Systems Biology

Mitochondrial single-cell ATAC-seq for high-throughput multi-omic detection of mitochondrial genotypes and chromatin accessibility

Wed, 2023-02-15 06:00

Nat Protoc. 2023 Feb 15. doi: 10.1038/s41596-022-00795-3. Online ahead of print.

ABSTRACT

Natural sequence variation within mitochondrial DNA (mtDNA) contributes to human phenotypes and may serve as natural genetic markers in human cells for clonal and lineage tracing. We recently developed a single-cell multi-omic approach, called 'mitochondrial single-cell assay for transposase-accessible chromatin with sequencing' (mtscATAC-seq), enabling concomitant high-throughput mtDNA genotyping and accessible chromatin profiling. Specifically, our technique allows the mitochondrial genome-wide inference of mtDNA variant heteroplasmy along with information on cell state and accessible chromatin variation in individual cells. Leveraging somatic mtDNA mutations, our method further enables inference of clonal relationships among native ex vivo-derived human cells not amenable to genetic engineering-based clonal tracing approaches. Here, we provide a step-by-step protocol for the use of mtscATAC-seq, including various cell-processing and flow cytometry workflows, by using primary hematopoietic cells, subsequent single-cell genomic library preparation and sequencing that collectively take ~3-4 days to complete. We discuss experimental and computational data quality control metrics and considerations for the extension to other mammalian tissues. Overall, mtscATAC-seq provides a broadly applicable platform to map clonal relationships between cells in human tissues, investigate fundamental aspects of mitochondrial genetics and enable additional modes of multi-omic discovery.

PMID:36792778 | DOI:10.1038/s41596-022-00795-3

Categories: Literature Watch

SPLIT-PIN software enabling confocal and super-resolution imaging with a virtually closed pinhole

Wed, 2023-02-15 06:00

Sci Rep. 2023 Feb 15;13(1):2741. doi: 10.1038/s41598-023-29951-9.

ABSTRACT

In point-scanning microscopy, optical sectioning is achieved using a small aperture placed in front of the detector, i.e. the detection pinhole, which rejects the out-of-focus background. The maximum level of optical sectioning is theoretically obtained for the minimum size of the pinhole aperture, but this is normally prevented by the dramatic reduction of the detected signal when the pinhole is closed, leading to a compromise between axial resolution and signal-to-noise ratio. We have recently demonstrated that, instead of closing the pinhole, one can reach a similar level of optical sectioning by tuning the pinhole size in a confocal microscope and by analyzing the resulting image series. The method, consisting in the application of the separation of photons by lifetime tuning (SPLIT) algorithm to series of images acquired with tunable pinhole size, is called SPLIT-pinhole (SPLIT-PIN). Here, we share and describe a SPLIT-PIN software for the processing of series of images acquired at tunable pinhole size, which generates images with reduced out-of-focus background. The software can be used on series of at least two images acquired on available commercial microscopes equipped with a tunable pinhole, including confocal and stimulated emission depletion (STED) microscopes. We demonstrate applicability on different types of imaging modalities: (1) confocal imaging of DNA in a non-adherent cell line; (2) removal of out-of-focus background in super-resolved STED microscopy; (3) imaging of live intestinal organoids stained with a membrane dye.

PMID:36792719 | DOI:10.1038/s41598-023-29951-9

Categories: Literature Watch

Retaining postdocs by recognizing their worth

Wed, 2023-02-15 06:00

Nat Biotechnol. 2023 Feb;41(2):296-298. doi: 10.1038/s41587-023-01656-4.

NO ABSTRACT

PMID:36792698 | DOI:10.1038/s41587-023-01656-4

Categories: Literature Watch

Bayesian estimation reveals that reproducible models in Systems Biology get more citations

Wed, 2023-02-15 06:00

Sci Rep. 2023 Feb 15;13(1):2695. doi: 10.1038/s41598-023-29340-2.

ABSTRACT

The Systems Biology community has taken numerous actions to develop data and modeling standards towards FAIR data and model handling. Nevertheless, the debate about incentives and rewards for individual researchers to make their results reproducible is ongoing. Here, we pose the specific question of whether reproducible models have a higher impact in terms of citations. Therefore, we statistically analyze 328 published models recently classified by Tiwari et al. based on their reproducibility. For hypothesis testing, we use a flexible Bayesian approach that provides complete distributional information for all quantities of interest and can handle outliers. The results show that in the period from 2013, i.e., 10 years after the introduction of SBML, to 2020, the group of reproducible models is significantly more cited than the non-reproducible group. We show that differences in journal impact factors do not explain this effect and that this effect increases with additional standardization of data and error model integration via PEtab. Overall, our statistical analysis demonstrates the long-term merits of reproducible modeling for the individual researcher in terms of citations. Moreover, it provides evidence for the increased use of reproducible models in the scientific community.

PMID:36792648 | DOI:10.1038/s41598-023-29340-2

Categories: Literature Watch

HNRNPA2B1 as a potential therapeutic target for thymic epithelial tumor recurrence: An integrative network analysis

Wed, 2023-02-15 06:00

Comput Biol Med. 2023 Feb 11;155:106665. doi: 10.1016/j.compbiomed.2023.106665. Online ahead of print.

ABSTRACT

Thymic epithelial tumors (TETs) are rare malignant tumors, and the molecular mechanisms of both primary and recurrent TETs are poorly understood. Here we established comprehensive proteomic signatures of 15 tumors (5 recurrent and 10 non-recurrent) and 15 pair wised tumor adjacent normal tissues. We then proposed an integrative network approach for studying the proteomics data by constructing protein-protein interaction networks based on differentially expressed proteins and a machine learning-based score, followed by network modular analysis, functional enrichment annotation and shortest path inference analysis. Network modular analysis revealed that primary and recurrent TETs shared certain common molecular mechanisms, including a spliceosome module consisting of RNA splicing and RNA processing, but the recurrent TET was specifically related to the ribosome pathway. Applying the shortest path inference to the collected seed gene module identified that the ribonucleoprotein hnRNPA2B1 probably serves as a potential target for recurrent TET therapy. The drug repositioning combined molecular dynamics simulations suggested that the compound ergotamine could potentially act as a repurposing drug to treat recurrent TETs by targeting hnRNPA2B1. Our study demonstrates the value of integrative network analysis to understand proteotype robustness and its relationships with genotype, and provides hits for further research on cancer therapeutics.

PMID:36791552 | DOI:10.1016/j.compbiomed.2023.106665

Categories: Literature Watch

Genotoxic effects of particulate matter on larvae of a common and widespread butterfly along an urbanization gradient

Wed, 2023-02-15 06:00

Ecotoxicol Environ Saf. 2023 Feb 13;252:114638. doi: 10.1016/j.ecoenv.2023.114638. Online ahead of print.

ABSTRACT

Biodiversity is currently declining worldwide. Several threats have been identified such as habitat loss and climate change. It is unknown if and how air pollution can work in addition or in synergy to these threats, contributing to the decline of current species and/or local extinction. Few studies have investigated the effects of particulate matter (PM), the main component of air pollution, on insects, and no studies have investigated its genotoxic effects through Micronucleus assay. Butterflies play an important role in the environment, as herbivores during larval stages, and as pollinators as adults. The aim of this study was to evaluate the genotoxic effects of PM10 from different sites along a gradient of population urbanization, on a common cabbage butterfly species (Pieris brassicae). PM10 was collected from April to September in an urban (Turin, Italy), a suburban (Druento, Italy) and a mountain site (Ceresole Reale, Italy) with different urbanization levels. P. brassicae larvae (n = 218) were reared in the laboratory under controlled conditions (26 °C, L:D 15:9) on cabbage plants (average 9.2 days), and they were exposed to PM10 organic extracts (20 and 40 m3/mL) or dimethyl sulfoxide (controls) through vaporization. After exposure, larvae were dissected and cells were used for the Micronucleus (MN) assay. Results showed that all PM extracts induced significant DNA damage in exposed larvae compared to controls, and that increasing the PM dose (from 20 to 40 m3/mL) increased genotoxic effects. However, we did not detect any significant differences between sites with different urbanization levels. In conclusion, PM at different concentrations induced genotoxic effects on larvae of a common butterfly species. More alarmingly, PM could work in addition to and/or in synergy with other compounds (e.g. pesticides) and, especially on species already threatened by other factors (e.g. fragmentation), thus affecting the vitality of populations, leading to local extinctions.

PMID:36791502 | DOI:10.1016/j.ecoenv.2023.114638

Categories: Literature Watch

Structural analysis of human G-protein-coupled receptor 17 ligand binding sites

Wed, 2023-02-15 06:00

J Cell Biochem. 2023 Feb 15. doi: 10.1002/jcb.30388. Online ahead of print.

ABSTRACT

The human G protein coupled membrane receptor (GPR17), the sensor of brain damage, is identified as a biomarker for many neurological diseases. In human brain tissue, GPR17 exist in two isoforms, long and short. While cryo-electron microscopy technology has provided the structure of the long isoform of GPR17 with Gi complex, the structure of the short isoform and its activation mechanism remains unclear. Recently, we theoretically modeled the structure of the short isoform of GPR17 with Gi signaling protein and identified novel ligands. In the present work, we demonstrated the presence of two distinct ligand binding sites in the short isoform of GPR17. The molecular docking of GPR17 with endogenous (UDP) and synthetic ligands (T0510.3657, MDL29950) found the presence of two distinct binding pockets. Our observations revealed that endogenous ligand UDP can bind stronger in two different binding pockets as evidenced by glide and autodock vina scores, whereas the other two ligand's binding with GPR17 has less docking score. The analysis of receptor-UDP interactions shows complexes' stability in the lipid environment by 100 ns atomic molecular dynamics simulations. The amino acid residues VAL83, ARG87, and PHE111 constitute ligand binding site 1, whereas site 2 constitutes ASN67, ARG129, and LYS232. Root mean square fluctuation analysis showed the residues 83, 87, and 232 with higher fluctuations during molecular dynamics simulation in both binding pockets. Our findings imply that the residues of GPR17's two binding sites are crucial, and their interaction with UDP reveals the protein's hidden signaling and communication properties. Furthermore, this finding may assist in the development of targeted therapies for the treatment of neurological diseases.

PMID:36791278 | DOI:10.1002/jcb.30388

Categories: Literature Watch

Ensuring Fact-Based Metabolite Identification in Liquid Chromatography-Mass Spectrometry-Based Metabolomics

Wed, 2023-02-15 06:00

Anal Chem. 2023 Feb 15. doi: 10.1021/acs.analchem.2c05192. Online ahead of print.

ABSTRACT

Metabolite identification represents a major bottleneck in contemporary metabolomics research and a step where critical errors may occur and pass unnoticed. This is especially the case for studies employing liquid chromatography-mass spectrometry technology, where there is increased concern on the validity of the proposed identities. In the present perspective article, we describe the issue and categorize the errors into two types: identities that show poor biological plausibility and identities that do not comply with chromatographic data and thus to physicochemical properties (usually hydrophobicity/hydrophilicity) of the proposed molecule. We discuss the problem, present characteristic examples, and propose measures to improve the situation.

PMID:36791228 | DOI:10.1021/acs.analchem.2c05192

Categories: Literature Watch

Artificial intelligence assessment of the potential of tocilizumab along with corticosteroids therapy for the management of COVID-19 evoked acute respiratory distress syndrome

Wed, 2023-02-15 06:00

PLoS One. 2023 Feb 15;18(2):e0280677. doi: 10.1371/journal.pone.0280677. eCollection 2023.

ABSTRACT

Acute respiratory distress syndrome (ARDS), associated with high mortality rate, affects up to 67% of hospitalized COVID-19 patients. Early evidence indicated that the pathogenesis of COVID-19 evoked ARDS is, at least partially, mediated by hyperinflammatory cytokine storm in which interleukin 6 (IL-6) plays an essential role. The corticosteroid dexamethasone is an effective treatment for severe COVID-19 related ARDS. However, trials of other immunomodulatory therapies, including anti-IL6 agents such as tocilizumab and sarilumab, have shown limited evidence of benefit as monotherapy. But recently published large trials have reported added benefit of tocilizumab in combination with dexamethasone in severe COVID-19 related ARDS. In silico tools can be useful to shed light on the mechanisms evoked by SARS-CoV-2 infection and of the potential therapeutic approaches. Therapeutic performance mapping system (TPMS), based on systems biology and artificial intelligence, integrate available biological, pharmacological and medical knowledge to create mathematical models of the disease. This technology was used to identify the pharmacological mechanism of dexamethasone, with or without tocilizumab, in the management of COVID-19 evoked ARDS. The results showed that while dexamethasone would be addressing a wider range of pathological processes with low intensity, tocilizumab might provide a more direct and intense effect upon the cytokine storm. Based on this in silico study, we conclude that the use of tocilizumab alongside dexamethasone is predicted to induce a synergistic effect in dampening inflammation and subsequent pathological processes, supporting the beneficial effect of the combined therapy in critically ill patients. Future research will allow identifying the ideal subpopulation of patients that would benefit better from this combined treatment.

PMID:36791125 | DOI:10.1371/journal.pone.0280677

Categories: Literature Watch

Targeted proteomics using stable isotope labeled protein fragments enables precise and robust determination of total apolipoprotein(a) in human plasma

Wed, 2023-02-15 06:00

PLoS One. 2023 Feb 15;18(2):e0281772. doi: 10.1371/journal.pone.0281772. eCollection 2023.

ABSTRACT

Lipoprotein(a), also known as Lp(a), is an LDL-like particle composed of apolipoprotein(a) (apo(a)) bound covalently to apolipoprotein B100. Plasma concentrations of Lp(a) are highly heritable and vary widely between individuals. Elevated plasma concentration of Lp(a) is considered as an independent, causal risk factor of cardiovascular disease (CVD). Targeted mass spectrometry (LC-SRM/MS) combined with stable isotope-labeled recombinant proteins provides robust and precise quantification of proteins in the blood, making LC-SRM/MS assays appealing for monitoring plasma proteins for clinical implications. This study presents a novel quantitative approach, based on proteotypic peptides, to determine the absolute concentration of apo(a) from two microliters of plasma and qualified according to guideline requirements for targeted proteomics assays. After optimization, assay parameters such as linearity, lower limits of quantification (LLOQ), intra-assay variability (CV: 4.7%) and inter-assay repeatability (CV: 7.8%) were determined and the LC-SRM/MS results were benchmarked against a commercially available immunoassay. In summary, the measurements of an apo(a) single copy specific peptide and a kringle 4 specific peptide allow for the determination of molar concentration and relative size of apo(a) in individuals.

PMID:36791076 | DOI:10.1371/journal.pone.0281772

Categories: Literature Watch

Integrative structural analysis of the type III secretion system needle complex from Shigella flexneri

Wed, 2023-02-15 06:00

Protein Sci. 2023 Feb 15:e4595. doi: 10.1002/pro.4595. Online ahead of print.

ABSTRACT

The type III secretion system (T3SS) is a large, transmembrane protein machinery used by various pathogenic Gram-negative bacteria to transport virulence factors into the host cell during infection. Understanding the structure of T3SSs is crucial for future developments of therapeutics that could target this system. However, much of the knowledge about the structure of T3SS is available only for Salmonella, and it is unclear how this large assembly is conserved across species. Here, we combined cryo-electron microscopy, cross-linking mass spectrometry, and integrative modeling to determine the structure of the T3SS needle complex from Shigella flexneri. We show that the Shigella T3SS exhibits unique features distinguishing it from other structurally characterized T3SSs. The secretin pore complex adopts a new fold of its C-terminal S domain and the pilotin MxiM[SctG] locates around the outer surface of the pore. The export apparatus structure exhibits a conserved pseudo-helical arrangement but includes the N-terminal domain of the SpaS[SctU] subunit, which was not present in any of the previously published virulence-related T3SS structures. Similar to other T3SSs, however, the apparatus is anchored within the needle complex by a network of flexible linkers that either adjust conformation to connect to equivalent patches on the secretin oligomer or bind distinct surface patches at the same height of the export apparatus. The conserved and unique features delineated by our analysis highlight the necessity to analyze T3SS in a species-specific manner, in order to fully understand the underlying molecular mechanisms of these systems. This article is protected by copyright. All rights reserved.

PMID:36790757 | DOI:10.1002/pro.4595

Categories: Literature Watch

Synthetic analysis of chromatin tracing and live-cell imaging indicates pervasive spatial coupling between genes

Wed, 2023-02-15 06:00

Elife. 2023 Feb 15;12:e81861. doi: 10.7554/eLife.81861. Online ahead of print.

ABSTRACT

The role of the spatial organization of chromosomes in directing transcription remains an outstanding question in gene regulation. Here, we analyze two recent single-cell imaging methodologies applied across hundreds of genes to systematically analyze the contribution of chromosome conformation to transcriptional regulation. Those methodologies are: 1) single-cell chromatin tracing with super-resolution imaging in fixed cells; 2) high throughput labeling and imaging of nascent RNA in living cells. Specifically, we determine the contribution of physical distance to the coordination of transcriptional bursts. We find that individual genes adopt a constrained conformation and reposition toward the centroid of the surrounding chromatin upon activation. Leveraging the variability in distance inherent in single-cell imaging, we show that physical distance - but not genomic distance - between genes on individual chromosomes is the major factor driving co-bursting. By combining this analysis with live-cell imaging, we arrive at a corrected transcriptional correlation of ϕ ≈0.3 for genes separated by < 400 nm. We propose that this surprisingly large correlation represents a physical property of human chromosomes and establishes a benchmark for future experimental studies.

PMID:36790144 | DOI:10.7554/eLife.81861

Categories: Literature Watch

Identification of Critical Molecular Factors and Side Effects Underlying the Response to Thalicthuberine in Prostate Cancer: A Systems Biology Approach

Wed, 2023-02-15 06:00

Avicenna J Med Biotechnol. 2023 Jan-Mar;15(1):53-64. doi: 10.18502/ajmb.v15i1.11425.

ABSTRACT

BACKGROUND: Uncontrolled mitosis of cancer cells and resistance cells to chemotherapy drugs are the challenges of prostate cancer. Thalicthuberine causes a mitotic arrest and a reduction of the effects of drug resistance, resulting in cell death. In this study, we applied bioinformatics and computational biology methods to identify functional pathways and side effects in response to Thalicthuberine in prostate cancer patients.

METHODS: Microarray data were retrieved from Gene Expression Omnibus (GEO), and protein-protein interactions and gene regulatory networks were constructed, using the Cytoscape software. The critical genes and molecular mechanisms in response to Thalicthuberine and its side effects were identified, using the Cytoscape software and WebGestalt server, respectively. Finally, GEPIA2 was used to predict the relationship between critical genes and prostate cancer.

RESULTS: The POLQ, EGR1, CDKN1A, FOS, MDM2, CDC20, CCNB1, and CCNB2 were identified as critical genes in response to this drug. The functional mechanisms of Thalicthuberine include a response to oxygen levels, toxic substances and immobilization stress, cell cycle regulation, regeneration, the p53 signaling pathway, the action of the parathyroid hormone, and the FoxO signaling pathway. Besides, the drug has side effects including muscle cramping, abdominal pains, paresthesia, and metabolic diseases.

CONCLUSION: Our model suggested newly predicted crucial genes, molecular mechanisms, and possible side effects of this drug. However, further studies are required.

PMID:36789117 | PMC:PMC9895985 | DOI:10.18502/ajmb.v15i1.11425

Categories: Literature Watch

Parasitoid Wasp Culturing and Assay to Study Parasitoid-induced Reproductive Modifications in <em>Drosophila</em>

Wed, 2023-02-15 06:00

Bio Protoc. 2023 Jan 5;13(1):e4582. doi: 10.21769/BioProtoc.4582. eCollection 2023 Jan 5.

ABSTRACT

In nature, parasitoid wasp infections are a major cause of insect mortality. Parasitoid wasps attack a vast range of insect species to lay their eggs. As a defense, insects evolved survival strategies to protect themselves from parasitoid infection. While a growing number of studies reported both host defensive tactics and parasitoid counter-offensives, we emphasize that this parasite-host relationship presents a unique ecological and evolutionary relevant model that is often challenging to replicate in a laboratory. Although maintaining parasitoid wasp cultures in the laboratory requires meticulous planning and can be labor intensive, a diverse set of wasp species that target many different insect types can be maintained in similar culture conditions. Here, we describe the protocol for culturing parasitoid wasp species on Drosophila larvae and pupae in laboratory conditions. We also detail an egg-laying assay to assess the reproductive modification of Drosophila females in response to parasitoid wasps. This behavioral study is relatively simple and easily adaptable to study environmental or genetic influences on egg-laying, a readout for female germline development. Neither the parasitoid culture conditions or the behavioral assay require special supplies or equipment, making them a powerful and versatile approach in research or teaching laboratory settings. Graphical abstract.

PMID:36789084 | PMC:PMC9901478 | DOI:10.21769/BioProtoc.4582

Categories: Literature Watch

SARS-CoV-2 leverages airway epithelial protective mechanism for viral infection

Wed, 2023-02-15 06:00

iScience. 2023 Feb 10:106175. doi: 10.1016/j.isci.2023.106175. Online ahead of print.

ABSTRACT

Despite much concerted effort to better understand SARS-CoV-2 viral infection, relatively little is known about the dynamics of early viral entry and infection in the airway. Here we analyzed a single-cell RNA sequencing dataset of early SARS-CoV-2 infection in a humanized in vitro model, to elucidate key mechanisms by which the virus triggers a cell-systems-level response in the bronchial epithelium. We find that SARS-CoV-2 virus preferentially enters the tissue via ciliated cell precursors, giving rise to a population of infected mature ciliated cells, which signal to basal cells, inducing further rapid differentiation. This feed-forward loop of infection is mitigated by further cell-cell communication, before interferon signaling begins at three days post-infection. These findings suggest hijacking by the virus of potentially beneficial tissue repair mechanisms, possibly exacerbating the outcome. This work both elucidates the interplay between barrier tissues and viral infections, and may suggest alternative therapeutic approaches targeting non-immune response mechanisms.

PMID:36788793 | PMC:PMC9912025 | DOI:10.1016/j.isci.2023.106175

Categories: Literature Watch

Diagnosis of Fusarium oxysporum f. sp. ciceris causing Fusarium wilt of chickpea using loop-mediated isothermal amplification (LAMP) and conventional end-point PCR

Tue, 2023-02-14 06:00

Sci Rep. 2023 Feb 14;13(1):2640. doi: 10.1038/s41598-023-29730-6.

ABSTRACT

Fusarium oxysporum (Fo) is ubiquitous in soil and forms a species complex of pathogenic and putatively non-pathogenic strains. Pathogenic strains cause disease in over 150 plant species. Fusarium oxysporum f. sp. ciceris (Foc) is a major fungal pathogen causing Fusarium wilt in chickpeas (Cicer arietinum). In some countries such as Australia, Foc is a high-priority pest of biosecurity concern. Specific, sensitive, robust and rapid diagnostic assays are essential for effective disease management on the farm and serve as an effective biosecurity control measure. We developed and validated a novel and highly specific PCR and a LAMP assay for detecting the Indian Foc race 1 based on a putative effector gene uniquely present in its genome. These assays were assessed against 39 Fo formae speciales and found to be specific, only amplifying the target species, in a portable real-time fluorometer (Genie III) and qPCR machine in under 13 min with an anneal derivative temperature ranging from 87.7 to 88.3 °C. The LAMP assay is sensitive to low levels of target DNA (> 0.009 ng/µl). The expected PCR product size is 143 bp. The LAMP assay developed in this study was simple, fast, sensitive and specific and could be explored for other Foc races due to the uniqueness of this marker to the Foc genome.

PMID:36788315 | DOI:10.1038/s41598-023-29730-6

Categories: Literature Watch

Resistance of Omicron subvariants BA.2.75.2, BA.4.6, and BQ.1.1 to neutralizing antibodies

Tue, 2023-02-14 06:00

Nat Commun. 2023 Feb 14;14(1):824. doi: 10.1038/s41467-023-36561-6.

ABSTRACT

Convergent evolution of SARS-CoV-2 Omicron BA.2, BA.4, and BA.5 lineages has led to the emergence of several new subvariants, including BA.2.75.2, BA.4.6. and BQ.1.1. The subvariant BQ.1.1 became predominant in many countries in December 2022. The subvariants carry an additional and often redundant set of mutations in the spike, likely responsible for increased transmissibility and immune evasion. Here, we established a viral amplification procedure to easily isolate Omicron strains. We examined their sensitivity to 6 therapeutic monoclonal antibodies (mAbs) and to 72 sera from Pfizer BNT162b2-vaccinated individuals, with or without BA.1/BA.2 or BA.5 breakthrough infection. Ronapreve (Casirivimab and Imdevimab) and Evusheld (Cilgavimab and Tixagevimab) lose antiviral efficacy against BA.2.75.2 and BQ.1.1, whereas Xevudy (Sotrovimab) remaine weakly active. BQ.1.1 is also resistant to Bebtelovimab. Neutralizing titers in triply vaccinated individuals are low to undetectable against BQ.1.1 and BA.2.75.2, 4 months after boosting. A BA.1/BA.2 breakthrough infection increases these titers, which remains about 18-fold lower against BA.2.75.2 and BQ.1.1, than against BA.1. Reciprocally, a BA.5 breakthrough infection increases more efficiently neutralization against BA.5 and BQ.1.1 than against BA.2.75.2. Thus, the evolution trajectory of novel Omicron subvariants facilitates their spread in immunized populations and raises concerns about the efficacy of most available mAbs.

PMID:36788246 | DOI:10.1038/s41467-023-36561-6

Categories: Literature Watch

MarrowQuant 2.0: A Digital Pathology Workflow Assisting Bone Marrow Evaluation in Experimental and Clinical Hematology

Tue, 2023-02-14 06:00

Mod Pathol. 2023 Jan 10;36(4):100088. doi: 10.1016/j.modpat.2022.100088. Online ahead of print.

ABSTRACT

Bone marrow (BM) cellularity assessment is a crucial step in the evaluation of BM trephine biopsies for hematologic and nonhematologic disorders. Clinical assessment is based on a semiquantitative visual estimation of the hematopoietic and adipocytic components by hematopathologists, which does not provide quantitative information on other stromal compartments. In this study, we developed and validated MarrowQuant 2.0, an efficient, user-friendly digital hematopathology workflow integrated within QuPath software, which serves as BM quantifier for 5 mutually exclusive compartments (bone, hematopoietic, adipocytic, and interstitial/microvasculature areas and other) and derives the cellularity of human BM trephine biopsies. Instance segmentation of individual adipocytes is realized through the adaptation of the machine-learning-based algorithm StarDist. We calculated BM compartments and adipocyte size distributions of hematoxylin and eosin images obtained from 250 bone specimens, from control subjects and patients with acute myeloid leukemia or myelodysplastic syndrome, at diagnosis and follow-up, and measured the agreement of cellularity estimates by MarrowQuant 2.0 against visual scores from 4 hematopathologists. The algorithm was capable of robust BM compartment segmentation with an average mask accuracy of 86%, maximal for bone (99%), hematopoietic (92%), and adipocyte (98%) areas. MarrowQuant 2.0 cellularity score and hematopathologist estimations were highly correlated (R2 = 0.92-0.98, intraclass correlation coefficient [ICC] = 0.98; interobserver ICC = 0.96). BM compartment segmentation quantitatively confirmed the reciprocity of the hematopoietic and adipocytic compartments. MarrowQuant 2.0 performance was additionally tested for cellularity assessment of specimens prospectively collected from clinical routine diagnosis. After special consideration for the choice of the cellularity equation in specimens with expanded stroma, performance was similar in this setting (R2 = 0.86, n = 42). Thus, we conclude that these validation experiments establish MarrowQuant 2.0 as a reliable tool for BM cellularity assessment. We expect this workflow will serve as a clinical research tool to explore novel biomarkers related to BM stromal components and may contribute to further validation of future digitalized diagnostic hematopathology workstreams.

PMID:36788087 | DOI:10.1016/j.modpat.2022.100088

Categories: Literature Watch

High Dimensional Proteomics Identifies Organ Injury Patterns Associated with Outcomes in Human Trauma

Tue, 2023-02-14 06:00

J Trauma Acute Care Surg. 2023 Feb 13. doi: 10.1097/TA.0000000000003880. Online ahead of print.

ABSTRACT

INTRODUCTION: Severe traumatic injury with shock can lead to direct and indirect organ injury, however, tissue-specific biomarkers are limited in clinical panels. We utilized proteomic and metabolomic databases to identify organ injury patterns after severe injury in humans.

METHODS: Plasma samples (times 0-, 24-, and 72-hours [h] after arrival to trauma center) from injured patients enrolled in two randomized prehospital trials were subjected to multiplexed proteomics (SomaLogic Inc.). Patients were categorized by outcome: Non-resolvers (died >72 h or required ≥7 days of critical care), Resolvers (survived to 30-days and required <7 days of critical care), and low injury severity score (ISS) controls. Established tissue-specific biomarkers were identified through a literature review and cross-referenced with tissue-specificity from the Human Protein Atlas. Untargeted plasma metabolomics (Metabolon Inc.), inflammatory mediators, and endothelial damage markers were correlated with injury biomarkers. Kruskal-Wallis/Mann-Whitney-U tests with false discovery rate correction assessed differences in biomarker expression across outcome groups (significance; P-value <0.1).

RESULTS: Of 142 patients, 78 were Non-resolvers (median ISS = 30), 34 Resolvers (median ISS = 22), and 30 low ISS controls (median ISS = 1). A broad release of tissue-specific damage markers was observed at admission; this was greater in Non-resolvers. By 72 h, 9 cardiac, 3 liver, 8 neurologic, and 3 pulmonary proteins remained significantly elevated in Non-resolvers compared to Resolvers. Cardiac damage biomarkers showed the greatest elevations at 72 h in Non-resolvers and had significant positive correlations with pro-inflammatory mediators and endothelial damage markers. Non-resolvers had lower concentrations of fatty acid metabolites compared to Resolvers, particularly acyl carnitines and cholines.

CONCLUSIONS: We identified an immediate release of tissue-specific biomarkers with sustained elevation in the liver, pulmonary, neurologic, and especially cardiac injury biomarkers in patients with complex clinical courses after severe injury. The persistent myocardial injury in Non-resolvers may be due to a combination of factors including metabolic stress, inflammation, and endotheliopathy.

STUDY TYPE: Level III, Prognostic/Epidemiological.

PMID:36787435 | DOI:10.1097/TA.0000000000003880

Categories: Literature Watch

1700029I15Rik orchestrates the biosynthesis of acrosomal membrane proteins required for sperm-egg interaction

Tue, 2023-02-14 06:00

Proc Natl Acad Sci U S A. 2023 Feb 21;120(8):e2207263120. doi: 10.1073/pnas.2207263120. Epub 2023 Feb 14.

ABSTRACT

Sperm acrosomal membrane proteins, such as Izumo sperm-egg fusion 1 (IZUMO1) and sperm acrosome-associated 6 (SPACA6), play essential roles in mammalian gamete binding or fusion. How their biosynthesis is regulated during spermiogenesis has largely remained elusive. Here, we show that 1700029I15Rik knockout male mice are severely subfertile and their spermatozoa do not fuse with eggs. 1700029I15Rik is a type-II transmembrane protein expressed in early round spermatids but not in mature spermatozoa. It interacts with proteins involved in N-linked glycosylation, disulfide isomerization, and endoplasmic reticulum (ER)-Golgi trafficking, suggesting a potential role in nascent protein processing. The ablation of 1700029I15Rik destabilizes non-catalytic subunits of the oligosaccharyltransferase (OST) complex that are pivotal for N-glycosylation. The knockout testes exhibit normal expression of sperm plasma membrane proteins, but decreased abundance of multiple acrosomal membrane proteins involved in fertilization. The knockout sperm show upregulated chaperones related to ER-associated degradation (ERAD) and elevated protein ubiquitination; strikingly, SPACA6 becomes undetectable. Our results support for a specific, 1700029I15Rik-mediated pathway underpinning the biosynthesis of acrosomal membrane proteins during spermiogenesis.

PMID:36787362 | DOI:10.1073/pnas.2207263120

Categories: Literature Watch

Pages