Deep learning

Association of a synonymous SCN1B variant affecting splicing efficiency with Benign Familial Infantile Epilepsy (BFIE).

Fri, 2017-06-02 08:22

Association of a synonymous SCN1B variant affecting splicing efficiency with Benign Familial Infantile Epilepsy (BFIE).

Eur J Paediatr Neurol. 2017 May 13;:

Authors: Usluer S, Kayserili MA, Eken AG, Yiş U, Leu C, Altmüller J, Thiele H, Nürnberg P, Sander T, Çağlayan SH

Abstract
Benign Familial Infantile Epilepsy (BFIE) is clinically characterized by clusters of brief partial seizures progressing to secondarily generalized seizures with onset at the age of 3-7 months and with favorable outcome. PRRT2 mutations are the most common cause of BFIE, and found in about 80% of BFIE families. In this study, we analyzed a large multiplex BFIE family by linkage and whole exome sequencing (WES) analyses. Genome-wide linkage analysis revealed significant evidence for linkage in the chromosomal region 19p12-q13 (LOD score 3.48). Mutation screening of positional candidate genes identified a synonymous SCN1B variant (c.492T>C, p.Tyr164Tyr) affecting splicing by the removal of a splicing silencer sequence, shown by in silico analysis, as the most likely causative mutation. In addition, the PRRT2 frameshift mutation (c.649dupC/p.Arg217Profs*8) was observed, showing incomplete, but high segregation with the phenotype. In vitro splicing assay of SCN1B expression confirmed the in silico findings showing a splicing imbalance between wild type and mutant exons. Herein, the involvement of the SCN1B gene in the etiology of BFIE, contributing to the disease phenotype as a modifier or part of an oligogenic predisposition, is shown for the first time.

PMID: 28566192 [PubMed - as supplied by publisher]

Categories: Literature Watch

Homozygous ARHGEF2 mutation causes intellectual disability and midbrain-hindbrain malformation.

Fri, 2017-06-02 08:22
Related Articles

Homozygous ARHGEF2 mutation causes intellectual disability and midbrain-hindbrain malformation.

PLoS Genet. 2017 Apr;13(4):e1006746

Authors: Ravindran E, Hu H, Yuzwa SA, Hernandez-Miranda LR, Kraemer N, Ninnemann O, Musante L, Boltshauser E, Schindler D, Hübner A, Reinecker HC, Ropers HH, Birchmeier C, Miller FD, Wienker TF, Hübner C, Kaindl AM

Abstract
Mid-hindbrain malformations can occur during embryogenesis through a disturbance of transient and localized gene expression patterns within these distinct brain structures. Rho guanine nucleotide exchange factor (ARHGEF) family members are key for controlling the spatiotemporal activation of Rho GTPase, to modulate cytoskeleton dynamics, cell division, and cell migration. We identified, by means of whole exome sequencing, a homozygous frameshift mutation in the ARHGEF2 as a cause of intellectual disability, a midbrain-hindbrain malformation, and mild microcephaly in a consanguineous pedigree of Kurdish-Turkish descent. We show that loss of ARHGEF2 perturbs progenitor cell differentiation and that this is associated with a shift of mitotic spindle plane orientation, putatively favoring more symmetric divisions. The ARHGEF2 mutation leads to reduction in the activation of the RhoA/ROCK/MLC pathway crucial for cell migration. We demonstrate that the human brain malformation is recapitulated in Arhgef2 mutant mice and identify an aberrant migration of distinct components of the precerebellar system as a pathomechanism underlying the midbrain-hindbrain phenotype. Our results highlight the crucial function of ARHGEF2 in human brain development and identify a mutation in ARHGEF2 as novel cause of a neurodevelopmental disorder.

PMID: 28453519 [PubMed - indexed for MEDLINE]

Categories: Literature Watch

Definition of mutations in polyautoimmunity.

Fri, 2017-06-02 08:22
Related Articles

Definition of mutations in polyautoimmunity.

J Autoimmun. 2016 Aug;72:65-72

Authors: Johar A, Sarmiento-Monroy JC, Rojas-Villarraga A, Silva-Lara MF, Patel HR, Mantilla RD, Velez JI, Schulte KM, Mastronardi C, Arcos-Burgos M, Anaya JM

Abstract
OBJECTIVES: Familial autoimmunity and polyautoimmunity represent extreme phenotypes ideal for identifying major genomic variants contributing to autoimmunity. Whole exome sequencing (WES) and linkage analysis are well suited for this purpose due to its strong resolution upon familial segregation patterns of functional protein coding and splice variants. The primary objective of this study was to identify potentially autoimmune causative variants using WES data from extreme pedigrees segregating polyautoimmunity phenotypes.
METHODS: DNA of 47 individuals across 10 extreme pedigrees, ascertained from probands affected with polyautoimmunity and familial autoimmunity, were selected for WES. Variant calls were obtained through Genome Analysis Toolkit. Filtration and prioritization framework to identify mutation(s) were applied, and later implemented for genetic linkage analysis. Sanger sequencing corroborated variants with significant linkage.
RESULTS: Novel and mostly rare variants harbored in SRA1, MLL4, ABCB8, DHX34 and PLAUR showed significant linkage (LOD scores are >3.0). The strongest signal was in SRA1, with a LOD score of 5.48. Network analyses indicated that SRA1, PLAUR and ABCB8 contribute to regulation of apoptotic processes.
CONCLUSIONS: Novel and rare variants in genetic linkage with polyautoimmunity were identified throughout WES. Genes harboring these variants might be major players of autoimmunity.

PMID: 27209085 [PubMed - indexed for MEDLINE]

Categories: Literature Watch

Single nucleotide variant in Nucleoporin 107 may be predictive of sensitivity to chemotherapy in patients with ovarian cancer.

Thu, 2017-06-01 07:59

Single nucleotide variant in Nucleoporin 107 may be predictive of sensitivity to chemotherapy in patients with ovarian cancer.

Pharmacogenet Genomics. 2017 May 30;:

Authors: Alanee S, Delfino K, Wilber A, Robinson K, Brard L, Semaan A

Abstract
BACKGROUND: Alterations in nuclear pore complex (NPC) genes have been previously associated with response to chemotherapy. Using agnostic exome sequencing, we envisioned that new alleles in NPC genes, predictive of sensitivity to platinum treatment, could be discovered.
METHODS: Twenty-two platinum-sensitive and six platinum-resistant ovarian cancer patients were tested. Platinum sensitivity was defined as disease-free survival greater than 6 months. Next-generation sequencing of exomes was used to compare platinum-sensitive and platinum-resistant patients. Single nucleotide variants (SNVs) associated with platinum sensitivity in NPC genes (n=30 genes) were identified.
RESULTS: SNVs in three NPC genes were associated with response to platinum on univariate analysis. SNV rs79419059 (10T>C) in Nucleoporin 107 (Nup107) was associated with platinum resistance (P=0.0061), whereas rs2302811 (3662-4A>G) in Nucleoporin 188 (Nup188) and rs77246077 (3420-67T>A) in Nucleoporin 214 (Nup214) were associated with platinum sensitivity (P=0.0483 and 0.0091, respectively). Controlling for other confounders, multivariate age-adjusted Cox proportional hazard analysis showed rs79419059 to be significantly associated with platinum resistance (odds ratio: 4.519, 95% confidence interval: 1.317-15.501, P=0.0457).
CONCLUSION: We identified a variant in the 3'-UTR region Nup107 unique to sensitivity to platinum in ovarian cancer. With validation of this variant, it is possible that a new marker predictive of patient response may be identified.

PMID: 28562428 [PubMed - as supplied by publisher]

Categories: Literature Watch

Clinically Focused Molecular Investigation of 1000 Consecutive Families with Inherited Retinal Disease.

Thu, 2017-06-01 07:59
Related Articles

Clinically Focused Molecular Investigation of 1000 Consecutive Families with Inherited Retinal Disease.

Ophthalmology. 2017 May 27;:

Authors: Stone EM, Andorf JL, Whitmore SS, DeLuca AP, Giacalone JC, Streb LM, Braun TA, Mullins RF, Scheetz TE, Sheffield VC, Tucker BA

Abstract
PURPOSE: To devise a comprehensive multiplatform genetic testing strategy for inherited retinal disease and to describe its performance in 1000 consecutive families seen by a single clinician.
DESIGN: Retrospective series.
PARTICIPANTS: One thousand consecutive families seen by a single clinician.
METHODS: The clinical records of all patients seen by a single retina specialist between January 2010 and June 2016 were reviewed, and all patients who met the clinical criteria for a diagnosis of inherited retinal disease were included in the study. Each patient was assigned to 1 of 62 diagnostic categories, and this clinical diagnosis was used to define the scope and order of the molecular investigations that were performed. The number of nucleotides evaluated in a given subject ranged from 2 to nearly 900 000.
MAIN OUTCOME MEASURES: Sensitivity and false genotype rate.
RESULTS: Disease-causing genotypes were identified in 760 families (76%). These genotypes were distributed across 104 different genes. More than 75% of these 104 genes have coding sequences small enough to be packaged efficiently into an adeno-associated virus. Mutations in ABCA4 were the most common cause of disease in this cohort (173 families), whereas mutations in 80 genes caused disease in 5 or fewer families (i.e., 0.5% or less). Disease-causing genotypes were identified in 576 of the families without next-generation sequencing (NGS). This included 23 families with mutations in the repetitive region of RPGR exon 15 that would have been missed by NGS. Whole-exome sequencing of the remaining 424 families revealed mutations in an additional 182 families, and whole-genome sequencing of 4 of the remaining 242 families revealed 2 additional genotypes that were invisible by the other methods. Performing the testing in a clinically focused tiered fashion would be 6.1% more sensitive and 17.7% less expensive and would have a significantly lower average false genotype rate than using whole-exome sequencing to assess more than 300 genes in all patients (7.1% vs. 128%; P < 0.001).
CONCLUSIONS: Genetic testing for inherited retinal disease is now more than 75% sensitive. A clinically directed tiered testing strategy can increase sensitivity and improve statistical significance without increasing cost.

PMID: 28559085 [PubMed - as supplied by publisher]

Categories: Literature Watch

Sphingomyelin Phosphodiesterase 3 Enhances Cytodifferentiation of Periodontal Ligament Cells.

Thu, 2017-06-01 07:59
Related Articles

Sphingomyelin Phosphodiesterase 3 Enhances Cytodifferentiation of Periodontal Ligament Cells.

J Dent Res. 2017 Mar;96(3):339-346

Authors: Miyauchi S, Kitagaki J, Masumoto R, Imai A, Kobayashi K, Nakaya A, Kawai S, Fujihara C, Asano Y, Yamashita M, Yanagita M, Yamada S, Kitamura M, Murakami S

Abstract
Sphingomyelin phosphodiesterase 3 ( Smpd3), which encodes neutral sphingomyelinase 2 (nSMase2), is a key molecule for skeletal development as well as for the cytodifferentiation of odontoblasts and alveolar bone. However, the effects of nSMase2 on the cytodifferentiation of periodontal ligament (PDL) cells are still unclear. In this study, the authors analyzed the effects of Smpd3 on the cytodifferentiation of human PDL (HPDL) cells. The authors found that Smpd3 increases the mRNA expression of calcification-related genes, such as alkaline phosphatase (ALPase), type I collagen, osteopontin, Osterix (Osx), and runt-related transcription factor (Runx)-2 in HPDL cells. In contrast, GW4869, an inhibitor of nSMase2, clearly decreased the mRNA expression of ALPase, type I collagen, and osteocalcin in HPDL cells, suggesting that Smpd3 enhances HPDL cytodifferentiation. Next, the authors used exome sequencing to evaluate the genetic variants of Smpd3 in a Japanese population with aggressive periodontitis (AgP). Among 44 unrelated subjects, the authors identified a single nucleotide polymorphism (SNP), rs145616324, in Smpd3 as a putative genetic variant for AgP among Japanese people. Moreover, Smpd3 harboring this SNP did not increase the sphingomyelinase activity or mRNA expression of ALPase, type I collagen, osteopontin, Osx, or Runx2, suggesting that this SNP inhibits Smpd3 such that it has no effect on the cytodifferentiation of HPDL cells. These data suggest that Smpd3 plays a crucial role in maintaining the homeostasis of PDL tissue.

PMID: 28221099 [PubMed - indexed for MEDLINE]

Categories: Literature Watch

SOS2 and ACP1 Loci Identified through Large-Scale Exome Chip Analysis Regulate Kidney Development and Function.

Thu, 2017-06-01 07:59
Related Articles

SOS2 and ACP1 Loci Identified through Large-Scale Exome Chip Analysis Regulate Kidney Development and Function.

J Am Soc Nephrol. 2017 Mar;28(3):981-994

Authors: Li M, Li Y, Weeks O, Mijatovic V, Teumer A, Huffman JE, Tromp G, Fuchsberger C, Gorski M, Lyytikäinen LP, Nutile T, Sedaghat S, Sorice R, Tin A, Yang Q, Ahluwalia TS, Arking DE, Bihlmeyer NA, Böger CA, Carroll RJ, Chasman DI, Cornelis MC, Dehghan A, Faul JD, Feitosa MF, Gambaro G, Gasparini P, Giulianini F, Heid I, Huang J, Imboden M, Jackson AU, Jeff J, Jhun MA, Katz R, Kifley A, Kilpeläinen TO, Kumar A, Laakso M, Li-Gao R, Lohman K, Lu Y, Mägi R, Malerba G, Mihailov E, Mohlke KL, Mook-Kanamori DO, Robino A, Ruderfer D, Salvi E, Schick UM, Schulz CA, Smith AV, Smith JA, Traglia M, Yerges-Armstrong LM, Zhao W, Goodarzi MO, Kraja AT, Liu C, Wessel J, CHARGE Glycemic-T2D Working Group,, CHARGE Blood Pressure Working Group,, Boerwinkle E, Borecki IB, Bork-Jensen J, Bottinger EP, Braga D, Brandslund I, Brody JA, Campbell A, Carey DJ, Christensen C, Coresh J, Crook E, Curhan GC, Cusi D, de Boer IH, de Vries AP, Denny JC, Devuyst O, Dreisbach AW, Endlich K, Esko T, Franco OH, Fulop T, Gerhard GS, Glümer C, Gottesman O, Grarup N, Gudnason V, Hansen T, Harris TB, Hayward C, Hocking L, Hofman A, Hu FB, Husemoen LL, Jackson RD, Jørgensen T, Jørgensen ME, Kähönen M, Kardia SL, König W, Kooperberg C, Kriebel J, Launer LJ, Lauritzen T, Lehtimäki T, Levy D, Linksted P, Linneberg A, Liu Y, Loos RJ, Lupo A, Meisinger C, Melander O, Metspalu A, Mitchell P, Nauck M, Nürnberg P, Orho-Melander M, Parsa A, Pedersen O, Peters A, Peters U, Polasek O, Porteous D, Probst-Hensch NM, Psaty BM, Qi L, Raitakari OT, Reiner AP, Rettig R, Ridker PM, Rivadeneira F, Rossouw JE, Schmidt F, Siscovick D, Soranzo N, Strauch K, Toniolo D, Turner ST, Uitterlinden AG, Ulivi S, Velayutham D, Völker U, Völzke H, Waldenberger M, Wang JJ, Weir DR, Witte D, Kuivaniemi H, Fox CS, Franceschini N, Goessling W, Köttgen A, Chu AY

Abstract
Genome-wide association studies have identified >50 common variants associated with kidney function, but these variants do not fully explain the variation in eGFR. We performed a two-stage meta-analysis of associations between genotypes from the Illumina exome array and eGFR on the basis of serum creatinine (eGFRcrea) among participants of European ancestry from the CKDGen Consortium (nStage1: 111,666; nStage2: 48,343). In single-variant analyses, we identified single nucleotide polymorphisms at seven new loci associated with eGFRcrea (PPM1J, EDEM3, ACP1, SPEG, EYA4, CYP1A1, and ATXN2L; PStage1<3.7×10(-7)), of which most were common and annotated as nonsynonymous variants. Gene-based analysis identified associations of functional rare variants in three genes with eGFRcrea, including a novel association with the SOS Ras/Rho guanine nucleotide exchange factor 2 gene, SOS2 (P=5.4×10(-8) by sequence kernel association test). Experimental follow-up in zebrafish embryos revealed changes in glomerular gene expression and renal tubule morphology in the embryonic kidney of acp1- and sos2-knockdowns. These developmental abnormalities associated with altered blood clearance rate and heightened prevalence of edema. This study expands the number of loci associated with kidney function and identifies novel genes with potential roles in kidney formation.

PMID: 27920155 [PubMed - indexed for MEDLINE]

Categories: Literature Watch

Molecular complexity of the megakaryocyte-platelet system in health and disease.

Thu, 2017-06-01 07:59
Related Articles

Molecular complexity of the megakaryocyte-platelet system in health and disease.

Hamostaseologie. 2016 Aug 03;36(3):159-60

Authors: Scharf RE

PMID: 27485023 [PubMed - indexed for MEDLINE]

Categories: Literature Watch

A whole genome approach to platelet and bleeding disorders.

Thu, 2017-06-01 07:59
Related Articles

A whole genome approach to platelet and bleeding disorders.

Hamostaseologie. 2016 Aug 03;36(3):161-6

Authors: Laffan M, BRIDGE Bleeding and Platelet Disorders Consortium

Abstract
The sequencing of hundreds of thousands of human exomes and hundreds of thousands of whole genomes is providing a progressively accurate and complete catalogue of human genetic variation. The initial studies to use genome wide data to help understand platelet disorders performed genome wide association studies to identify loci linked to variations in blood cell parameters. These studies used normal variation to find corresponding genetic variation. We next wished to investigate the genetic basis of bleeding disorders which may also provide a key to novel genes regulating platelet and haemostatic functions. The BRIDGE consortium (www.bridgestudy.org) is funded by the NIHR and brings together 13 rare disease gene discovery projects. The aim of these projects is to investigate as yet undiagnosed rare inherited diseases and identify the underlying mutational basis. We have used a cluster analysis based on the Human Phenotype Ontology in combination with next generation sequencing techniques to help identify patients with similar phenotypes which we hypothesise will arise from defects in the same gene. Preliminary results validate the clustering approach and have also resulted in a number of novel genes important for normal and pathogenic platelet physiology.

PMID: 26781766 [PubMed - indexed for MEDLINE]

Categories: Literature Watch

Analysis of Whole Exome Sequencing with Cardiometabolic Traits Using Family-Based Linkage and Association in the IRAS Family Study.

Wed, 2017-05-31 07:22
Related Articles

Analysis of Whole Exome Sequencing with Cardiometabolic Traits Using Family-Based Linkage and Association in the IRAS Family Study.

Ann Hum Genet. 2017 Mar;81(2):49-58

Authors: Tabb KL, Hellwege JN, Palmer ND, Dimitrov L, Sajuthi S, Taylor KD, Ng MC, Hawkins GA, Chen YI, Brown WM, McWilliams D, Williams A, Lorenzo C, Norris JM, Long J, Rotter JI, Curran JE, Blangero J, Wagenknecht LE, Langefeld CD, Bowden DW

Abstract
Family-based methods are a potentially powerful tool to identify trait-defining genetic variants in extended families, particularly when used to complement conventional association analysis. We utilized two-point linkage analysis and single variant association analysis to evaluate whole exome sequencing (WES) data from 1205 Hispanic Americans (78 families) from the Insulin Resistance Atherosclerosis Family Study. WES identified 211,612 variants above the minor allele frequency threshold of ≥0.005. These variants were tested for linkage and/or association with 50 cardiometabolic traits after quality control checks. Two-point linkage analysis yielded 10,580,600 logarithm of the odds (LOD) scores with 1148 LOD scores ≥3, 183 LOD scores ≥4, and 29 LOD scores ≥5. The maximal novel LOD score was 5.50 for rs2289043:T>C, in UNC5C with subcutaneous adipose tissue volume. Association analysis identified 13 variants attaining genome-wide significance (P < 5 × 10(-08) ), with the strongest association between rs651821:C>T in APOA5 and triglyceride levels (P  =  3.67 × 10(-10) ). Overall, there was a 5.2-fold increase in the number of informative variants detected by WES compared to exome chip analysis in this population, nearly 30% of which were novel variants relative to the Database of Single Nucleotide Polymorphisms (dbSNP) build 138. Thus, integration of results from two-point linkage and single-variant association analysis from WES data enabled identification of novel signals potentially contributing to cardiometabolic traits.

PMID: 28067407 [PubMed - indexed for MEDLINE]

Categories: Literature Watch

Slowly progressive d-bifunctional protein deficiency with survival to adulthood diagnosed by whole-exome sequencing.

Wed, 2017-05-31 07:22
Related Articles

Slowly progressive d-bifunctional protein deficiency with survival to adulthood diagnosed by whole-exome sequencing.

J Neurol Sci. 2017 Jan 15;372:6-10

Authors: Matsukawa T, Koshi KM, Mitsui J, Bannai T, Kawabe M, Ishiura H, Terao Y, Shimizu J, Murayama K, Yoshimura J, Doi K, Morishita S, Tsuji S, Goto J

Abstract
d-Bifunctional protein (DBP) deficiency is an autosomal recessive disorder of peroxisomal fatty acid oxidation caused by mutations in HSD17B4. It is typically fatal by the age of two years with symptom onset during the neonatal period, and survival until late childhood is rare. We herein report the case of a patient with DBP deficiency surviving until adulthood, who showed severe sensorineural deafness, disturbances in language acquisition, slowly progressive cerebellar ataxia, and peripheral neuropathy. This patient, in whom findings of prior investigations were nondiagnostic, had been followed up as having an early-onset spinocerebellar degeneration of unknown etiology. Whole-exome sequencing analysis at the age of 36 showed two heterozygous variants in the gene HSD17B4, which encodes DBP in this patient. A panel of peroxisomal investigations showed normal levels of very long chain fatty acids (VLCFAs) in plasma and elevated serum phytanic acid levels. Recently, an increasing number of patients with DBP deficiency surviving until adolescence/adulthood have been reported, in whom abnormalities in the levels of VLCFAs and other peroxisomal metabolites are marginal or nonexistent. Genetic analysis of HSD17B4 should be considered in adult patients with cerebellar ataxia, peripheral neuropathy, and pyramidal signs in addition to sensorineural auditory disturbance since childhood.

PMID: 28017249 [PubMed - indexed for MEDLINE]

Categories: Literature Watch

Polymerase ε (POLE) ultra-mutation in uterine tumors correlates with T lymphocyte infiltration and increased resistance to platinum-based chemotherapy in vitro.

Wed, 2017-05-31 07:22
Related Articles

Polymerase ε (POLE) ultra-mutation in uterine tumors correlates with T lymphocyte infiltration and increased resistance to platinum-based chemotherapy in vitro.

Gynecol Oncol. 2017 Jan;144(1):146-152

Authors: Bellone S, Bignotti E, Lonardi S, Ferrari F, Centritto F, Masserdotti A, Pettinella F, Black J, Menderes G, Altwerger G, Hui P, Lopez S, de Haydu C, Bonazzoli E, Predolini F, Zammataro L, Cocco E, Ferrari F, Ravaggi A, Romani C, Facchetti F, Sartori E, Odicino FE, Silasi DA, Litkouhi B, Ratner E, Azodi M, Schwartz PE, Santin AD

Abstract
OBJECTIVE: Up to 12% of all endometrial-carcinomas (EC) harbor DNA-polymerase-ε-(POLE) mutations. It is currently unknown whether the favorable prognosis of POLE-mutated EC is derived from their low metastatic capability, extraordinary number of somatic mutations thus imparting immunogenicity, or a high sensitivity to chemotherapy.
METHODS: Polymerase-chain-reaction-amplification and Sanger-sequencing were used to test for POLE exonuclease-domain-mutations (exons 9-14) 131 EC. Infiltration of CD4+ and CD8+ T-lymphocytes (TIL) and PD-1-expression in POLE-mutated vs POLE wild-type EC was studied by immunohistochemistry (IHC) and the correlations between survival and molecular features were investigated. Finally, primary POLE-mutated and POLE-wild-type EC cell lines were established and compared in-vitro for their sensitivity to chemotherapy.
RESULTS: Eleven POLE-mutated EC (8.5%) were identified. POLE-mutated tumors were associated with improved progression-free-survival (P<0.05) and displayed increased numbers of CD4+ (44.5 vs 21.8; P=0.001) and CD8+ (32.8 vs 13.5; P<0.001) TILs when compared to wild-type POLE EC. PD-1 receptor was overexpressed in TILs from POLE-mutated vs wild-type-tumors (81% vs 28%; P<0.001). Primary POLE tumor cell lines were significantly more resistant to platinum-chemotherapy in-vitro when compared to POLE-wild-type tumors (P<0.004).
CONCLUSIONS: POLE ultra-mutated EC are heavily infiltrated with CD4+/CD8+ TIL, overexpress PD-1 immune-check-point (i.e., features consistent with chronic antigen-exposure), and have a better prognosis when compared to other molecular subtypes of EC patients. POLE-mutated tumor-cell lines are resistant to platinum-chemotherapy in-vitro suggesting that the better prognosis of POLE-patients is not secondary to a higher sensitivity to chemotherapy but likely linked to enhanced immunogenicity.

PMID: 27894751 [PubMed - indexed for MEDLINE]

Categories: Literature Watch

Ultra-rare genetic variation in common epilepsies: a case-control sequencing study.

Tue, 2017-05-30 09:57
Related Articles

Ultra-rare genetic variation in common epilepsies: a case-control sequencing study.

Lancet Neurol. 2017 Feb;16(2):135-143

Authors: Epi4K consortium, Epilepsy Phenome/Genome Project

Abstract
BACKGROUND: Despite progress in understanding the genetics of rare epilepsies, the more common epilepsies have proven less amenable to traditional gene-discovery analyses. We aimed to assess the contribution of ultra-rare genetic variation to common epilepsies.
METHODS: We did a case-control sequencing study with exome sequence data from unrelated individuals clinically evaluated for one of the two most common epilepsy syndromes: familial genetic generalised epilepsy, or familial or sporadic non-acquired focal epilepsy. Individuals of any age were recruited between Nov 26, 2007, and Aug 2, 2013, through the multicentre Epilepsy Phenome/Genome Project and Epi4K collaborations, and samples were sequenced at the Institute for Genomic Medicine (New York, USA) between Feb 6, 2013, and Aug 18, 2015. To identify epilepsy risk signals, we tested all protein-coding genes for an excess of ultra-rare genetic variation among the cases, compared with control samples with no known epilepsy or epilepsy comorbidity sequenced through unrelated studies.
FINDINGS: We separately compared the sequence data from 640 individuals with familial genetic generalised epilepsy and 525 individuals with familial non-acquired focal epilepsy to the same group of 3877 controls, and found significantly higher rates of ultra-rare deleterious variation in genes established as causative for dominant epilepsy disorders (familial genetic generalised epilepsy: odd ratio [OR] 2·3, 95% CI 1·7-3·2, p=9·1 × 10(-8); familial non-acquired focal epilepsy 3·6, 2·7-4·9, p=1·1 × 10(-17)). Comparison of an additional cohort of 662 individuals with sporadic non-acquired focal epilepsy to controls did not identify study-wide significant signals. For the individuals with familial non-acquired focal epilepsy, we found that five known epilepsy genes ranked as the top five genes enriched for ultra-rare deleterious variation. After accounting for the control carrier rate, we estimate that these five genes contribute to the risk of epilepsy in approximately 8% of individuals with familial non-acquired focal epilepsy. Our analyses showed that no individual gene was significantly associated with familial genetic generalised epilepsy; however, known epilepsy genes had lower p values relative to the rest of the protein-coding genes (p=5·8 × 10(-8)) that were lower than expected from a random sampling of genes.
INTERPRETATION: We identified excess ultra-rare variation in known epilepsy genes, which establishes a clear connection between the genetics of common and rare, severe epilepsies, and shows that the variants responsible for epilepsy risk are exceptionally rare in the general population. Our results suggest that the emerging paradigm of targeting of treatments to the genetic cause in rare devastating epilepsies might also extend to a proportion of common epilepsies. These findings might allow clinicians to broadly explain the cause of these syndromes to patients, and lay the foundation for possible precision treatments in the future.
FUNDING: National Institute of Neurological Disorders and Stroke (NINDS), and Epilepsy Research UK.

PMID: 28102150 [PubMed - indexed for MEDLINE]

Categories: Literature Watch

Ending a Diagnostic Odyssey: Family Education, Counseling, and Response to Eventual Diagnosis.

Tue, 2017-05-30 09:57
Related Articles

Ending a Diagnostic Odyssey: Family Education, Counseling, and Response to Eventual Diagnosis.

Pediatr Clin North Am. 2017 Feb;64(1):265-272

Authors: Basel D, McCarrier J

Abstract
Genomic sequencing is the diagnostic test of choice for families with undiagnosed or rare diseases seeking an explanation for their child's complex medical concerns. The desire to find answers can easily bias interpretation of sequencing results, and thus the counseling process is designed to facilitate informed decision making and set realistic expectations for possible outcomes. The patient case examples serve to highlight the various challenges and complexities encountered with the clinical application of genomic sequencing and to reflect some of the data that has been accrued during the past 5 years of clinical experience.

PMID: 27894449 [PubMed - indexed for MEDLINE]

Categories: Literature Watch

C14orf93 (RTFC) is identified as a novel susceptibility gene for familial nonmedullary thyroid cancer.

Tue, 2017-05-30 09:57
Related Articles

C14orf93 (RTFC) is identified as a novel susceptibility gene for familial nonmedullary thyroid cancer.

Biochem Biophys Res Commun. 2017 Jan 22;482(4):590-596

Authors: Liu C, Yu Y, Yin G, Zhang J, Wen W, Ruan X, Li D, Zhang S, Cai W, Gao M, Chen L

Abstract
The genetic causes for familial nonmedullary thyroid cancer (FNMTC) remain largely unknown. Through genetic linkage analysis and exome sequencing, C14orf93 (RTFC), PYGL, and BMP4 were identified as susceptibility gene candidates in a FNMTC family. By examining the expression and the oncogenic functions of these candidate genes, PYGL and BMP4 were excluded. We further characterized the functions of the uncharacterized gene RTFC in thyroid cancer. RTFC promotes thyroid cancer cell survival under starving conditions, and thyroid cancer cell migration. The R115Q, V205M and G209D RTFC mutants enhance the colony forming capacity of thyroid cancer cells, and are able to transform normal thyroid cells. In summary, our data suggest the roles of RTFC in thyroid carcinogenesis.

PMID: 27864143 [PubMed - indexed for MEDLINE]

Categories: Literature Watch

Analysis of Mutations in AARS2 in a Series of CSF1R-Negative Patients With Adult-Onset Leukoencephalopathy With Axonal Spheroids and Pigmented Glia.

Tue, 2017-05-30 09:57
Related Articles

Analysis of Mutations in AARS2 in a Series of CSF1R-Negative Patients With Adult-Onset Leukoencephalopathy With Axonal Spheroids and Pigmented Glia.

JAMA Neurol. 2016 Dec 01;73(12):1433-1439

Authors: Lynch DS, Zhang WJ, Lakshmanan R, Kinsella JA, Uzun GA, Karbay M, Tüfekçioglu Z, Hanagasi H, Burke G, Foulds N, Hammans SR, Bhattacharjee A, Wilson H, Adams M, Walker M, Nicoll JA, Chataway J, Fox N, Davagnanam I, Phadke R, Houlden H

Abstract
Importance: Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a frequent cause of adult-onset leukodystrophy known to be caused by autosomal dominant mutations in the CSF1R (colony-stimulating factor 1) gene. The discovery that CSF1R mutations cause ALSP led to more accurate prognosis and genetic counseling for these patients in addition to increased interest in microglia as a target in neurodegeneration. However, it has been known since the discovery of the CSF1R gene that there are patients with typical clinical and radiologic evidence of ALSP who do not carry pathogenic CSF1R mutations. These patients include those in whom the pathognomonic features of axonal spheroids and pigmented microglia have been found. Achieving a genetic diagnosis in these patients is important to our understanding of this disorder.
Objective: To genetically characterize a group of patients with typical features of ALSP who do not carry CSF1R mutations.
Design, Settings, and Participants: In this case series study, 5 patients from 4 families were identified with clinical, radiologic, or pathologic features of ALSP in whom CSF1R mutations had been excluded previously by sequencing. Data were collected between May 2014 and September 2015 and analyzed between September 2015 and February 2016.
Main Outcomes and Measures: Focused exome sequencing was used to identify candidate variants. Family studies, long-range polymerase chain reaction with cloning, and complementary DNA sequencing were used to confirm pathogenicity.
Results: Of these 5 patients, 4 were men (80%); mean age at onset of ALSP was 29 years (range, 15-44 years). Biallelic mutations in the alanyl-transfer (t)RNA synthetase 2 (AARS2) gene were found in all 5 patients. Frameshifting and splice site mutations were common, found in 4 of 5 patients, and sequencing of complementary DNA from affected patients confirmed that the variants were loss of function. All patients presented in adulthood with prominent cognitive, neuropsychiatric, and upper motor neuron signs. Magnetic resonance imaging in all patients demonstrated a symmetric leukoencephalopathy with punctate regions of restricted diffusion, typical of ALSP. In 1 patient, brain biopsy demonstrated axonal spheroids and pigmented microglia, which are the pathognomonic signs of ALSP.
Conclusions and Relevance: This work indicates that mutations in the tRNA synthetase AARS2 gene cause a recessive form of ALSP. The CSF1R and AARS2 proteins have different cellular functions but overlap in a final common pathway of neurodegeneration. This work points to novel targets for research and will lead to improved diagnostic rates in patients with adult-onset leukoencephalopathy.

PMID: 27749956 [PubMed - indexed for MEDLINE]

Categories: Literature Watch

Hereditary breast and ovarian cancer: new genes in confined pathways.

Tue, 2017-05-30 09:57
Related Articles

Hereditary breast and ovarian cancer: new genes in confined pathways.

Nat Rev Cancer. 2016 09;16(9):599-612

Authors: Nielsen FC, van Overeem Hansen T, Sørensen CS

Abstract
Genetic abnormalities in the DNA repair genes BRCA1 and BRCA2 predispose to hereditary breast and ovarian cancer (HBOC). However, only approximately 25% of cases of HBOC can be ascribed to BRCA1 and BRCA2 mutations. Recently, exome sequencing has uncovered substantial locus heterogeneity among affected families without BRCA1 or BRCA2 mutations. The new pathogenic variants are rare, posing challenges to estimation of risk attribution through patient cohorts. In this Review article, we examine HBOC genes, focusing on their role in genome maintenance, the possibilities for functional testing of putative causal variants and the clinical application of new HBOC genes in cancer risk management and treatment decision-making.

PMID: 27515922 [PubMed - indexed for MEDLINE]

Categories: Literature Watch

An investigation of the association of genetic susceptibility risk with somatic mutation burden in breast cancer.

Tue, 2017-05-30 09:57
Related Articles

An investigation of the association of genetic susceptibility risk with somatic mutation burden in breast cancer.

Br J Cancer. 2016 Sep 06;115(6):752-60

Authors: Zhu B, Mukherjee A, Machiela MJ, Song L, Hua X, Shi J, Garcia-Closas M, Chanock SJ, Chatterjee N

Abstract
BACKGROUND: Genome-wide association studies have reported nearly 100 common germline susceptibility loci associated with the risk for breast cancer. Tumour sequencing studies have characterised somatic mutation profiles in breast cancer patients. The relationship between breast cancer susceptibility loci and somatic mutation patterns in breast cancer remains largely unexplored.
METHODS: We used single-nucleotide polymorphism (SNP) genotyping array data and tumour exome sequencing data available from 638 breast cancer patients of European ancestry from The Cancer Genome Atlas (TCGA) project. We analysed both genotype data and, when necessary, imputed genotypes for 90 known breast cancer susceptibility loci. We performed linear regression models to investigate possible associations between germline risk variants with total somatic mutation count (TSMC), as well as specific mutation types. We examined individual SNP genotypes, as well as a multi-SNP polygenic risk score (PRS). Models were statistically adjusted for age at diagnosis, stage, oestrogen-receptor (ER) and progesterone-receptor (PR) status of breast cancer. We also performed stratified analyses by ER and PR status.
RESULTS: We observed a significant inverse association (P=8.75 × 10(-6); FDR=0.001) between the risk allele in rs2588809 of the gene RAD51B and TSMC across all breast cancer patients, for both ER(+) and ER(-) tumours. This association was also evident for different types of mutations. The PRS analysis for all patients, with or without rs2588809, showed a significant inverse association (P=0.01 and 0.04, respectively) with TSMC. This inverse association was significant in ER(+) patients with the ER(+)-specific PRS (P=0.02), but not among ER(-) patients for the ER(-)-specific PRS (P=0.39).
CONCLUSIONS: We observed an inverse association between common germline risk variants and TSMC, which, if confirmed, could provide new insights into how germline variation informs our understanding of somatic mutation patterns in breast cancer.

PMID: 27467053 [PubMed - indexed for MEDLINE]

Categories: Literature Watch

Neuromuscular endplate pathology in recessive desminopathies: Lessons from man and mice.

Tue, 2017-05-30 09:57
Related Articles

Neuromuscular endplate pathology in recessive desminopathies: Lessons from man and mice.

Neurology. 2016 Aug 23;87(8):799-805

Authors: Durmuş H, Ayhan Ö, Çırak S, Deymeer F, Parman Y, Franke A, Eiber N, Chevessier F, Schlötzer-Schrehardt U, Clemen CS, Hashemolhosseini S, Schröder R, Hemmrich-Stanisak G, Tolun A, Serdaroğlu-Oflazer P

Abstract
OBJECTIVE: To assess the clinical, genetic, and myopathologic findings in 2 cousins with lack of desmin, the response to salbutamol in one patient, and the neuromuscular endplate pathology in a knock-in mouse model for recessive desminopathy.
METHODS: We performed clinical investigations in the patients, genetic studies for linkage mapping, exome sequencing, and qPCR for transcript quantification, assessment of efficacy of (3-month oral) salbutamol administration by muscle strength assessment, 6-minute walking test (6MWT), and forced vital capacity, analysis of neuromuscular endplate pathology in a homozygous R349P desmin knock-in mouse by immunofluorescence staining of the hind limb muscles, and quantitative 3D morphometry and expression studies of acetylcholine receptor genes by quantitative PCR.
RESULTS: Both patients had infantile-onset weakness and fatigability, facial weakness with bilateral ptosis and ophthalmoparesis, generalized muscle weakness, and a decremental response over 10% on repetitive nerve stimulation. Salbutamol improved 6MWT and subjective motor function in the treated patient. Genetic analysis revealed previously unreported novel homozygous truncating desmin mutation c.345dupC leading to protein truncation and consequent fast degradation of the mutant mRNA. In the recessive desminopathy mouse with low expression of the mutant desmin protein, we demonstrated fragmented motor endplates with increased surface areas, volumes, and fluorescence intensities in conjunction with increased α and γ acetylcholine receptor subunit expression in oxidative soleus muscle.
CONCLUSIONS: The patients were desmin-null and had myopathy, cardiomyopathy, and a congenital myasthenic syndrome. The data from man and mouse demonstrate that the complete lack as well as the markedly decreased expression of mutant R349P desmin impair the structural and functional integrity of neuromuscular endplates.

PMID: 27440146 [PubMed - indexed for MEDLINE]

Categories: Literature Watch

(exome OR "exome sequencing") AND disease; +11 new citations

Tue, 2017-05-30 06:00

11 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:

(exome OR "exome sequencing") AND disease

These pubmed results were generated on 2017/05/30

PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

Categories: Literature Watch

Pages