My Recent Publications

Acute increase of protein O-GlcNAcylation in mice leads to transcriptome changes in the brain opposite to what is observed in Alzheimer's Disease

My Recent Publications - Mon, 2024-09-30 06:00

bioRxiv [Preprint]. 2024 Sep 20:2024.09.19.613769. doi: 10.1101/2024.09.19.613769.

ABSTRACT

Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA) is explored as a strategy to decrease tau and amyloid-beta phosphorylation, aggregation, and pathology in Alzheimer's disease (AD). There is still more to be learned about the impact of enhancing global protein O-GlcNAcylation, which is important for understanding the mechanistic path of using OGA inhibition to treat AD. In this study, we investigated the acute effect of pharmacologically increasing O-GlcNAc levels, using OGA inhibitor Thiamet G (TG), on normal mouse brains. We hypothesized that the transcritome signature in respones to TG treatment provides a comprehensive view of the effect of OGA inhibition. We sacrificed the mice and dissected their brains after 3 hours of saline or 50 mg/kg TG treatment, and then performed mRNA sequencing using NovaSeq PE 150 (n=5 each group). We identified 1,234 significant differentially expressed genes with TG versus saline treatment. Functional enrichment analysis of the upregulated genes identified several upregulated pathways, including genes normally down in AD. Among the downregulated pathways were the cell adhesion pathway as well as genes normally up in AD and aging. When comparing acute to chronic TG treatment, protein autophosphorylation and kinase activity pathways were upregulated, whereas cell adhesion and astrocyte markers were downregulated in both datasets. Interestingly, mitochondrial genes and genes normally down in AD were up in acute treatment and down in chronic treatment. Data from this analysis will enable the evaluation of the mechanisms underlying the potential benefits of OGA inhibition in the treatment of AD. In particular, although OGA inhibitors are promising to treat AD, their downstream chronic effects related to bioenergetics may be a limiting factor.

PMID:39345543 | PMC:PMC11429956 | DOI:10.1101/2024.09.19.613769

The protein disulfide isomerase A3 and osteopontin axis promotes influenza-induced lung remodelling

My Recent Publications - Fri, 2024-08-09 06:00

Br J Pharmacol. 2024 Aug 8. doi: 10.1111/bph.16511. Online ahead of print.

ABSTRACT

BACKGROUND AND PURPOSE: Fibrotic lung remodelling after a respiratory viral infection represents a debilitating clinical sequela. Studying or managing viral-fibrotic sequela remains challenging, due to limited therapeutic options and lack of understanding of mechanisms. This study determined whether protein disulfide isomerase A3 (PDIA3) and secreted phosphoprotein 1 (SPP1), which are associated with pulmonary fibrosis, can promote influenza-induced lung fibrotic remodelling and whether inhibition of PDIA3 or SPP1 can resolve viral-mediated fibrotic remodelling.

EXPERIMENTAL APPROACH: A retrospective analysis of TriNetX data sets was conducted. Serum from healthy controls and influenza A virus (IAV)-infected patients was analysed. An inhibitor of PDIA3, punicalagin, and a neutralizing antibody for SPP1 were administered in mice. Macrophage cells treated with macrophage colony-stimulating factor (M-CSF) were used as a cell culture model.

KEY RESULTS: The TriNetX data set showed an increase in lung fibrosis and decline in lung function in flu-infected acute respiratory distress syndrome (ARDS) patients compared with non-ARDS patients. Serum samples revealed a significant increase in SPP1 and PDIA3 in influenza-infected patients. Lung PDIA3 and SPP1 expression increased following viral infection in mouse models. Punicalagin administration 2 weeks after IAV infection in mice caused a significant decrease in lung fibrosis and improved oxygen saturation. Administration of neutralizing SPP1 antibody decreased lung fibrosis. Inhibition of PDIA3 decreased SPP1secretion from macrophages, in association with diminished disulfide bonds in SPP1.

CONCLUSION AND IMPLICATIONS: The PDIA3-SPP1 axis promotes post-influenza lung fibrosis in mice and that pharmacological inhibition of PDIA3 or SPP1 can treat virus-induced lung fibrotic sequela.

PMID:39118388 | DOI:10.1111/bph.16511

Roles of cMyBP-C phosphorylation on cardiac contractile dysfunction in <em>db/db</em> mice

My Recent Publications - Wed, 2024-07-03 06:00

J Mol Cell Cardiol Plus. 2024 Jun;8:100075. doi: 10.1016/j.jmccpl.2024.100075. Epub 2024 Apr 4.

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a metabolic disease and comorbidity associated with several conditions, including cardiac dysfunction leading to heart failure with preserved ejection fraction (HFpEF), in turn resulting in T2DM-induced cardiomyopathy (T2DM-CM). However, the molecular mechanisms underlying the development of T2DM-CM are poorly understood. It is hypothesized that molecular alterations in myopathic genes induced by diabetes promote the development of HFpEF, whereas cardiac myosin inhibitors can rescue the resultant T2DM-mediated cardiomyopathy. To test this hypothesis, a Leptin receptor-deficient db/db homozygous (Lepr db/db) mouse model was used to define the pathogenesis of T2DM-CM. Echocardiographic studies at 4 and 6 months revealed that Lepr db/db hearts started developing cardiac dysfunction by four months, and left ventricular hypertrophy with diastolic dysfunction was evident at 6 months. RNA-seq data analysis, followed by functional enrichment, revealed the differential regulation of genes related to cardiac dysfunction in Lepr db/db heart tissues. Strikingly, the level of cardiac myosin binding protein-C phosphorylation was significantly increased in Lepr db/db mouse hearts. Finally, using isolated skinned papillary muscles and freshly isolated cardiomyocytes, CAMZYOS ® (mavacamten, MYK-461), a prescription heart medicine used for symptomatic obstructive hypertrophic cardiomyopathy treatment, was tested for its ability to rescue T2DM-CM. Compared with controls, MYK-461 significantly reduced force generation in papillary muscle fibers and cardiomyocyte contractility in the db/db group. This line of evidence shows that 1) T2DM-CM is associated with hyperphosphorylation of cardiac myosin binding protein-C and 2) MYK-461 significantly lessened disease progression in vitro, suggesting its promise as a treatment for HFpEF.

PMID:38957358 | PMC:PMC11218625 | DOI:10.1016/j.jmccpl.2024.100075

Specific binding sites on Rhesus rotavirus capsid protein dictates the method of endocytosis inducing the murine model of biliary atresia

My Recent Publications - Tue, 2024-06-11 06:00

Am J Physiol Gastrointest Liver Physiol. 2024 Jun 11. doi: 10.1152/ajpgi.00308.2023. Online ahead of print.

ABSTRACT

Biliary atresia (BA) is the leading indication for pediatric liver transplantation. Rhesus rotavirus (RRV) induced murine BA develops an obstructive cholangiopathy that mirrors the human disease. We have previously demonstrated the "SRL" motif on RRV's VP4 protein binds to heat shock cognate 70 protein (Hsc70) facilitating entry into cholangiocytes. In this study, we analyzed how binding to Hsc70 affects viral endocytosis, intracellular trafficking, and uniquely activates the signaling pathway that induces murine BA. Inhibition of clathrin- and dynamin-mediated endocytosis in cholangiocytes following infection demonstrated blocking dynamin decreased the infectivity of RRV whereas clathrin inhibition had no effect. Blocking early endosome trafficking resulted in decreased viral titers of RRV while late endosome inhibition had no effect. Following infection, TLR3 expression and p-NF-κB levels increased in cholangiocytes, leading to increased release of CXCL9 and CXCL10. Infected mice knocked out for TLR3 had decreased levels of CXCL9 and CXCL10, resulting in reduced NK cell numbers. Human BA patients experienced an increase in CXCL10 levels, suggesting this as a possible pathway leading to biliary obstruction. Viruses that utilize Hsc70 for cell entry exploit a clathrin-independent pathway and traffic to the early recycling endosome uniquely activating NF-κB through TLR3, leading to the release of CXCL9 and CXCL10, and inducing NK cell recruitment. These results define how the "SRL" peptide found on RRV's VP4 protein modulates viral trafficking, inducing the host response leading to bile duct obstruction.

PMID:38860860 | DOI:10.1152/ajpgi.00308.2023

Application of artificial intelligence and machine learning in drug repurposing

My Recent Publications - Fri, 2024-05-24 06:00

Prog Mol Biol Transl Sci. 2024;205:171-211. doi: 10.1016/bs.pmbts.2024.03.030. Epub 2024 Mar 31.

ABSTRACT

The purpose of drug repurposing is to leverage previously approved drugs for a particular disease indication and apply them to another disease. It can be seen as a faster and more cost-effective approach to drug discovery and a powerful tool for achieving precision medicine. In addition, drug repurposing can be used to identify therapeutic candidates for rare diseases and phenotypic conditions with limited information on disease biology. Machine learning and artificial intelligence (AI) methodologies have enabled the construction of effective, data-driven repurposing pipelines by integrating and analyzing large-scale biomedical data. Recent technological advances, especially in heterogeneous network mining and natural language processing, have opened up exciting new opportunities and analytical strategies for drug repurposing. In this review, we first introduce the challenges in repurposing approaches and highlight some success stories, including those during the COVID-19 pandemic. Next, we review some existing computational frameworks in the literature, organized on the basis of the type of biomedical input data analyzed and the computational algorithms involved. In conclusion, we outline some exciting new directions that drug repurposing research may take, as pioneered by the generative AI revolution.

PMID:38789178 | DOI:10.1016/bs.pmbts.2024.03.030

SEMA3B inhibits TGFβ-induced extracellular matrix protein production and its reduced levels are associated with a decline in lung function in IPF

My Recent Publications - Mon, 2024-04-22 06:00

Am J Physiol Cell Physiol. 2024 Apr 22. doi: 10.1152/ajpcell.00681.2023. Online ahead of print.

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is marked by the activation of fibroblasts, leading to excessive production and deposition of extracellular matrix (ECM) within the lung parenchyma. Despite the pivotal role of ECM overexpression in IPF, potential negative regulators of ECM production in fibroblasts have yet to be identified. Semaphorin class 3B (SEMA3B), a secreted protein highly expressed in lung tissues, has established roles in axonal guidance and tumor suppression. However, the role of SEMA3B in ECM production by fibroblasts in the pathogenesis of IPF remains unexplored. Here, we show the downregulation of SEMA3B and its cognate binding receptor, neuropilin 1 (NRP1) in IPF lungs compared with healthy controls. Notably, the reduced expression of SEMA3B and NRP1 is associated with a decline in lung function in IPF. The downregulation of SEMA3B and NRP1 transcripts was validated in the lung tissues of patients with IPF, and two alternative mouse models of pulmonary fibrosis. In addition, we show that TGFβ functions as a negative regulator of SEMA3B and NRP1 expression in lung fibroblasts. Furthermore, we demonstrate the anti-fibrotic effects of SEMA3B against TGFβ-induced ECM production in IPF lung fibroblasts. Overall, our findings uncovered a novel role of SEMA3B in the pathogenesis of pulmonary fibrosis and provided novel insights into modulating the SEMA3B-NRP1 axis to attenuate pulmonary fibrosis.

PMID:38646784 | DOI:10.1152/ajpcell.00681.2023

Neuroinflammation underlies the development of social stress induced cognitive deficit in sickle cell disease

My Recent Publications - Thu, 2024-02-08 06:00

bioRxiv. 2024 Jan 25:2024.01.24.577074. doi: 10.1101/2024.01.24.577074. Preprint.

ABSTRACT

Cognitive deficit is a debilitating complication of SCD with multifactorial pathobiology. Here we show that neuroinflammation and dysregulation in lipidomics and transcriptomics profiles are major underlying mechanisms of social stress-induced cognitive deficit in SCD. Townes sickle cell (SS) mice and controls (AA) were exposed to social stress using the repeat social defeat (RSD) paradigm concurrently with or without treatment with minocycline. Mice were tested for cognitive deficit using novel object recognition (NOR) and fear conditioning (FC) tests. SS mice exposed to RSD without treatment had worse performance on cognitive tests compared to SS mice exposed to RSD with treatment or to AA controls, irrespective of their RSD or treatment disposition. Additionally, compared to SS mice exposed to RSD with treatment, SS mice exposed to RSD without treatment had significantly more cellular evidence of neuroinflammation coupled with a significant shift in the differentiation of neural progenitor cells towards astrogliogenesis. Additionally, brain tissue from SS mice exposed to RSD was significantly enriched for genes associated with blood-brain barrier dysfunction, neuron excitotoxicity, inflammation, and significant dysregulation in sphingolipids important to neuronal cell processes. We demonstrate in this study that neuroinflammation and lipid dysregulation are potential underlying mechanisms of social stress-related cognitive deficit in SS mice.

KEY POINTS: Neuroinflammation and lipid dysfunction are potential underlying mechanisms of social stress-related cognitive deficit in SCD patients.Mitigating or ameliorating the impact of cognitive deficits in SCD needs to consider the biological changes already created by exposure to social stress.

NOVELTY OF OUR FINDINGS: We show for the first time, that neuroinflammation along with changes in the brain lipidome and transcriptome, are underlying biological mechanism contributing to the development and potentially progression of cognitive impairment among sickle cell patients. These findings also provide for the first time, a mechanistic basis for an earlier reported observation of a higher likelihood of having lower intelligence quotient scores among children with sickle cell disease exposed to social stress in the form of low parental socioeconomic status.

PMID:38328164 | PMC:PMC10849745 | DOI:10.1101/2024.01.24.577074

Perturbations of Glutathione and Sphingosine Metabolites in Port Wine Birthmark Patient-Derived Induced Pluripotent Stem Cells

My Recent Publications - Wed, 2023-09-27 06:00

Metabolites. 2023 Aug 31;13(9):983. doi: 10.3390/metabo13090983.

ABSTRACT

Port Wine Birthmarks (PWBs) are a congenital vascular malformation on the skin, occurring in 1-3 per 1000 live births. We have recently generated PWB-derived induced pluripotent stem cells (iPSCs) as clinically relevant disease models. The metabolites associated with the pathological phenotypes of PWB-derived iPSCs are unknown, and so we aim to explore them in this study. Metabolites were separated by ultra-performance liquid chromatography and screened with electrospray ionization mass spectrometry. Orthogonal partial least-squares discriminant, multivariate, and univariate analyses were used to identify differential metabolites (DMs). KEGG analysis was used to determine the enrichment of metabolic pathways. A total of 339 metabolites was identified. There were 22 DMs, among which nine were downregulated-including sphingosine-and 13 were upregulated, including glutathione in PWB iPSCs, as compared to controls. Pathway enrichment analysis confirmed the upregulation of glutathione and the downregulation of sphingolipid metabolism in PWB-derived iPSCs as compared to normal ones. We next examined the expression patterns of the key molecules associated with glutathione metabolism in PWB lesions. We found that hypoxia-inducible factor 1α (HIF1α), glutathione S-transferase Pi 1 (GSTP1), γ-glutamyl transferase 7 (GGT7), and glutamate cysteine ligase modulatory subunit (GCLM) were upregulated in PWB vasculatures as compared to blood vessels in normal skin. Other significantly affected metabolic pathways in PWB iPSCs included pentose and glucuronate interconversions; amino sugar and nucleotide sugars; alanine, aspartate, and glutamate; arginine, purine, D-glutamine, and D-glutamate; arachidonic acid, glyoxylate, and dicarboxylate; nitrogen, aminoacyl-tRNA biosynthesis, pyrimidine, galactose, ascorbate, and aldarate; and starch and sucrose. Our data demonstrated that there were perturbations in sphingolipid and cellular redox homeostasis in PWB vasculatures, which could facilitate cell survival and pathological progression. Our data implied that the upregulation of glutathione could contribute to laser-resistant phenotypes in some PWB vasculatures.

PMID:37755263 | DOI:10.3390/metabo13090983

BRD9-SMAD2/3 orchestrates stemness and tumorigenesis in pancreatic ductal adenocarcinoma

My Recent Publications - Fri, 2023-09-22 06:00

Gastroenterology. 2023 Sep 20:S0016-5085(23)05012-6. doi: 10.1053/j.gastro.2023.09.021. Online ahead of print.

ABSTRACT

BACKGROUND AND AIMS: The dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) is linked to the presence of pancreatic cancer stem-like cells (CSCs) that respond poorly to current chemotherapy regimens. The epigenetic mechanisms regulating CSCs are currently insufficiently understood which hampers the development of novel strategies for eliminating CSCs.

METHODS: By small molecule compound screening targeting 142 epigenetic enzymes, we identified that bromodomain-containing protein BRD9, a component of the BAF histone remodelling complex, is a key chromatin regulator to orchestrate the stemness of pancreatic CSCs via cooperating with the TGFβ/Activin-SMAD2/3 signalling pathway.

RESULTS: Inhibition and genetic ablation of BRD9 block the self-renewal, cell cycle entry into G0 phase and invasiveness of CSCs, and improve the sensitivity of CSCs to Gemcitabine treatment. In addition, pharmacological inhibition of BRD9 significantly reduced the tumorigenesis in patient-derived xenografts mouse models and eliminated CSCs in tumours from pancreatic cancer patients. Mechanistically, inhibition of BRD9 disrupts enhancer-promoter looping and transcription of stemness genes in CSCs.

CONCLUSIONS: Collectively, the data suggest BRD9 as a novel therapeutic target for PDAC treatment via modulation of CSC stemness.

PMID:37739089 | DOI:10.1053/j.gastro.2023.09.021

Supporting materials: Endothelial cells differentiated from patient dermal fibroblast-derived induced pluripotent stem cells resemble vascular malformations of Port Wine Birthmark

My Recent Publications - Mon, 2023-09-04 06:00

bioRxiv. 2023 Aug 24:2023.07.02.547408. doi: 10.1101/2023.07.02.547408. Preprint.

ABSTRACT

BACKGROUND: Port wine birthmark (PWB) is a congenital vascular malformation resulting from developmentally defective endothelial cells (ECs). Developing clinically relevant disease models for PWB studies is currently an unmet need.

OBJECTIVE: Our study aims to generate PWB-derived induced pluripotent stem cells (iPSCs) and iPSC-derived ECs that preserve disease-related phenotypes.

METHODS: PWB iPSCs were generated by reprogramming lesional dermal fibroblasts and differentiated into ECs. RNA-seq was performed to identify differentially expressed genes (DEGs) and enriched pathways. The functional phenotypes of iPSC-derived ECs were characterized by capillary-like structure (CLS) formation in vitro and Geltrex plug-in assay in vivo .

RESULTS: Human PWB and control iPSC lines were generated through reprogramming of dermal fibroblasts by introducing the "Yamanaka factors" (Oct3/4, Sox2, Klf4, c-Myc) into them; the iPSCs were successfully differentiated into ECs. These iPSCs and their derived ECs were validated by expression of a series of stem cell and EC biomarkers, respectively. PWB iPSC-derived ECs showed impaired CLS in vitro with larger perimeters and thicker branches as compared to control iPSC-derived ECs. In the plug-in assay, perfused human vasculature formed by PWB iPSC- derived ECs showed bigger perimeters and greater densities than those formed by control iPSC- derived ECs in severe combined immune deficient (SCID) mice. The transcriptome analysis showed that dysregulated pathways of stem cell differentiation, Hippo, Wnt, and focal adhesion persisted through differentiation of PWB iPSCs to ECs. Functional enrichment analysis showed that Hippo and Wnt pathway-related PWB DEGs are enriched for vasculature development, tube morphology, endothelium development, and EC differentiation. Further, members of the zinc finger (ZNF) gene family were overrepresented among the DEGs in PWB iPSCs. ZNF DEGs confer significant functions in transcriptional regulation, chromatin remodeling, protein ubiquitination, and retinoic acid receptor signaling. Furthermore, NF-kappa B, TNF, MAPK, and cholesterol metabolism pathways were dysregulated in PWB ECs as readouts of impaired differentiation.

CONCLUSIONS: PWB iPSC-derived ECs render a novel and clinically-relevant disease model by retaining pathological phenotypes. Our data demonstrate multiple pathways, such as Hippo and Wnt, NF-kappa B, TNF, MAPK, and cholesterol metabolism, are dysregulated, which may contribute to the development of differentiation-defective ECs in PWB.

BULLETED STATEMENTS: What is already known about this topic?: Port Wine Birthmark (PWB) is a congenital vascular malformation with an incidence rate of 0.1 - 0.3 % per live births.PWB results from developmental defects in the dermal vasculature; PWB endothelial cells (ECs) have differentiational impairments.Pulse dye laser (PDL) is currently the preferred treatment for PWB; unfortunately, the efficacy of PDL treatment of PWB has not improved over the past three decades.What does this study add?: Induced pluripotent stem cells (iPSCs) were generated from PWB skin fibroblasts and differentiated into ECs.PWB ECs recapitulated their pathological phenotypes such as forming enlarged blood vessels in vitro and in vivo.Hippo and Wnt pathways were dysregulated in PWB iPSCs and ECs.Zinc-finger family genes were overrepresented among the differentially expressed genes in PWB iPSCs.Dysregulated NF-kappa B, TNF, MAPK, and cholesterol metabolism pathways were enriched in PWB ECs.What is the translational message?: Targeting Hippo and Wnt pathways and Zinc-finger family genes could restore the physiological differentiation of ECs.Targeting NF-kappa B, TNF, MAPK, and cholesterol metabolism pathways could mitigate the pathological progression of PWB.These mechanisms may lead to the development of paradigm-shifting therapeutic interventions for PWB.

PMID:37662218 | PMC:PMC10473620 | DOI:10.1101/2023.07.02.547408

Perturbations of glutathione and sphingosine metabolites in Port Wine Birthmark patient-derived induced pluripotent stem cells

My Recent Publications - Fri, 2023-07-28 06:00

bioRxiv. 2023 Jul 19:2023.07.18.549581. doi: 10.1101/2023.07.18.549581. Preprint.

ABSTRACT

Port Wine Birthmark (PWB) is a congenital vascular malformation in the skin, occurring in 1-3 per 1,000 live births. We recently generated PWB-derived induced pluripotent stem cells (iPSCs) as clinically relevant disease models. The metabolites associated with the pathological phenotypes of PWB-derived iPSCs are unknown, which we aimed to explore in this study. Metabolites were separated by ultra-performance liquid chromatography and were screened with electrospray ionization mass spectrometry. Orthogonal partial least-squares discriminant analysis, multivariate and univariate analysis were used to identify differential metabolites (DMs). KEGG analysis was used for the enrichment of metabolic pathways. A total of 339 metabolites were identified. There were 22 DMs confirmed with 9 downregulated DMs including sphingosine and 13 upregulated DMs including glutathione in PWB iPSCs as compared to controls. Pathway enrichment analysis confirmed the upregulation of glutathione and downregulation of sphingolipid metabolism in PWB-derived iPSCs as compared to normal ones. We next examined the expression patterns of the key factors associated with glutathione metabolism in PWB lesions. We found that hypoxia-inducible factor 1α (HIF1α), glutathione S-transferase Pi 1 (GSTP1), γ-glutamyl transferase 7 (GGT7), and glutamate cysteine ligase modulatory subunit (GCLM) were upregulated in PWB vasculatures as compared to blood vessels in normal skins. Our data demonstrate that there are perturbations in sphingolipid and cellular redox homeostasis in the PWB vasculature, which may facilitate cell survival and pathological progression. Our data imply that upregulation of glutathione may contribute to laser-resistant phenotypes in the PWB vasculature.

PMID:37503303 | PMC:PMC10370126 | DOI:10.1101/2023.07.18.549581

Mucosal transcriptomics highlight lncRNAs implicated in ulcerative colitis, Crohn disease, and celiac disease

My Recent Publications - Thu, 2023-06-01 06:00

JCI Insight. 2023 Jun 1:e170181. doi: 10.1172/jci.insight.170181. Online ahead of print.

ABSTRACT

Ulcerative colitis (UC), Crohn's disease (CD), and celiac disease are prevalent intestinal inflammatory disorders with non-satisfactory therapeutic interventions. Analyzing patient data-driven cohorts can highlight disease pathways and new targets for interventions. Long non-coding RNAs (lncRNAs) are attractive candidates as they are readily targetable by RNA therapeutics, show relative cell-specific expression, and play key cellular functions. Uniformly analyzing gut mucosal transcriptomics from 696 subjects, we highlight lncRNA expression along the gastrointestinal (GI) tract, demonstrating that in control samples, lncRNAs have a more location-specific expression in comparison to protein-coding genes. We defined dysregulation of lncRNAs in treatment-naïve UC, CD, and celiac diseases using independent test and validation cohorts. Using the PROTECT inception UC cohort, we define and prioritize lncRNA linked with UC severity and prospective outcomes, and highlight lncRNAs linked with gut microbes previously implicated in mucosal homeostasis. HNF1A-AS1 lncRNA was reduced in all 3 conditions and was further reduced in more severe UC form. Similarly, the reduction of HNF1A-AS1 ortholog in mice gut epithelial showed higher sensitivity to dextran sodium sulfate-induced colitis which was coupled with alteration in the gut microbial community. These analyses highlight prioritized dysregulated lncRNAs that can guide future preclinical studies for testing them as novel potential targets.

PMID:37261910 | DOI:10.1172/jci.insight.170181

Relationships between gene expression and behavior in mice in response to systemic modulation of the O-GlcNAcylation pathway

My Recent Publications - Tue, 2023-05-02 06:00

J Neurochem. 2023 May 2. doi: 10.1111/jnc.15835. Online ahead of print.

ABSTRACT

Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA), which removes the O-GlcNAc modification from proteins, has been explored in mouse models of amyloid-beta and tau pathology. However, the O-GlcNAcylation-dependent link between gene expression and neurological behavior remains to be explored. Using chronic administration of Thiamet G (TG, an OGA inhibitor) in vivo, we used a protocol designed to relate behavior with the transcriptome and selected biochemical parameters from the cortex of individual animals. TG-treated mice showed improved working memory as measured using a Y-maze test. RNA sequencing analysis revealed 151 top differentially expressed genes with a Log2fold change > 0.33 and adjusted p-value < 0.05. Top TG-dependent upregulated genes were related to learning, cognition, and behavior, while top downregulated genes were related to IL-17 signaling, inflammatory response, and chemotaxis. Additional pathway analysis uncovered 3 pathways involving gene expression including 14 cytochrome c oxidase subunits/regulatory components, chaperones, or assembly factors, and 5 mTOR (mechanistic target of rapamycin) signaling factors. Multivariate Kendall correlation analyses of behavioral tests and the top TG-dependent differentially expressed genes revealed 91 statistically significant correlations in saline-treated mice and 70 statistically significant correlations in TG-treated mice. These analyses provide a network regulation landscape that is important in relating the transcriptome to behavior and the potential impact of the O-GlcNAC pathway.

PMID:37129420 | DOI:10.1111/jnc.15835

A comparison of anatomic and cellular transcriptome structures across 40 human brain diseases

My Recent Publications - Thu, 2023-04-20 06:00

PLoS Biol. 2023 Apr 20;21(4):e3002058. doi: 10.1371/journal.pbio.3002058. eCollection 2023 Apr.

ABSTRACT

Genes associated with risk for brain disease exhibit characteristic expression patterns that reflect both anatomical and cell type relationships. Brain-wide transcriptomic patterns of disease risk genes provide a molecular-based signature, based on differential co-expression, that is often unique to that disease. Brain diseases can be compared and aggregated based on the similarity of their signatures which often associates diseases from diverse phenotypic classes. Analysis of 40 common human brain diseases identifies 5 major transcriptional patterns, representing tumor-related, neurodegenerative, psychiatric and substance abuse, and 2 mixed groups of diseases affecting basal ganglia and hypothalamus. Further, for diseases with enriched expression in cortex, single-nucleus data in the middle temporal gyrus (MTG) exhibits a cell type expression gradient separating neurodegenerative, psychiatric, and substance abuse diseases, with unique excitatory cell type expression differentiating psychiatric diseases. Through mapping of homologous cell types between mouse and human, most disease risk genes are found to act in common cell types, while having species-specific expression in those types and preserving similar phenotypic classification within species. These results describe structural and cellular transcriptomic relationships of disease risk genes in the adult brain and provide a molecular-based strategy for classifying and comparing diseases, potentially identifying novel disease relationships.

PMID:37079537 | DOI:10.1371/journal.pbio.3002058

A systems approach points to a therapeutic role for retinoids in asparaginase-associated pancreatitis

My Recent Publications - Wed, 2023-03-15 06:00

Sci Transl Med. 2023 Mar 15;15(687):eabn2110. doi: 10.1126/scitranslmed.abn2110. Epub 2023 Mar 15.

ABSTRACT

Among drug-induced adverse events, pancreatitis is life-threatening and results in substantial morbidity. A prototype example is the pancreatitis caused by asparaginase, a crucial drug used to treat acute lymphoblastic leukemia (ALL). Here, we used a systems approach to identify the factors affecting asparaginase-associated pancreatitis (AAP). Connectivity Map analysis of the transcriptomic data showed that asparaginase-induced gene signatures were potentially reversed by retinoids (vitamin A and its analogs). Analysis of a large electronic health record database (TriNetX) and the U.S. Federal Drug Administration Adverse Events Reporting System demonstrated a reduction in AAP risk with concomitant exposure to vitamin A. Furthermore, we performed a global metabolomic screening of plasma samples from 24 individuals with ALL who developed pancreatitis (cases) and 26 individuals with ALL who did not develop pancreatitis (controls), before and after a single exposure to asparaginase. Screening from this discovery cohort revealed that plasma carotenoids were lower in the cases than in controls. This finding was validated in a larger external cohort. A 30-day dietary recall showed that the cases received less dietary vitamin A than the controls did. In mice, asparaginase administration alone was sufficient to reduce circulating and hepatic retinol. Based on these data, we propose that circulating retinoids protect against pancreatic inflammation and that asparaginase reduces circulating retinoids. Moreover, we show that AAP is more likely to develop with reduced dietary vitamin A intake. The systems approach taken for AAP provides an impetus to examine the role of dietary vitamin A supplementation in preventing or treating AAP.

PMID:36921036 | DOI:10.1126/scitranslmed.abn2110

BRD9-SMAD2/3 orchestrates stemness and tumorigenesis in pancreatic ductal adenocarcinoma

My Recent Publications - Mon, 2023-03-13 06:00

bioRxiv. 2023 Mar 2:2023.03.02.530770. doi: 10.1101/2023.03.02.530770. Preprint.

ABSTRACT

The dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) is linked to the presence of pancreatic cancer stem-like cells (CSCs) that respond poorly to current chemotherapy regimens. By small molecule compound screening targeting 142 epigenetic enzymes, we identified that bromodomain-containing protein BRD9, a component of the BAF histone remodelling complex, is a key chromatin regulator to orchestrate the stemness of pancreatic CSCs via cooperating with the TGFβ/Activin-SMAD2/3 signalling pathway. Inhibition and genetic ablation of BDR9 block the self-renewal, cell cycle entry into G0 phase and invasiveness of CSCs, and improve the sensitivity of CSCs to gemcitabine treatment. In addition, pharmacological inhibition of BRD9 significantly reduced the tumorigenesis in patient-derived xenografts mouse models and eliminated CSCs in tumours from pancreatic cancer patients. Mechanistically, inhibition of BRD9 disrupts enhancer-promoter looping and transcription of stemness genes in CSCs. Collectively, the data suggest BRD9 as a novel therapeutic target for PDAC treatment via modulation of CSC stemness.

PMID:36909530 | PMC:PMC10002796 | DOI:10.1101/2023.03.02.530770

Transcriptome analysis in acute gastrointestinal graft-versus host disease reveals a unique signature in children and shared biology with pediatric inflammatory bowel disease

My Recent Publications - Thu, 2023-02-02 06:00

Haematologica. 2023 Feb 2. doi: 10.3324/haematol.2022.282035. Online ahead of print.

ABSTRACT

We performed transcriptomic analyses on freshly frozen (n=21) and paraffin embedded (n=35) gastrointestinal (GI)biopsies from children with and without acute GI graft versus host disease (GVHD) to study differential gene expressions. We identified 164 significant genes, 141 upregulated and 23 downregulated, in acute GVHD from freshy frozen biopsies. CHI3L1 was the top differentially expressed gene in acute GVHD, involved in macrophage recruitment and bacterial adhesion. Mitochondrial genes were among the top downregulated genes. Immune deconvolution identified a macrophage cellular signature. Weighted gene co-expression network analysis showed enrichment of genes in the ERK1/2 cascade. Transcriptome data from 206 ulcerative colitis (UC) patients were included to uncover genes and pathways shared between GVHD and UC. Comparison with the UC transcriptome showed both shared and distinct pathways. Both UC and GVHD transcriptomes shared an innate antimicrobial signature and FCγ1RA/CD64 was upregulated in both acute GVHD (log fold increase 1.7, p=0.001) and UC. Upregulation of the ERK1/2 cascade pathway was specific to GVHD. We performed additional experiments to confirm transcriptomics. Firstly, we examined phosphorylation of ERK (pERK) by immunohistochemistry on GI biopsies (acute GVHD n=10, no GVHD n=10). pERK staining was increased in acute GVHD biopsies compared to biopsies without acute GVHD (p= 0.001). Secondly, plasma CD64, measured by ELISA (n=85) was elevated in acute GI GVHD (p.

PMID:36727399 | DOI:10.3324/haematol.2022.282035

Combination of esomeprazole and pirfenidone enhances antifibrotic efficacy in vitro and in a mouse model of TGFβ-induced lung fibrosis

My Recent Publications - Wed, 2022-11-30 06:00

Sci Rep. 2022 Nov 30;12(1):20668. doi: 10.1038/s41598-022-24985-x.

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease of unknown etiology. Currently, pirfenidone and nintedanib are the only FDA-approved drugs for the treatment of IPF and are now the standard of care. This is a significant step in slowing down the progression of the disease. However, the drugs are unable to stop or reverse established fibrosis. Several retrospective clinical studies indicate that proton pump inhibitors (PPIs; FDA-approved to treat gastroesophageal reflux) are associated with favorable outcomes in patients with IPF, and emerging preclinical studies report that PPIs possess antifibrotic activity. In this study, we evaluated the antifibrotic efficacy of the PPI esomeprazole when combined with pirfenidone in vitro and in vivo. In cell culture studies of IPF lung fibroblasts, we assessed the effect of the combination on several fibrosis-related biological processes including TGFβ-induced cell proliferation, cell migration, cell contraction, and collagen production. In an in vivo study, we used mouse model of TGFβ-induced lung fibrosis to evaluate the antifibrotic efficacy of esomeprazole/pirfenidone combination. We also performed computational studies to understand the molecular mechanisms by which esomeprazole and/or pirfenidone regulate lung fibrosis. We found that esomeprazole significantly enhanced the anti-proliferative effect of pirfenidone and favorably modulated TGFβ-induced cell migration and contraction of collagen gels. We also found that the combination significantly suppressed collagen production in response to TGFβ in comparison to pirfenidone monotherapy. In addition, our animal study demonstrated that the combination therapy effectively inhibited the differentiation of lung fibroblasts into alpha smooth muscle actin (αSMA)-expressing myofibroblasts to attenuate the progression of lung fibrosis. Finally, our bioinformatics study of cells treated with esomeprazole or pirfenidone revealed that the drugs target several extracellular matrix (ECM) related pathways with esomeprazole preferentially targeting collagen family members while pirfenidone targets the keratins. In conclusion, our cell biological, computational, and in vivo studies show that the PPI esomeprazole enhances the antifibrotic efficacy of pirfenidone through complementary molecular mechanisms. This data supports the initiation of prospective clinical studies aimed at repurposing PPIs for the treatment of IPF and other fibrotic lung diseases where pirfenidone is prescribed.

PMID:36450789 | DOI:10.1038/s41598-022-24985-x

Targeting of Cdc42 GTPase in regulatory T cells unleashes antitumor T-cell immunity

My Recent Publications - Fri, 2022-11-25 06:00

J Immunother Cancer. 2022 Nov;10(11):e004806. doi: 10.1136/jitc-2022-004806.

ABSTRACT

BACKGROUND: Cancer immunotherapy has taken center stage in cancer treatment. However, the current immunotherapies only benefit a small proportion of patients with cancer, necessitating better understanding of the mechanisms of tumor immune evasion and improved cancer immunotherapy strategies. Regulatory T (Treg) cells play an important role in maintaining immune tolerance through inhibiting effector T-cell function. In the tumor microenvironment, Treg cells are used by tumor cells to counteract effector T cell-mediated tumor suppression. Targeting Treg cells may thus unleash the antitumor activity of effector T cells. While systemic depletion of Treg cells can cause excessive effector T-cell responses and subsequent autoimmune diseases, controlled targeting of Treg cells may benefit patients with cancer.

METHODS: Treg cells from Treg cell-specific heterozygous Cdc42 knockout mice, C57BL/6 mice treated with a Cdc42 inhibitor CASIN, and control mice were examined for their homeostasis and stability by flow cytometry. The autoimmune responses in Treg cell-specific heterozygous Cdc42 knockout mice, CASIN-treated C57BL/6 mice, and control mice were assessed by H&E staining and ELISA. Antitumor T-cell immunity in Treg cell-specific heterozygous Cdc42 knockout mice, CASIN-treated C57BL/6 mice, humanized NSGS mice, and control mice was assessed by challenging the mice with MC38 mouse colon cancer cells, KPC mouse pancreatic cancer cells, or HCT116 human colon cancer cells.

RESULTS: Treg cell-specific heterozygous deletion or pharmacological targeting of Cdc42 with CASIN does not affect Treg cell numbers but induces Treg cell instability, leading to antitumor T-cell immunity without detectable autoimmune reactions. Cdc42 targeting causes an additive effect on immune checkpoint inhibitor anti-programmed cell death protein-1 antibody-induced T-cell response against mouse and human tumors. Mechanistically, Cdc42 targeting induces Treg cell instability and unleashes antitumor T-cell immunity through carbonic anhydrase I-mediated pH changes.

CONCLUSIONS: Rational targeting of Cdc42 in Treg cells holds therapeutic promises in cancer immunotherapy.

PMID:36427906 | DOI:10.1136/jitc-2022-004806

Pages

Subscribe to Anil Jegga aggregator - My Recent Publications