCP in normal and steatotic hepatocytes encourage future applications in the treatment of NAFLD.

PMID:37047034 | DOI:10.3390/ijms24076060

Categories: Literature Watch

A Proposed New Model to Explain the Role of Low Dose Non-DNA Targeted Radiation Exposure in Chronic Fatigue and Immune Dysfunction Syndrome

Thu, 2023-04-13 06:00

Int J Mol Sci. 2023 Mar 23;24(7):6022. doi: 10.3390/ijms24076022.

ABSTRACT

Chronic Fatigue and Immune Dysfunction Syndrome (CFIDS) is considered to be a multidimensional illness whose etiology is unknown. However, reports from Chernobyl, as well as those from the United States, have revealed an association between radiation exposure and the development of CFIDS. As such, we present an expanded model using a systems biology approach to explain the etiology of CFIDS as it relates to this cohort of patients. This paper proposes an integrated model with ionizing radiation as a suggested trigger for CFIDS mediated through UVA induction and biophoton generation inside the body resulting from radiation-induced bystander effects (RIBE). Evidence in support of this approach has been organized into a systems view linking CFIDS illness markers with the initiating events, in this case, low-dose radiation exposure. This results in the formation of reactive oxygen species (ROS) as well as important immunologic and other downstream effects. Furthermore, the model implicates melanoma and subsequent hematopoietic dysregulation in this underlying process. Through the identification of this association with melanoma, clinical medicine, including dermatology, hematology, and oncology, can now begin to apply its expansive knowledge base to provide new treatment options for an illness that has had few effective treatments.

PMID:37046994 | DOI:10.3390/ijms24076022

Categories: Literature Watch

Deciphering the Polyglucosan Accumulation Present in Lafora Disease Using an Astrocytic Cellular Model

Thu, 2023-04-13 06:00

Int J Mol Sci. 2023 Mar 23;24(7):6020. doi: 10.3390/ijms24076020.

ABSTRACT

Lafora disease (LD) is a neurological disorder characterized by progressive myoclonus epilepsy. The hallmark of the disease is the presence of insoluble forms of glycogen (polyglucosan bodies, or PGBs) in the brain. The accumulation of PGBs is causative of the pathophysiological features of LD. However, despite the efforts made by different groups, the question of why PGBs accumulate in the brain is still unanswered. We have recently demonstrated that, in vivo, astrocytes accumulate most of the PGBs present in the brain, and this could lead to astrocyte dysfunction. To develop a deeper understanding of the defects present in LD astrocytes that lead to LD pathophysiology, we obtained pure primary cultures of astrocytes from LD mice from the postnatal stage under conditions that accumulate PGBs, the hallmark of LD. These cells serve as novel in vitro models for studying PGBs accumulation and related LD dysfunctions. In this sense, the metabolomics of LD astrocytes indicate that they accumulate metabolic intermediates of the upper part of the glycolytic pathway, probably as a consequence of enhanced glucose uptake. In addition, we also demonstrate the feasibility of using the model in the identification of different compounds that may reduce the accumulation of polyglucosan inclusions.

PMID:37046993 | DOI:10.3390/ijms24076020

Categories: Literature Watch

High-Multiplex Aptamer-Based Serum Proteomics to Identify Candidate Serum Biomarkers of Oral Squamous Cell Carcinoma

Thu, 2023-04-13 06:00

Cancers (Basel). 2023 Mar 30;15(7):2071. doi: 10.3390/cancers15072071.

ABSTRACT

Improved serological biomarkers are needed for the early detection, risk stratification and treatment surveillance of patients with oral squamous cell carcinoma (OSCC). We performed an exploratory study using advanced, highly specific, DNA-aptamer-based serum proteomics (SOMAscan, 1305-plex) to identify distinct proteomic changes in patients with OSCC pre- vs. post-resection and compared to healthy controls. A total of 63 significantly differentially expressed serum proteins (each p < 0.05) were found that could discriminate between OSCC and healthy controls with 100% accuracy. Furthermore, 121 proteins were detected that were significantly altered between pre- and post-resection sera, and 12 OSCC-associated proteins reversed to levels equivalent to healthy controls after resection. Of these, 6 were increased and 6 were decreased relative to healthy controls, highlighting the potential relevance of these proteins as OSCC tumor markers. Pathway analyses revealed potential pathophysiological mechanisms associated with OSCC. Hence, quantitative proteome analysis using SOMAscan technology is promising and may aid in the development of defined serum marker assays to predict tumor occurrence, progression and recurrence in OSCC, and to guide personalized therapies.

PMID:37046731 | DOI:10.3390/cancers15072071

Categories: Literature Watch

Quercetin Ameliorates Diabetic Kidney Injury by Inhibiting Ferroptosis via Activating Nrf2/HO-1 Signaling Pathway

Wed, 2023-04-12 06:00

Am J Chin Med. 2023 Apr 10:1-22. doi: 10.1142/S0192415X23500465. Online ahead of print.

ABSTRACT

Diabetic nephropathy (DN) is thought to be the major cause of end-stage renal disease. Due to its complicated pathogenesis and the low efficacy of DN treatment, a deep understanding of new etiological factors may be useful. Ferroptosis, a nonapoptotic form of cell death, is characterized by the accumulation of iron-dependent lipid peroxides to lethal levels. Ferroptosis-triggered renal tubular injury is reported to participate in the development of DN, and blocking ferroptosis might be an effective strategy to prevent the development of DN. Quercetin (QCT), a natural flavonoid that is present in a variety of fruits and vegetables, has been reported to ameliorate DN. However, its underlying nephroprotective mechanism is unclear. Herein, we explored the antiferroptosic effect of QCT and verified its nephroprotective effect using DN mice and high glucose (HG)-incubated renal tubular epithelial cell models. We found HG-induced abnormal activation of ferroptosis of renal tubular epithelial cells, and QCT treatment inhibited ferroptosis by downregulating the expression of transferrin receptor 1 (TFR-1) and upregulating the expression of glutathione peroxidase 4 (GPX4), ferritin heavy chain 1 (FTH-1), and the cystine/glutamate reverse antiporter solute carrier family 7 member (SLC7A11) in DN mice and HG-incubated HK-2 cells. Subsequently, both in vitro and in vivo results confirmed that QCT activated the NFE2-related factor 2 (Nrf2)/Heme oxygenase-1(HO-1) signaling pathway by increasing the levels of Nrf2 and HO-1. Therefore, this study supports that QCT inhibits the ferroptosis of renal tubular epithelial cells by regulating the Nrf2/HO-1 signaling pathway, providing a novel insight into the protective mechanism of QCT in DN treatment.

PMID:37046368 | DOI:10.1142/S0192415X23500465

Categories: Literature Watch

Pages