Systems Biology
Unraveling the genetic links between depression and type 2 diabetes
Prog Neuropsychopharmacol Biol Psychiatry. 2025 Jan 19:111258. doi: 10.1016/j.pnpbp.2025.111258. Online ahead of print.
ABSTRACT
BACKGROUND: Type 2 diabetes (T2D) is a chronic metabolic disorder that has high comorbidity with mental disorders. The genetic relationships between T2D and depression are far from being well understood.
METHODS: We performed genetic correlation, polygenic overlap, Mendelian randomization (MR) analyses, cross-trait meta-analysis, and Bayesian colocalization analysis to assess genetic relationships between T2D and depression, in the forms of major depressive disorder (MDD) and depressed affect (DAF). Then, the summary data-based MR (SMR) analysis was performed to prioritize genes contributing to MDD and to T2D from functional perspective. MDD-driven signaling pathways were constructed to understand the influence of MDD on T2D at the molecular level.
RESULTS: T2D has positive genetic correlations both with MDD (rg = 0.14) and with DAF (rg = 0.19). The polygenic overlap analysis showed that about 60 % of causal variants for T2D are shared with MDD and DAF. The MR analysis indicated that genetic liabilities to both MDD (OR: 1.24, 95 % CI: 1.11-1.38) and DAF (OR: 1.48, 95 % CI: 1.23-1.78) are associated with an increased risk for T2D, while genetic liability to T2D is not associated with the risk for MDD (OR: 1.00, 95 % CI: 0.99-1.01) or DAF (OR: 1.01, 95 % CI: 1.00-1.02). The cross-trait meta-analysis identified 271 genomic loci, of which 29 were novel. Genetic predisposition to MDD and T2D shares six overlapping loci, involving some well-characterized genes, such as TCF4 and NEGR1. Colocalization analysis revealed three shared chromosome regions between MDD and T2D, which covers mediator genes including SCYL1, DENND1A, and MAD1L1. Molecular pathway analysis suggests mechanisms that promote the development of T2D through inflammatory pathways overactive in patients with MDD. The SMR analysis and the meta-analysis highlighted seven genes with functional implications for both MDD and T2D, including TNKS2, CCDC92, FADS1, ERI1, THUMPD3, NUCKS1, and PM20D1.
CONCLUSIONS: Our study points out that depression, in the forms of MDD and DAF, may increase the risk of T2D. Analysis of underlying genetic variation and the molecular pathways, connecting depression and T2D, indicate that the pathophysiological foundations of these two conditions have a notable overlap.
PMID:39837361 | DOI:10.1016/j.pnpbp.2025.111258
Glioma-induced alterations in excitatory neurons are reversed by mTOR inhibition
Neuron. 2025 Jan 16:S0896-6273(24)00926-7. doi: 10.1016/j.neuron.2024.12.026. Online ahead of print.
ABSTRACT
Gliomas are aggressive neoplasms that diffusely infiltrate the brain and cause neurological symptoms, including cognitive deficits and seizures. Increased mTOR signaling has been implicated in glioma-induced neuronal hyperexcitability, but the molecular and functional consequences have not been identified. Here, we show three types of changes in tumor-associated neurons: (1) downregulation of transcripts encoding excitatory and inhibitory postsynaptic proteins and dendritic spine development and upregulation of cytoskeletal transcripts via neuron-specific profiling of ribosome-bound mRNA, (2) marked decreases in dendritic spine density via light and electron microscopy, and (3) progressive functional alterations leading to neuronal hyperexcitability via in vivo calcium imaging. A single acute dose of AZD8055, a combined mTORC1/2 inhibitor, reversed these tumor-induced changes. These findings reveal mTOR-driven pathological plasticity in neurons at the infiltrative margin of glioma and suggest new strategies for treating glioma-associated neurological symptoms.
PMID:39837324 | DOI:10.1016/j.neuron.2024.12.026
Innovations in intestinal organoid technology featuring an open apical surface
Eur J Cell Biol. 2025 Jan 15;104(2):151476. doi: 10.1016/j.ejcb.2025.151476. Online ahead of print.
ABSTRACT
Since the development of the three-dimensional (3D) "mini-gut" culture system, adult stem cell-derived organoid technology has rapidly advanced, providing in vitro models that replicate key cellular, molecular, and physiological properties of multiple organs. The 3D intestinal organoid system has resolved many long-standing challenges associated with immortalized or cancer cell cultures, offering unparalleled capabilities for modeling gastrointestinal development and diseases. However, significant limitations remain, including restricted accessibility to the epithelial apical surface for studying host-microbe interactions, interruptions in modeling chronic gastrointestinal diseases due to frequent passaging and dissociation, and the absence of mechanical cues such as peristalsis and luminal flow, which are critical for organ development and function. To address these challenges, recent advancements have introduced Transwell-based monolayer cultures and microfluidic device-based technologies including "organ-on-a-chip" and scaffold-guided 'mini-gut' system. This review highlights these innovations, with a focus on adult stem cell-derived intestinal organoid models that feature an open apical surface and discusses their prospects and challenges for advancing basic research and clinical applications.
PMID:39837176 | DOI:10.1016/j.ejcb.2025.151476
Emergence of SARS-CoV-2 subgenomic RNAs that enhance viral fitness and immune evasion
PLoS Biol. 2025 Jan 21;23(1):e3002982. doi: 10.1371/journal.pbio.3002982. Online ahead of print.
ABSTRACT
Coronaviruses express their structural and accessory genes via a set of subgenomic RNAs, whose synthesis is directed by transcription regulatory sequences (TRSs) in the 5' genomic leader and upstream of each body open reading frame. In SARS-CoV-2, the TRS has the consensus AAACGAAC; upon searching for emergence of this motif in the global SARS-CoV-2 sequences, we find that it evolves frequently, especially in the 3' end of the genome. We show well-supported examples upstream of the Spike gene-within the nsp16 coding region of ORF1b-which is expressed during human infection, and upstream of the canonical Envelope gene TRS, both of which have evolved convergently in multiple lineages. The most frequent neo-TRS is within the coding region of the Nucleocapsid gene, and is present in virtually all viruses from the B.1.1 lineage, including the variants of concern Alpha, Gamma, Omicron and descendants thereof. Here, we demonstrate that this TRS leads to the expression of a novel subgenomic mRNA encoding a truncated C-terminal portion of Nucleocapsid, which is an antagonist of type I interferon production and contributes to viral fitness during infection. We observe distinct phenotypes when the Nucleocapsid coding sequence is mutated compared to when the TRS alone is ablated. Our findings demonstrate that SARS-CoV-2 is undergoing evolutionary changes at the functional RNA level in addition to the amino acid level.
PMID:39836705 | DOI:10.1371/journal.pbio.3002982
Single-cell and spatial transcriptomics illuminate bat immunity and barrier tissue evolution
Mol Biol Evol. 2025 Jan 21:msaf017. doi: 10.1093/molbev/msaf017. Online ahead of print.
ABSTRACT
Bats have adapted to pathogens through diverse mechanisms, including increased resistance - rapid pathogen elimination, and tolerance - limiting tissue damage following infection. In the Egyptian fruit bat (an important model in comparative immunology) several mechanisms conferring disease tolerance were discovered, but mechanisms underpinning resistance remain poorly understood. Previous studies on other species suggested that elevated basal expression of innate immune genes may lead to increased resistance to infection. Here, we test whether such transcriptional patterns occur in Egyptian fruit bat tissues through single-cell and spatial transcriptomics of gut, lung and blood cells, comparing gene expression between bat, mouse and human. Despite numerous recent loss and expansion events of interferons in the bat genome, interferon expression and induction are remarkably similar to that of mouse. In contrast, central complement system genes are highly and uniquely expressed in key regions in bat lung and gut epithelium, unlike in human and mouse. Interestingly, the unique expression of these genes in the bat gut is strongest in the crypt, where developmental expression programs are highly conserved. The complement system genes also evolve rapidly in their coding sequence across the bat lineage. Finally, the bat complement system displays strong hemolytic activity. Together, these results indicate a distinctive transcriptional divergence of the complement system, which may be linked to bat resistance, and highlight the intricate evolutionary landscape of bat immunity.
PMID:39836373 | DOI:10.1093/molbev/msaf017
The PurR family transcriptional regulator promotes butenyl-spinosyn production in Saccharopolyspora pogona
Appl Microbiol Biotechnol. 2025 Jan 21;109(1):14. doi: 10.1007/s00253-024-13390-1.
ABSTRACT
Butenyl-spinosyn, derived from Saccharopolyspora pogona, is a broad-spectrum and effective bioinsecticide. However, the regulatory mechanism affecting butenyl-spinosyn synthesis has not been fully elucidated, which hindered the improvement of production. Here, a high-production strain S. pogona H2 was generated by Cobalt-60 γ-ray mutagenesis, which showed a 2.7-fold increase in production compared to the wild-type strain S. pogona ASAGF58. A comparative transcriptomic analysis between S. pogona ASAGF58 and H2 was performed to elucidate the high-production mechanism that more precursors and energy were used to synthesize of butenyl-spinosyn. Fortunately, a PurR family transcriptional regulator TF00350 was discovered. TF00350 overexpression strain RS00350 induced morphological differentiation and butenyl-spinosyn production, ultimately leading to a 5.5-fold increase in butenyl-spinosyn production (141.5 ± 1.03 mg/L). Through transcriptomics analysis, most genes related to purine metabolism pathway were downregulated, and the butenyl-spinosyn biosynthesis gene was upregulated by increasing the concentration of c-di-GMP and decreasing the concentration of c-di-AMP. These results provide valuable insights for further mining key regulators and improving butenyl-spinosyn production. KEY POINTS: • A high production strain of S. pogona H2 was obtained by 60Co γ-ray mutagenesis. • Positive regulator TF00350 identified by transcriptomics, increasing butenyl-spinosyn production by 5.5-fold. • TF00350 regulated of butenyl-spinosyn production by second messengers.
PMID:39836216 | DOI:10.1007/s00253-024-13390-1
A framework for understanding and investigating polyphosphate-protein interactions
Biochem Soc Trans. 2025 Jan 21:BST20240678. doi: 10.1042/BST20240678. Online ahead of print.
ABSTRACT
Many prokaryotic and eukaryotic cells store inorganic phosphate in the form of polymers called polyphosphate (polyP). There has been an explosion of interest in polyP over the past decade, in part due to newly suggested roles related to diverse aspects of human health. The physical interaction of polyP chains with specific proteins has been proposed to regulate cellular homeostasis and modulate signaling pathways in response to environmental changes. Recently, several studies have challenged existing models for how polyP interacts with its protein targets, while identifying new motifs that are capable of binding to polyP. In this review, we summarize these findings, delineate the functional implications for polyP-protein interactions at the molecular level, and define open questions that should be addressed to propel the field forward.
PMID:39836110 | DOI:10.1042/BST20240678
Long-term increase in soluble interleukin-6 receptor levels in convalescents after mild COVID-19 infection
Front Immunol. 2025 Jan 6;15:1488745. doi: 10.3389/fimmu.2024.1488745. eCollection 2024.
ABSTRACT
INTRODUCTION: Serum levels of interleukin-6 (IL-6) are increased in COVID-19 patients. IL-6 is an effective therapeutic target in inflammatory diseases and tocilizumab, a monoclonal antibody that blocks signaling via the IL-6 receptor (IL-6R), is used to treat patients with severe COVID-19. However, the IL-6R exists in membrane-bound and soluble forms (sIL-6R), and the sIL-6R in combination with soluble glycoprotein 130 (sgp130) forms an IL-6-neutralizing buffer system capable of neutralizing small amounts of IL-6.
METHODS: In this study, we analyzed serum levels of IL-6, sIL-6R and sgp130 in the serum of COVID-19 convalescent individuals with a history of mild COVID-19 disease and in acute severely ill COVID-19 patients compared to uninfected control subjects. Furthermore, we used single cell RNA sequencing data in order to determine which immune cell types are sources and targets of the individual cytokines and whether their expression is altered in severe COVID-19 patients.
RESULTS: We find that sIL-6R levels are not only increased in acute severely ill patients, but also in convalescents after a mild COVID-19 infection. We show that this increase in sIL-6R results in an enhanced capacity of the sIL-6R/sgp130 buffer system, but that significantly enhanced free IL-6 is still present due to an overload of the buffer. Further, we identify IL-6 serum levels, age and the number of known pre-existing medical conditions as crucial determinants of disease outcome for the patients. We also show that IL-11 has no major systemic role in COVID-19 patients and that sCD25 is only increased in acute severely ill COVID-19 patients, but not in mild convalescent individuals.
DISCUSSION: In conclusion, our study shows long-lasting alterations of the IL-6 system after COVID-19 disease, which might be relevant when applying anti-IL-6 or anti-IL-6R therapy.
PMID:39835136 | PMC:PMC11743636 | DOI:10.3389/fimmu.2024.1488745
Therapeutic effects of platelet-derived extracellular vesicles on viral myocarditis correlate with biomolecular content
Front Immunol. 2025 Jan 6;15:1468969. doi: 10.3389/fimmu.2024.1468969. eCollection 2024.
ABSTRACT
INTRODUCTION: Extracellular vesicles (EVs) can potently inhibit inflammation yet there is a lack of understanding about the impact of donor characteristics on the efficacy of EVs. The goal of this study was to determine whether the sex and age of donor platelet-derived EVs (PEV) affected their ability to inhibit viral myocarditis.
METHODS: PEV, isolated from men and women of all ages, was compared to PEV obtained from women under 50 years of age, which we termed premenopausal PEV (pmPEV). Because of the protective effect of estrogen against myocardial inflammation, we hypothesized that pmPEV would be more effective than PEV at inhibiting myocarditis. We injected PEV, pmPEV, or vehicle control in a mouse model of viral myocarditis and examined histology, gene expression, protein profiles, and performed proteome and microRNA (miR) sequencing of EVs.
RESULTS: We found that both PEV and pmPEV significantly inhibited myocarditis; however, PEV was more effective, which was confirmed by a greater reduction of inflammatory cells and proinflammatory and profibrotic markers determined using gene expression and immunohistochemistry. Proteome and miR sequencing of EVs revealed that PEV miRs specifically targeted antiviral, Toll-like receptor (TLR)4, and inflammasome pathways known to contribute to myocarditis while pmPEV contained general immunoregulatory miRs.
DISCUSSION: These differences in EV content corresponded to the differing anti-inflammatory effects of the two types of EVs on viral myocarditis.
PMID:39835120 | PMC:PMC11743460 | DOI:10.3389/fimmu.2024.1468969
MjCyc: Rediscovering the pathway-genome landscape of the first sequenced archaeon, <em>Methanocaldococcus (Methanococcus) jannaschii</em>
iScience. 2024 Dec 5;28(1):111546. doi: 10.1016/j.isci.2024.111546. eCollection 2025 Jan 17.
ABSTRACT
The genome of Methanocaldococcus (Methanococcus) jannaschii DSM 2661 was the first Archaeal genome to be sequenced in 1996. Subsequent sequence-based annotation cycles led to its first metabolic reconstruction in 2005. Leveraging new experimental results and function assignments, we have now re-annotated M. jannaschii, creating an updated resource with novel information and testable predictions in a pathway-genome database available at BioCyc.org. This reannotation effort has resulted in 652 function assignments with enzyme roles, accounting for a third of the total protein-coding entries for this genome. The updated resource includes 883 reactions, 540 enzymes, and 142 individual pathways. Despite notable progress in computational genomics, more than a third of the genome remains functionally uncharacterized. The publicly available MjCyc pathway-genome database holds great potential for the wider community to conduct research on the biology of methanogenic Archaea.
PMID:39834858 | PMC:PMC11742838 | DOI:10.1016/j.isci.2024.111546
Revisiting phosphoregulation of Cdc25C during M-phase induction
iScience. 2024 Dec 15;28(1):111603. doi: 10.1016/j.isci.2024.111603. eCollection 2025 Jan 17.
ABSTRACT
Cdc25C undergoes a sudden and substantial gel mobility shift at M-phase onset, correlating with abrupt activation of both Cdc25C and Cdk1 activities. A positive feedback loop between Cdk1 and Cdc25C has been used to explain this hallmark phenomenon. Here, we demonstrate that the M-phase supershift and robust activation of Cdc25C are due to the site-comprehensive phosphorylation of its long intrinsically disordered regulatory domain without requiring Cdk1 or other major mitotic kinase activities. The phosphorylation process involves substrate-mediated assembly of phosphorylation machinery that catalyzes multisite phosphorylation continuously without substrate dissociation. In contrast to the site-comprehensive phosphorylation of Cdc25C occurring at M-phase onset, the site-specific phosphorylation of Cdc25C by Cdk1 or other major mitotic kinases generates slight gel mobility shifts and modest activation of Cdc25C prior to M-phase onset. These findings suggest a two-stage framework consisting of site-specific phosphorylation followed by site-comprehensive phosphorylation for Cdc25C regulation during M-phase induction.
PMID:39834856 | PMC:PMC11743101 | DOI:10.1016/j.isci.2024.111603
Editorial: Revealing the unconventional mechanisms of mitochondria-targeting drugs in heart-related diseases
Front Pharmacol. 2025 Jan 6;15:1543291. doi: 10.3389/fphar.2024.1543291. eCollection 2024.
NO ABSTRACT
PMID:39834828 | PMC:PMC11743618 | DOI:10.3389/fphar.2024.1543291
Machine learning-driven identification of critical gene programs and key transcription factors in migraine
J Headache Pain. 2025 Jan 20;26(1):14. doi: 10.1186/s10194-025-01950-3.
ABSTRACT
BACKGROUND: Migraine is a complex neurological disorder characterized by recurrent episodes of severe headaches. Although genetic factors have been implicated, the precise molecular mechanisms, particularly gene expression patterns in migraine-associated brain regions, remain unclear. This study applies machine learning techniques to explore region-specific gene expression profiles and identify critical gene programs and transcription factors linked to migraine pathogenesis.
METHODS: We utilized single-nucleus RNA sequencing (snRNA-seq) data from 43 brain regions, along with genome-wide association study (GWAS) data, to investigate susceptibility to migraine. The cell-type-specific expression (CELLEX) algorithm was employed to calculate specific expression profiles for each region, while non-negative matrix factorization (NMF) was applied to decompose gene programs within the single-cell data from these regions. Following the annotation of brain region expression profiles and gene programs to the genome, we employed stratified linkage disequilibrium score regression (S-LDSC) to assess the associations between brain regions, gene programs, and migraine-related SNPs. Key transcription factors regulating critical gene programs were identified using a random forest model based on regulatory networks derived from the GTEx consortium.
RESULTS: Our analysis revealed significant enrichment of migraine-associated single nucleotide polymorphisms (SNPs) in the posterior nuclear complex-medial geniculate nuclei (PoN_MG) of the thalamus, highlighting this region's crucial role in migraine pathogenesis. Gene program 1, identified through NMF, was enriched in the calcium signaling pathway, a known contributor to migraine pathophysiology. Random forest analysis predicted ARID3A as the top transcription factor regulating gene program 1, suggesting its potential role in modulating calcium-related genes involved in migraine.
CONCLUSION: This study provides new insights into the molecular mechanisms underlying migraine, emphasizing the importance of the PoN_MG thalamic region, calcium signaling pathways, and key transcription factors like ARID3A. These findings offer potential avenues for developing targeted therapeutic strategies for migraine treatment.
PMID:39833696 | DOI:10.1186/s10194-025-01950-3
Population genomics of premature termination codons in cavefish with substantial trait loss
Mol Biol Evol. 2025 Jan 21:msaf012. doi: 10.1093/molbev/msaf012. Online ahead of print.
ABSTRACT
Loss-of-function alleles are a pertinent source of genetic variation with the potential to contribute to adaptation. Cave-adapted organisms exhibit striking loss of ancestral traits such as eyes and pigment, suggesting that loss-of-function alleles may play an outsized role in these systems. Here, we leverage 141 whole genome sequences to evaluate the evolutionary history and adaptive potential of single nucleotide premature termination codons (PTCs) in Mexican tetra. We find that cave populations contain significantly more PTCs at high frequency than surface populations. We also find that PTCs occur more frequently in genes with inherent relaxed evolutionary constraint relative to the rest of the genome. Using SLiM to simulate PTC evolution in a cavefish population, we show that the smaller population size and increased genetic drift is sufficient to account for the observed increase in PTC frequency in cave populations without positive selection. Using CRISPR-Cas9, we show that mutation of one of these genes, pde6c, produces phenotypes in surface Mexican tetra that mimic cave-derived traits. Finally, we identify a small subset of candidate genes that contain high frequency PTCs in cave populations, occur within selective sweeps, and may contribute to beneficial traits such as reduced energy expenditure, suggesting that a handful of PTCs may be adaptive. Overall, our work provides a rare characterization of PTCs across wild populations and finds that they may have an important role in loss-of-function phenotypes, contributing to a growing body of literature showing genome evolution through relaxed constraint in subterranean organisms.
PMID:39833658 | DOI:10.1093/molbev/msaf012
Characterization of gut microbiota on gender and age groups bias in Thai patients with autism spectrum disorder
Sci Rep. 2025 Jan 20;15(1):2587. doi: 10.1038/s41598-025-86740-2.
ABSTRACT
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social communication and interaction problems. The prevalence of ASD is increasing globally, with a higher ratio of males to females. Gastrointestinal symptoms are common in individuals with ASD, and gut microbiota has been implicated in the disorder's development. This study aimed to investigate the gut microbiota alteration in Thai individuals with ASD compared to healthy controls using 16S rRNA gene sequencing. The influence of gender and age on gut microbiota composition and function was also examined. A total of 65 ASD individuals and 30 neurotypical (NT) individuals were included in the analysis. The results revealed notable differences in gut microbiota composition between the ASD and NT groups, with variations observed in microbial richness and the presence of enriched microbial taxa. These differences were influenced by both gender and age. Fusobacteriota, Fusobacteriaceae, and Fusobacterium were found to be enriched in individuals with ASD. Furthermore, the study identified gender-related taxa, such as Bacteroides plebeius, enriched in ASD females. Age-related taxa, including Veillonella, known to be associated with poor oral hygiene, were also observed in ASD children. The analysis of differentially abundant pathways highlighted the enrichment of various metabolic pathways in individuals with ASD, including those related to endocrine-disrupting chemicals. These findings underscore the importance of considering gender and age when studying gut microbiota in ASD. They provide valuable insights into the potential role of gut microbiota dysbiosis in ASD pathogenesis and highlight the influence of environmental factors.
PMID:39833480 | DOI:10.1038/s41598-025-86740-2
Chromosome-level genome assembly of the pine wood nematode carrier Arhopalus unicolor
Sci Data. 2025 Jan 20;12(1):111. doi: 10.1038/s41597-025-04460-8.
ABSTRACT
Arhopalus unicolor is a carrier of the pine wood nematode (PWN), which causes pine wilt disease, killing pine trees and causing considerable economic and environmental losses. While the A. unicolor mitochondrial genome has been published, a high-quality genome assembly and annotation of A. unicolor is not yet available. To address this, we assembled a chromosome-level reference genome assembly of A. unicolor with a combination of Illumina, PacBio, and Hi-C sequencing technologies. The final genome size was determined to be 1268.11 Mb, with a GC% of 32.44%, and the scaffold N50 value was 19.30 Mb. A total of 98.77% of the assembled sequences mapped to 10 pseudochromosomes, and BUSCO analysis revealed high completeness, with 97.15% gene coverage. Furthermore, the genome contains 71.74% repeat elements and encompasses 16,450 predicted protein-coding genes. This genome sequence of A. unicolor will be a valuable resource for understanding the genetics and evolutionary history of this species and for developing effective management strategies for this PWN carrier.
PMID:39833239 | DOI:10.1038/s41597-025-04460-8
Centromere positioning orchestrates telomere bouquet formation and the initiation of meiotic differentiation
Nat Commun. 2025 Jan 20;16(1):837. doi: 10.1038/s41467-025-56049-9.
ABSTRACT
Accurate gametogenesis requires the establishment of the telomere bouquet, an evolutionarily conserved, 3D chromosomal arrangement. In this spatial configuration, telomeres temporarily aggregate at the nuclear envelope during meiotic prophase, which facilitates chromosome pairing and recombination. The mechanisms governing the assembly of the telomere bouquet remain largely unexplored, primarily due to the challenges in visualizing and manipulating the bouquet. Here, using Schizosaccharomyces pombe as a model system to elucidate telomere bouquet function, we reveal that centromeres, traditionally perceived as playing a passive role in the chromosomal reorganization necessary for bouquet assembly, play a key role in the initiation of telomere bouquet formation. We demonstrate that centromeres are capable to induce telomere mobilization, which is sufficient to trigger the first stages of bouquet assembly and the meiotic transcription program in mitotic cells. This discovery highlights the finely tuned control exerted over long-distance heterochromatic regions and underscores a pivotal step in the mechanism of eukaryotic telomere bouquet formation and meiotic transcriptional rewiring.
PMID:39833200 | DOI:10.1038/s41467-025-56049-9
Pupylation-based proximity labeling reveals regulatory factors in cellulose biosynthesis in Arabidopsis
Nat Commun. 2025 Jan 20;16(1):872. doi: 10.1038/s41467-025-56192-3.
ABSTRACT
Knowledge about how and where proteins interact provides a pillar for cell biology. Protein proximity-labeling has emerged as an important tool to detect protein interactions. Biotin-related proximity labeling approaches are by far the most commonly used but may have labeling-related drawbacks. Here, we use pupylation-based proximity labeling (PUP-IT) as a tool for protein interaction detection in plants. We show that PUP-IT readily confirmed protein interactions for several known protein complexes across different types of plant hosts and that the approach increased detection of specific interactions as compared to biotin-based proximity labeling systems. To further demonstrate the power of PUP-IT, we used the system to identify protein interactions of the protein complex that underpin cellulose synthesis in plants. Apart from known complex components, we identified the ARF-GEF BEN1 (BFA-VISUALIZED ENDOCYTIC TRAFFICKING DEFECTIVE1). We show that BEN1 contributes to cellulose synthesis by regulating both clathrin-dependent and -independent endocytosis of the cellulose synthesis protein complex from the plasma membrane. Our results highlight PUP-IT as a powerful proximity labeling system to identify protein interactions in plant cells.
PMID:39833163 | DOI:10.1038/s41467-025-56192-3
Corrigendum to "Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases" [Redox Biol. 79 (2025) 103464]
Redox Biol. 2025 Jan 19:103496. doi: 10.1016/j.redox.2025.103496. Online ahead of print.
NO ABSTRACT
PMID:39833011 | DOI:10.1016/j.redox.2025.103496
Identifying a non-conserved site for achieving allosteric covalent inhibition of CECR2
Acta Pharmacol Sin. 2025 Jan 20. doi: 10.1038/s41401-024-01452-z. Online ahead of print.
ABSTRACT
The bromodomain (BRD) represents a highly conserved structural module that provides BRD proteins with fundamental functionality in modulating protein-protein interactions involved in diverse biological processes such as chromatin-mediated gene transcription, DNA recombination, replication and repair. Consequently, dysregulation of BRD proteins has been implicated in the pathogenesis of numerous human diseases. In recent years, considerable scientific endeavors have focused on unraveling the molecular mechanisms underlying BRDs and developing inhibitors that target these domains. While these inhibitors compete for binding with the acetylated lysine binding site of BRDs, achieving inhibition of BRD proteins via competitive pocket binding has proven challenging due to the conserved nature of these pockets. To address this limitation, the present study employed dynamic simulations for a comprehensive analysis, leading to the identification of a non-conserved pocket in CECR2 for achieving BRD family inhibition through allosteric modulation. Subsequently, the compound BAY 11-7085 was proven capable of covalently binding to C494 of this pocket after covalent docking and biological verification in vitro. The allosteric inhibition strategy of CECR2 was further verified by the structurally optimized compound LC-CE-7, which is an allosteric covalent CECR2 inhibitor with anti-cancer effects in MDA-MB-231 cells.
PMID:39833305 | DOI:10.1038/s41401-024-01452-z