Literature Watch
Structural analysis of dihydrofolate reductases enables rationalization of antifolate binding affinities and suggests repurposing possibilities.
Structural analysis of dihydrofolate reductases enables rationalization of antifolate binding affinities and suggests repurposing possibilities.
FEBS J. 2016 Mar;283(6):1139-67
Authors: Bhosle A, Chandra N
Abstract
Antifolates are competitive inhibitors of dihydrofolate reductase (DHFR), a conserved enzyme that is central to metabolism and widely targeted in pathogenic diseases, cancer and autoimmune disorders. Although most clinically used antifolates are known to be target specific, some display a fair degree of cross-reactivity with DHFRs from other species. A method that enables identification of determinants of affinity and specificity in target DHFRs from different species and provides guidelines for the design of antifolates is currently lacking. To address this, we first captured the potential druggable space of a DHFR in a substructure called the 'supersite' and classified supersites of DHFRs from 56 species into 16 'site-types' based on pairwise structural similarity. Analysis of supersites across these site-types revealed that DHFRs exhibit varying extents of dissimilarity at structurally equivalent positions in and around the binding site. We were able to explain the pattern of affinities towards chemically diverse antifolates exhibited by DHFRs of different site-types based on these structural differences. We then generated an antifolate-DHFR network by mapping known high-affinity antifolates to their respective supersites and used this to identify antifolates that can be repurposed based on similarity between supersites or antifolates. Thus, we identified 177 human-specific and 458 pathogen-specific antifolates, a large number of which are supported by available experimental data. Thus, in the light of the clinical importance of DHFR, we present a novel approach to identifying differences in the druggable space of DHFRs that can be utilized for rational design of antifolates.
PMID: 26797763 [PubMed - indexed for MEDLINE]
Network analysis of immunotherapy-induced regressing tumours identifies novel synergistic drug combinations.
Network analysis of immunotherapy-induced regressing tumours identifies novel synergistic drug combinations.
Sci Rep. 2015;5:12298
Authors: Lesterhuis WJ, Rinaldi C, Jones A, Rozali EN, Dick IM, Khong A, Boon L, Robinson BW, Nowak AK, Bosco A, Lake RA
Abstract
Cancer immunotherapy has shown impressive results, but most patients do not respond. We hypothesized that the effector response in the tumour could be visualized as a complex network of interacting gene products and that by mapping this network we could predict effective pharmacological interventions. Here, we provide proof of concept for the validity of this approach in a murine mesothelioma model, which displays a dichotomous response to anti-CTLA4 immune checkpoint blockade. Network analysis of gene expression profiling data from responding versus non-responding tumours was employed to identify modules associated with response. Targeting the modules via selective modulation of hub genes or alternatively by using repurposed pharmaceuticals selected on the basis of their expression perturbation signatures dramatically enhanced the efficacy of CTLA4 blockade in this model. Our approach provides a powerful platform to repurpose drugs, and define contextually relevant novel therapeutic targets.
PMID: 26193793 [PubMed - indexed for MEDLINE]
Semantic-Web Architecture for Electronic Discharge Summary Based on OWL 2.0 Standard.
Semantic-Web Architecture for Electronic Discharge Summary Based on OWL 2.0 Standard.
Acta Inform Med. 2016 Jun;24(3):182-5
Authors: Tahmasebian S, Langarizadeh M, Ghazisaeidi M, Safdari R
Abstract
INTRODUCTION: Patients' electronic medical record contains all information related to treatment processes during hospitalization. One of the most important documents in this record is the record summary. In this document, summary of the whole treatment process is presented which is used for subsequent treatments and other issues pertaining to the treatment. Using suitable architecture for this document, apart from the aforementioned points we can use it in other fields such as data mining or decision making based on the cases.
MATERIAL AND METHODS: In this study, at first, a model for patient's medical record summary has been suggested using semantic web-based architecture. Then, based on service-oriented architecture and using Java programming language, a software solution was designed and run in a way to generate medical record summary with this structure and at the end, new uses of this structure was explained.
RESULTS: in this study a structure for medical record summaries along with corrective points within semantic web has been offered and a software running within Java along with special ontologies are provided.
DISCUSSION AND CONCLUSION: After discussing the project with the experts of medical/health data management and medical informatics as well as clinical experts, it became clear that suggested design for medical record summary apart from covering many issues currently faced in the medical records has also many advantages including its uses in research projects, decision making based on the cases etc.
PMID: 27482132 [PubMed]
Implementation and Quality Control of Lung Cancer EGFR Genetic Testing by MALDI-TOF Mass Spectrometry in Taiwan Clinical Practice.
Implementation and Quality Control of Lung Cancer EGFR Genetic Testing by MALDI-TOF Mass Spectrometry in Taiwan Clinical Practice.
Sci Rep. 2016;6:30944
Authors: Su KY, Kao JT, Ho BC, Chen HY, Chang GC, Ho CC, Yu SL
Abstract
Molecular diagnostics in cancer pharmacogenomics is indispensable for making targeted therapy decisions especially in lung cancer. For routine clinical practice, the flexible testing platform and implemented quality system are important for failure rate and turnaround time (TAT) reduction. We established and validated the multiplex EGFR testing by MALDI-TOF MS according to ISO15189 regulation and CLIA recommendation in Taiwan. Totally 8,147 cases from Aug-2011 to Jul-2015 were assayed and statistical characteristics were reported. The intra-run precision of EGFR mutation frequency was CV 2.15% (L858R) and 2.77% (T790M); the inter-run precision was CV 3.50% (L858R) and 2.84% (T790M). Accuracy tests by consensus reference biomaterials showed 100% consistence with datasheet (public database). Both analytical sensitivity and specificity were 100% while taking Sanger sequencing as the gold-standard method for comparison. EGFR mutation frequency of peripheral blood mononuclear cell for reference range determination was 0.002 ± 0.016% (95% CI: 0.000-0.036) (L858R) and 0.292 ± 0.289% (95% CI: 0.000-0.871) (T790M). The average TAT was 4.5 working days and the failure rate was less than 0.1%. In conclusion, this study provides a comprehensive report of lung cancer EGFR mutation detection from platform establishment, method validation to clinical routine practice. It may be a reference model for molecular diagnostics in cancer pharmacogenomics.
PMID: 27480787 [PubMed - in process]
(Per)chlorate in Biology on Earth and Beyond.
(Per)chlorate in Biology on Earth and Beyond.
Annu Rev Microbiol. 2016 Jul 25;
Authors: Youngblut MD, Wang O, Barnum TP, Coates JD
Abstract
Respiration of perchlorate and chlorate [collectively, (per)chlorate] was only recognized in the last 20 years, yet substantial advances have been made in our understanding of the underlying metabolisms. Although it was once considered solely anthropogenic, pervasive natural sources, both terrestrial and extraterrestrial, indicate an ancient (per)chlorate presence across our solar system. These discoveries stimulated interest in (per)chlorate microbiology and the application of advanced approaches highlight exciting new facets. Forward and reverse genetics revealed new information regarding underlying molecular biology and associated regulatory mechanisms. Structural and functional analysis characterized core enzymes and identified novel reaction sequences. Comparative genomics elucidated evolutionary aspects, and stress analysis identified novel response mechanisms to reactive chlorine species. Finally, systems biology identified unique metabolic versatility and novel mechanisms of (per)chlorate respiration, including symbiosis and a hybrid enzymatic-abiotic metabolism. While many published studies focus on (per)chlorate and their basic metabolism, this review highlights seminal advances made over the last decade and identifies new directions and potential novel applications. Expected final online publication date for the Annual Review of Microbiology Volume 70 is September 08, 2016. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
PMID: 27482739 [PubMed - as supplied by publisher]
SYSTEMS BIOLOGY. Protein isoforms: more than meets the eye.
SYSTEMS BIOLOGY. Protein isoforms: more than meets the eye.
Nat Methods. 2016 Apr;13(4):291
Authors: Larochelle S
PMID: 27482571 [PubMed - in process]
Lineage tracing of human B cells reveals the in vivo landscape of human antibody class switching.
Lineage tracing of human B cells reveals the in vivo landscape of human antibody class switching.
Elife. 2016;5
Authors: Horns F, Vollmers C, Croote D, Mackey SF, Swan GE, Dekker CL, Davis MM, Quake SR
Abstract
Antibody class switching is a feature of the adaptive immune system which enables diversification of the effector properties of antibodies. Even though class switching is essential for mounting a protective response to pathogens, the in vivo patterns and lineage characteristics of antibody class switching have remained uncharacterized in living humans. Here we comprehensively measured the landscape of antibody class switching in human adult twins using antibody repertoire sequencing. The map identifies how antibodies of every class are created and delineates a two-tiered hierarchy of class switch pathways. Using somatic hypermutations as a molecular clock, we discovered that closely related B cells often switch to the same class, but lose coherence as somatic mutations accumulate. Such correlations between closely related cells exist when purified B cells class switch in vitro, suggesting that class switch recombination is directed toward specific isotypes by a cell-autonomous imprinted state.
PMID: 27481325 [PubMed - in process]
Place recognition using batlike sonar.
Place recognition using batlike sonar.
Elife. 2016;5
Authors: Vanderelst D, Steckel J, Boen A, Peremans H, Holderied MW
Abstract
Echolocating bats have excellent spatial memory and are able to navigate to salient locations using bio-sonar. Navigating and route-following require animals to recognize places. Currently, it is mostly unknown how bats recognize places using echolocation. In this paper, we propose template based place recognition might underlie sonar-based navigation in bats. Under this hypothesis, bats recognize places by remembering their echo signature - rather than their 3D layout. Using a large body of ensonification data collected in three different habitats, we test the viability of this hypothesis assessing two critical properties of the proposed echo signatures: (1) they can be uniquely classified and (2) they vary continuously across space. Based on the results presented, we conclude that the proposed echo signatures satisfy both criteria. We discuss how these two properties of the echo signatures can support navigation and building a cognitive map.
PMID: 27481189 [PubMed - in process]
Reconstructing Causal Biological Networks through Active Learning.
Reconstructing Causal Biological Networks through Active Learning.
PLoS One. 2016;11(3):e0150611
Authors: Cho H, Berger B, Peng J
Abstract
Reverse-engineering of biological networks is a central problem in systems biology. The use of intervention data, such as gene knockouts or knockdowns, is typically used for teasing apart causal relationships among genes. Under time or resource constraints, one needs to carefully choose which intervention experiments to carry out. Previous approaches for selecting most informative interventions have largely been focused on discrete Bayesian networks. However, continuous Bayesian networks are of great practical interest, especially in the study of complex biological systems and their quantitative properties. In this work, we present an efficient, information-theoretic active learning algorithm for Gaussian Bayesian networks (GBNs), which serve as important models for gene regulatory networks. In addition to providing linear-algebraic insights unique to GBNs, leading to significant runtime improvements, we demonstrate the effectiveness of our method on data simulated with GBNs and the DREAM4 network inference challenge data sets. Our method generally leads to faster recovery of underlying network structure and faster convergence to final distribution of confidence scores over candidate graph structures using the full data, in comparison to random selection of intervention experiments.
PMID: 26930205 [PubMed - indexed for MEDLINE]
An Analysis of the Truncated Bid- and ROS-dependent Spatial Propagation of Mitochondrial Permeabilization Waves during Apoptosis.
An Analysis of the Truncated Bid- and ROS-dependent Spatial Propagation of Mitochondrial Permeabilization Waves during Apoptosis.
J Biol Chem. 2016 Feb 26;291(9):4603-13
Authors: Jacob SF, Würstle ML, Delgado ME, Rehm M
Abstract
Apoptosis is a form of programmed cell death that is essential for the efficient elimination of surplus, damaged, and transformed cells during metazoan embryonic development and adult tissue homeostasis. Situated at the interface of apoptosis initiation and execution, mitochondrial outer membrane permeabilization (MOMP) represents one of the most fundamental processes during apoptosis signal transduction. It was shown that MOMP can spatiotemporally propagate through cells, in particular in response to extrinsic apoptosis induction. Based on apparently contradictory experimental evidence, two distinct molecular mechanisms have been proposed to underlie the propagation of MOMP signals, namely a reaction-diffusion mechanism governed by anisotropies in the production of the MOMP-inducer truncated Bid (tBid), or a process that drives the spatial propagation of MOMP by sequential bursts of reactive oxygen species. We therefore generated mathematical models for both scenarios and performed in silico simulations of spatiotemporal MOMP signaling to identify which one of the two mechanisms is capable of qualitatively and quantitatively reproducing the existing data. We found that the explanatory power of each model was limited in that only a subset of experimental findings could be replicated. However, the integration of both models into a combined mathematical description of spatiotemporal tBid and reactive oxygen species signaling accurately reproduced all available experimental data and furthermore, provided robustness to spatial MOMP propagation when mitochondria are spatially separated. Our study therefore provides a theoretical framework that is sufficient to describe and mechanistically explain the spatiotemporal propagation of one of the most fundamental processes during apoptotic cell death.
PMID: 26699404 [PubMed - indexed for MEDLINE]
Mechanotransduction in primary human osteoarthritic chondrocytes is mediated by metabolism of energy, lipids, and amino acids.
Mechanotransduction in primary human osteoarthritic chondrocytes is mediated by metabolism of energy, lipids, and amino acids.
J Biomech. 2015 Dec 16;48(16):4253-61
Authors: Zignego DL, Hilmer JK, June RK
Abstract
Chondrocytes are the sole cell type found in articular cartilage and are repeatedly subjected to mechanical loading in vivo. We hypothesized that physiological dynamic compression results in changes in energy metabolism to produce proteins for maintenance of the pericellular and extracellular matrices. The objective of this study was to develop an in-depth understanding for the short term (<30min) chondrocyte response to sub-injurious, physiological compression by analyzing metabolomic profiles for human chondrocytes harvested from femoral heads of osteoarthritic donors. Cell-seeded agarose constructs were randomly assigned to experimental groups, and dynamic compression was applied for 0, 15, or 30min. Following dynamic compression, metabolites were extracted and detected by HPLC-MS. Untargeted analyzes examined changes in global metabolomics profiles and targeted analysis examined the expression of specific metabolites related to central energy metabolism. We identified hundreds of metabolites that were regulated by applied compression, and we report the detection of 16 molecules not found in existing metabolite databases. We observed patient-specific mechanotransduction with aging dependence. Targeted studies found a transient increase in the ratio of NADP+ to NADPH and an initial decrease in the ratio of GDP to GTP, suggesting a flux of energy into the TCA cycle. By characterizing metabolomics profiles of primary chondrocytes in response to applied dynamic compression, this study provides insight into how OA chondrocytes respond to mechanical load. These results are consistent with increases in glycolytic energy utilization by mechanically induced signaling, and add substantial new data to a complex picture of how chondrocytes transduce mechanical loads.
PMID: 26573901 [PubMed - indexed for MEDLINE]
Altered cytoskeletal organization characterized lethal but not surviving Brtl+/- mice: insight on phenotypic variability in osteogenesis imperfecta.
Altered cytoskeletal organization characterized lethal but not surviving Brtl+/- mice: insight on phenotypic variability in osteogenesis imperfecta.
Hum Mol Genet. 2015 Nov 1;24(21):6118-33
Authors: Bianchi L, Gagliardi A, Maruelli S, Besio R, Landi C, Gioia R, Kozloff KM, Khoury BM, Coucke PJ, Symoens S, Marini JC, Rossi A, Bini L, Forlino A
Abstract
Osteogenesis imperfecta (OI) is a heritable bone disease with dominant and recessive transmission. It is characterized by a wide spectrum of clinical outcomes ranging from very mild to lethal in the perinatal period. The intra- and inter-familiar OI phenotypic variability in the presence of an identical molecular defect is still puzzling to the research field. We used the OI murine model Brtl(+/-) to investigate the molecular basis of OI phenotypic variability. Brtl(+/-) resembles classical dominant OI and shows either a moderately severe or a lethal outcome associated with the same Gly349Cys substitution in the α1 chain of type I collagen. A systems biology approach was used. We took advantage of proteomic pathway analysis to functionally link proteins differentially expressed in bone and skin of Brtl(+/-) mice with different outcomes to define possible phenotype modulators. The skin/bone and bone/skin hybrid networks highlighted three focal proteins: vimentin, stathmin and cofilin-1, belonging to or involved in cytoskeletal organization. Abnormal cytoskeleton was indeed demonstrated by immunohistochemistry to occur only in tissues from Brtl(+/-) lethal mice. The aberrant cytoskeleton affected osteoblast proliferation, collagen deposition, integrin and TGF-β signaling with impairment of bone structural properties. Finally, aberrant cytoskeletal assembly was detected in fibroblasts obtained from lethal, but not from non-lethal, OI patients carrying an identical glycine substitution. Our data demonstrated that compromised cytoskeletal assembly impaired both cell signaling and cellular trafficking in mutant lethal mice, altering bone properties. These results point to the cytoskeleton as a phenotypic modulator and potential novel target for OI treatment.
PMID: 26264579 [PubMed - indexed for MEDLINE]
A Systems Level Analysis of Vasopressin-mediated Signaling Networks in Kidney Distal Convoluted Tubule Cells.
A Systems Level Analysis of Vasopressin-mediated Signaling Networks in Kidney Distal Convoluted Tubule Cells.
Sci Rep. 2015;5:12829
Authors: Cheng L, Wu Q, Kortenoeven ML, Pisitkun T, Fenton RA
Abstract
The kidney distal convoluted tubule (DCT) plays an essential role in maintaining body sodium balance and blood pressure. The major sodium reabsorption pathway in the DCT is the thiazide-sensitive NaCl cotransporter (NCC), whose functions can be modulated by the hormone vasopressin (VP) acting via uncharacterized signaling cascades. Here we use a systems biology approach centered on stable isotope labeling by amino acids in cell culture (SILAC) based quantitative phosphoproteomics of cultured mouse DCT cells to map global changes in protein phosphorylation upon acute treatment with a VP type II receptor agonist 1-desamino-8-D-arginine vasopressin (dDAVP). 6330 unique proteins, containing 12333 different phosphorylation sites were identified. 185 sites were altered in abundance following dDAVP. Basophilic motifs were preferential targets for upregulated sites upon dDAVP stimulation, whereas proline-directed motifs were prominent for downregulated sites. Kinase prediction indicated that dDAVP increased AGC and CAMK kinase families' activities and decreased activity of CDK and MAPK families. Network analysis implicated phosphatidylinositol-4,5-bisphosphate 3-kinase or CAMKK dependent pathways in VP-mediated signaling; pharmacological inhibition of which significantly reduced dDAVP induced increases in phosphorylated NCC at an activating site. In conclusion, this study identifies unique VP signaling cascades in DCT cells that may be important for regulating blood pressure.
PMID: 26239621 [PubMed - indexed for MEDLINE]
Diagnostic utility of droplet digital PCR for HIV reservoir quantification.
Diagnostic utility of droplet digital PCR for HIV reservoir quantification.
J Virus Erad. 2016;2(3):162-9
Authors: Trypsteen W, Kiselinova M, Vandekerckhove L, De Spiegelaere W
Abstract
Quantitative real-time PCR (qPCR) is implemented in many molecular laboratories worldwide for the quantification of viral nucleic acids. However, over the last two decades, there has been renewed interest in the concept of digital PCR (dPCR) as this platform offers direct quantification without the need for standard curves, a simplified workflow and the possibility to extend the current detection limit. These benefits are of great interest in terms of the quantification of low viral levels in HIV reservoir research because changes in the dynamics of residual HIV reservoirs will be important to monitor HIV cure efforts. Here, we have implemented a systematic literature screening and text mining approach to map the use of droplet dPCR (ddPCR) in the context of HIV quantification. In addition, several technical aspects of ddPCR were compared with qPCR: accuracy, sensitivity, precision and reproducibility, to determine its diagnostic utility. We have observed that ddPCR was used in different body compartments in multiple HIV-1 and HIV-2 assays, with the majority of reported assays focusing on HIV-1 DNA-based applications (i.e. total HIV DNA). Furthermore, ddPCR showed a higher accuracy, precision and reproducibility, but similar sensitivity when compared to qPCR due to reported false positive droplets in the negative template controls with a need for standardised data analysis (i.e. threshold determination). In the context of a low level of detection and HIV reservoir diagnostics, ddPCR can offer a valid alternative to qPCR-based assays but before this platform can be clinically accredited, some remaining issues need to be resolved.
PMID: 27482456 [PubMed]
Gender differences in cancer susceptibility: role of oxidative stress.
Gender differences in cancer susceptibility: role of oxidative stress.
Carcinogenesis. 2016 Jul 31;
Authors: Ali I, Högberg J, Hsieh JH, Auerbach S, Korhonen A, Stenius U, Silins I
Abstract
Cancer is a leading cause of death worldwide and environmental factors, including chemicals, have been suggested as major etiological incitements. Cancer statistics indicates that men get more cancer than women. However, differences in the known risk factors including life-style or occupational exposure only offer partial explanation. Using a text mining tool, we have investigated the scientific literature concerning male- and female-specific rat carcinogens that induced tumors only in one gender in NTP 2-year cancer bioassay. Our evaluation shows that oxidative stress, although frequently reported for both male- and female-specific rat carcinogens, was mentioned significantly more in literature concerning male-specific rat carcinogens. Literature analysis of testosterone and estradiol showed the same pattern. Tox21 high-throughput assay results, although showing only weak association of oxidative stress-related processes for male- and female-specific rat carcinogens, provide additional support. We also analyzed the literature concerning 26 established human carcinogens (IARC group 1). Oxidative stress was more frequently reported for the majority of these carcinogens, and the Tox21 data resembled that of male-specific rat carcinogens. Thus, our data, based on about 600,000 scientific abstracts and Tox21 screening assays, suggest a link between male-specific carcinogens, testosterone and oxidative stress. This implies that a different cellular response to oxidative stress in men and women may be a critical factor in explaining the greater cancer susceptibility observed in men. Although the IARC carcinogens are classified as human carcinogens, their classification largely based on epidemiological evidence from male cohorts, which raises the question whether carcinogen classifications should be gender specific.
PMID: 27481070 [PubMed - as supplied by publisher]
("orphan disease" OR "rare disease" OR "orphan diseases" OR "rare diseases"); +14 new citations
14 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
("orphan disease" OR "rare disease" OR "orphan diseases" OR "rare diseases")
These pubmed results were generated on 2016/08/02
PubMed comprises more than 24 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
"Cystic Fibrosis"; +9 new citations
9 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
These pubmed results were generated on 2016/08/02
PubMed comprises more than 24 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
"Systems Biology"[Title/Abstract] AND ("2005/01/01"[PDAT] : "3000"[PDAT]); +12 new citations
12 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
"Systems Biology"[Title/Abstract] AND ("2005/01/01"[PDAT] : "3000"[PDAT])
These pubmed results were generated on 2016/08/02
PubMed comprises more than 24 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
An integrated network platform for contextual prioritization of drugs and pathways.
An integrated network platform for contextual prioritization of drugs and pathways.
Mol Biosyst. 2015 Nov;11(11):2850-9
Authors: Segura-Cabrera A, Singh N, Komurov K
Abstract
Repurposing of drugs to novel disease indications has promise for faster clinical translation. However, identifying the best drugs for a given pathological context is not trivial. We developed an integrated random walk-based network framework that combines functional biomolecular relationships and known drug-target interactions as a platform for contextual prioritization of drugs, genes and pathways. We show that the use of gene-centric or drug-centric data, such as gene expression data or a phenotypic drug screen, respectively, within this network platform can effectively prioritize drugs and pathways, respectively, to the studied biological context. We demonstrate that various genomic data can be used as contextual cues to effectively prioritize drugs to the studied context, while similarly, phenotypic drug screen data can be used to effectively prioritize genes and pathways to the studied phenotypic context. As a proof-of-principle, we showcase the use of our platform to identify known and novel drug indications against different subsets of breast cancers through contextual prioritization based on genome-wide gene expression, shRNA and drug screen and clinical survival data. The integrated network and associated methods are incorporated into the NetWalker suite for functional genomics analysis ().
PMID: 26315485 [PubMed - indexed for MEDLINE]
Is there a role for pharmacogenetics in the treatment of anorexia nervosa?
Is there a role for pharmacogenetics in the treatment of anorexia nervosa?
Pharmacogenomics. 2016 Aug 1;
Authors: Smith S, Woodside B
PMID: 27479520 [PubMed - as supplied by publisher]
Pages
