Deep learning
Benchmarking outcomes in the Neonatal Intensive Care Unit: Cytogenetic and molecular diagnostic rates in a retrospective cohort.
Benchmarking outcomes in the Neonatal Intensive Care Unit: Cytogenetic and molecular diagnostic rates in a retrospective cohort.
Am J Med Genet A. 2017 May 09;:
Authors: Malam F, Hartley T, Gillespie MK, Armour CM, Bariciak E, Graham GE, Nikkel SM, Richer J, Sawyer SL, Boycott KM, Dyment DA
Abstract
Genetic disease and congenital anomalies continue to be a leading cause of neonate mortality and morbidity. A genetic diagnosis in the neonatal intensive care unit (NICU) can be a challenge given the associated genetic heterogeneity and early stage of a disease. We set out to evaluate the outcomes of Medical Genetics consultation in the NICU in terms of cytogenetic and molecular diagnostic rates and impact on management. We retrospectively reviewed 132 charts from patients admitted to the NICU who received a Medical Genetics diagnostic evaluation over a 2 year period. Of the 132 patients reviewed, 26% (34/132) received a cytogenetic or molecular diagnosis based on the Medical Genetics diagnostic evaluation; only 10% (13/132) received a diagnosis during their admission. The additional 16% (21 patients) received their diagnosis following NICU discharge, but based on a genetic test initiated during hospital-stay. Mean time from NICU admission to confirmed diagnosis was 24 days. For those who received a genetic diagnosis, the information was considered beneficial for clinical management in all, and a direct change to medical management occurred for 12% (4/32). For those non-diagnosed infants seen in out-patient follow-up clinic, diagnoses were made in 8% (3/37). The diagnoses made post-discharge from the NICU comprised a greater number of Mendelian disorders and represent an opportunity to improve genetic care. The adoption of diagnostic tools, such as exome sequencing, used in parallel with traditional approaches will improve rate of diagnoses and will have a significant impact, in particular when the differential diagnosis is broad.
PMID: 28488422 [PubMed - as supplied by publisher]
Identification of a novel RASD1 somatic mutation in a USP8-mutated corticotroph adenoma.
Identification of a novel RASD1 somatic mutation in a USP8-mutated corticotroph adenoma.
Cold Spring Harb Mol Case Stud. 2017 May;3(3):a001602
Authors: Uzilov AV, Cheesman KC, Fink MY, Newman LC, Pandya C, Lalazar Y, Hefti M, Fowkes M, Deikus G, Lau CY, Moe AS, Kinoshita Y, Kasai Y, Zweig M, Gupta A, Starcevic D, Mahajan M, Schadt EE, Post KD, Donovan MJ, Sebra R, Chen R, Geer EB
Abstract
Cushing's disease (CD) is caused by pituitary corticotroph adenomas that secrete excess adrenocorticotropic hormone (ACTH). In these tumors, somatic mutations in the gene USP8 have been identified as recurrent and pathogenic and are the sole known molecular driver for CD. Although other somatic mutations were reported in these studies, their contribution to the pathogenesis of CD remains unexplored. No molecular drivers have been established for a large proportion of CD cases and tumor heterogeneity has not yet been investigated using genomics methods. Also, even in USP8-mutant tumors, a possibility may exist of additional contributing mutations, following a paradigm from other neoplasm types where multiple somatic alterations contribute to neoplastic transformation. The current study utilizes whole-exome discovery sequencing on the Illumina platform, followed by targeted amplicon-validation sequencing on the Pacific Biosciences platform, to interrogate the somatic mutation landscape in a corticotroph adenoma resected from a CD patient. In this USP8-mutated tumor, we identified an interesting somatic mutation in the gene RASD1, which is a component of the corticotropin-releasing hormone receptor signaling system. This finding may provide insight into a novel mechanism involving loss of feedback control to the corticotropin-releasing hormone receptor and subsequent deregulation of ACTH production in corticotroph tumors.
PMID: 28487882 [PubMed - in process]
Novel mutations in ADSL for Adenylosuccinate Lyase Deficiency identified by the combination of Trio-WES and constantly updated guidelines.
Novel mutations in ADSL for Adenylosuccinate Lyase Deficiency identified by the combination of Trio-WES and constantly updated guidelines.
Sci Rep. 2017 May 09;7(1):1625
Authors: Mao X, Li K, Tang B, Luo Y, Ding D, Zhao Y, Wang C, Zhou X, Liu Z, Zhang Y, Wang P, Xu Q, Sun Q, Xia K, Yan X, Jiang H, Lu S, Guo J
Abstract
Whole-exome sequencing (WES), one of the next-generation sequencing (NGS), has become a powerful tool to identify exonic variants. Investigating causality of the sequence variants in human disease becomes an important part in NGS for the research and clinical applications. Recently, important guidelines on them have been published and will keep on updating. In our study, two Chinese families, with the clinical diagnosis of "Epilepsy", which presented with seizures, psychomotor retardation, hypotonia and etc. features, were sequenced by Trio-WES (including the proband and the unaffected parents), and a standard interpretation of the identified variants was performed referring to the recently updated guidelines. Finally, we identified three novel mutations (c.71 C > T, p.P24L; c.1387-1389delGAG, p.E463-; c.134 G > A, p.W45*; NM_000026) in ADSL in the two Chinese families, and confirmed them as the causal variants to the disease-Adenylosuccinate Lyase Deficiency. Previous reported specific therapy was also introduced to the patients after our refined molecular diagnosis, however, the effect was very limited success. In summary, our study demonstrated the power and advantages of WES in exploring the etiology of human disease. Using the constantly updated guidelines to conduct the WES study and to interpret the sequence variants are a necessary strategy to make the molecular diagnosis and to guide the individualized treatment of human disease.
PMID: 28487569 [PubMed - in process]
Sequencing of cancer cell subpopulations identifies micrometastases in a bladder cancer patient.
Sequencing of cancer cell subpopulations identifies micrometastases in a bladder cancer patient.
Oncotarget. 2017 Apr 21;:
Authors: Prado K, Zhang KX, Pellegrini M, Chin AI
Abstract
PURPOSE: Pathologic staging of bladder cancer patients remains a challenge. Standard-of-care histology exhibits limited sensitivity in detection of micrometastases, which can increase risk of cancer progression and delay potential adjuvant therapies. Here, we sought to develop a proof of concept novel molecular approach to improve detection of cancer micrometastasis.
EXPERIMENTAL DESIGN: We combined fluorescence activated cell sorting and next-generation sequencing and performed whole-exome sequencing of total cancer cells and cancer cell subpopulations in multiple tumor specimens and regional lymph nodes in a single patient with muscle-invasive urothelial carcinoma of the bladder following radical cystectomy.
RESULTS: Mean allele frequency analysis demonstrated a significant correlation between primary tumor cancer cells and cancer cells isolated from the lymph nodes, confirming lymph node disease despite negative pathologic staging. RNA-sequencing revealed intratumoral heterogeneity as well as enrichment for immune system and lipid metabolism gene sets in the micrometastatic cancer cell subpopulations.
CONCLUSIONS: Our analysis illustrates how next-generation sequencing of cancer cell subpopulations may be utilized to enrich for cancer cell markers and enhance detection of bladder cancer micrometastases to improve pathologic staging and provide insight into cancer cell biology.
PMID: 28487492 [PubMed - as supplied by publisher]
A Ribosomopathy Reveals Decoding Defective Ribosomes Driving Human Dysmorphism.
A Ribosomopathy Reveals Decoding Defective Ribosomes Driving Human Dysmorphism.
Am J Hum Genet. 2017 Mar 02;100(3):506-522
Authors: Paolini NA, Attwood M, Sondalle SB, Vieira CM, van Adrichem AM, di Summa FM, O'Donohue MF, Gleizes PE, Rachuri S, Briggs JW, Fischer R, Ratcliffe PJ, Wlodarski MW, Houtkooper RH, von Lindern M, Kuijpers TW, Dinman JD, Baserga SJ, Cockman ME, MacInnes AW
Abstract
Ribosomal protein (RP) gene mutations, mostly associated with inherited or acquired bone marrow failure, are believed to drive disease by slowing the rate of protein synthesis. Here de novo missense mutations in the RPS23 gene, which codes for uS12, are reported in two unrelated individuals with microcephaly, hearing loss, and overlapping dysmorphic features. One individual additionally presents with intellectual disability and autism spectrum disorder. The amino acid substitutions lie in two highly conserved loop regions of uS12 with known roles in maintaining the accuracy of mRNA codon translation. Primary cells revealed one substitution severely impaired OGFOD1-dependent hydroxylation of a neighboring proline residue resulting in 40S ribosomal subunits that were blocked from polysome formation. The other disrupted a predicted pi-pi stacking interaction between two phenylalanine residues leading to a destabilized uS12 that was poorly tolerated in 40S subunit biogenesis. Despite no evidence of a reduction in the rate of mRNA translation, these uS12 variants impaired the accuracy of mRNA translation and rendered cells highly sensitive to oxidative stress. These discoveries describe a ribosomopathy linked to uS12 and reveal mechanistic distinctions between RP gene mutations driving hematopoietic disease and those resulting in developmental disorders.
PMID: 28257692 [PubMed - indexed for MEDLINE]
Mutations in INPP5K Cause a Form of Congenital Muscular Dystrophy Overlapping Marinesco-Sjögren Syndrome and Dystroglycanopathy.
Mutations in INPP5K Cause a Form of Congenital Muscular Dystrophy Overlapping Marinesco-Sjögren Syndrome and Dystroglycanopathy.
Am J Hum Genet. 2017 Mar 02;100(3):537-545
Authors: Osborn DP, Pond HL, Mazaheri N, Dejardin J, Munn CJ, Mushref K, Cauley ES, Moroni I, Pasanisi MB, Sellars EA, Hill RS, Partlow JN, Willaert RK, Bharj J, Malamiri RA, Galehdari H, Shariati G, Maroofian R, Mora M, Swan LE, Voit T, Conti FJ, Jamshidi Y, Manzini MC
Abstract
Congenital muscular dystrophies display a wide phenotypic and genetic heterogeneity. The combination of clinical, biochemical, and molecular genetic findings must be considered to obtain the precise diagnosis and provide appropriate genetic counselling. Here we report five individuals from four families presenting with variable clinical features including muscular dystrophy with a reduction in dystroglycan glycosylation, short stature, intellectual disability, and cataracts, overlapping both the dystroglycanopathies and Marinesco-Sjögren syndrome. Whole-exome sequencing revealed homozygous missense and compound heterozygous mutations in INPP5K in the affected members of each family. INPP5K encodes the inositol polyphosphate-5-phosphatase K, also known as SKIP (skeletal muscle and kidney enriched inositol phosphatase), which is highly expressed in the brain and muscle. INPP5K localizes to both the endoplasmic reticulum and to actin ruffles in the cytoplasm. It has been shown to regulate myoblast differentiation and has also been implicated in protein processing through its interaction with the ER chaperone HSPA5/BiP. We show that morpholino-mediated inpp5k loss of function in the zebrafish results in shortened body axis, microphthalmia with disorganized lens, microcephaly, reduced touch-evoked motility, and highly disorganized myofibers. Altogether these data demonstrate that mutations in INPP5K cause a congenital muscular dystrophy syndrome with short stature, cataracts, and intellectual disability.
PMID: 28190459 [PubMed - indexed for MEDLINE]
Performance of ACMG-AMP Variant-Interpretation Guidelines among Nine Laboratories in the Clinical Sequencing Exploratory Research Consortium.
Performance of ACMG-AMP Variant-Interpretation Guidelines among Nine Laboratories in the Clinical Sequencing Exploratory Research Consortium.
Am J Hum Genet. 2016 Jun 02;98(6):1067-76
Authors: Amendola LM, Jarvik GP, Leo MC, McLaughlin HM, Akkari Y, Amaral MD, Berg JS, Biswas S, Bowling KM, Conlin LK, Cooper GM, Dorschner MO, Dulik MC, Ghazani AA, Ghosh R, Green RC, Hart R, Horton C, Johnston JJ, Lebo MS, Milosavljevic A, Ou J, Pak CM, Patel RY, Punj S, Richards CS, Salama J, Strande NT, Yang Y, Plon SE, Biesecker LG, Rehm HL
Abstract
Evaluating the pathogenicity of a variant is challenging given the plethora of types of genetic evidence that laboratories consider. Deciding how to weigh each type of evidence is difficult, and standards have been needed. In 2015, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) published guidelines for the assessment of variants in genes associated with Mendelian diseases. Nine molecular diagnostic laboratories involved in the Clinical Sequencing Exploratory Research (CSER) consortium piloted these guidelines on 99 variants spanning all categories (pathogenic, likely pathogenic, uncertain significance, likely benign, and benign). Nine variants were distributed to all laboratories, and the remaining 90 were evaluated by three laboratories. The laboratories classified each variant by using both the laboratory's own method and the ACMG-AMP criteria. The agreement between the two methods used within laboratories was high (K-alpha = 0.91) with 79% concordance. However, there was only 34% concordance for either classification system across laboratories. After consensus discussions and detailed review of the ACMG-AMP criteria, concordance increased to 71%. Causes of initial discordance in ACMG-AMP classifications were identified, and recommendations on clarification and increased specification of the ACMG-AMP criteria were made. In summary, although an initial pilot of the ACMG-AMP guidelines did not lead to increased concordance in variant interpretation, comparing variant interpretations to identify differences and having a common framework to facilitate resolution of those differences were beneficial for improving agreement, allowing iterative movement toward increased reporting consistency for variants in genes associated with monogenic disease.
PMID: 27181684 [PubMed - indexed for MEDLINE]
(exome OR "exome sequencing") AND disease; +15 new citations
15 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
(exome OR "exome sequencing") AND disease
These pubmed results were generated on 2017/05/10
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
GZF1 Mutations Expand the Genetic Heterogeneity of Larsen Syndrome.
GZF1 Mutations Expand the Genetic Heterogeneity of Larsen Syndrome.
Am J Hum Genet. 2017 May 04;100(5):831-836
Authors: Patel N, Shamseldin HE, Sakati N, Khan AO, Softa A, Al-Fadhli FM, Hashem M, Abdulwahab FM, Alshidi T, Alomar R, Alobeid E, Wakil SM, Colak D, Alkuraya FS
Abstract
Larsen syndrome is characterized by the dislocation of large joints and other less consistent clinical findings. Heterozygous FLNB mutations account for the majority of Larsen syndrome cases, but biallelic mutations in CHST3 and B4GALT7 have been more recently described, thus confirming the existence of recessive forms of the disease. In a multiplex consanguineous Saudi family affected by severe and recurrent large joint dislocation and severe myopia, we identified a homozygous truncating variant in GZF1 through a combined autozygome and exome approach. Independently, the same approach identified a second homozygous truncating GZF1 variant in another multiplex consanguineous family affected by severe myopia, retinal detachment, and milder skeletal involvement. GZF1 encodes GDNF-inducible zinc finger protein 1, a transcription factor of unknown developmental function, which we found to be expressed in the eyes and limbs of developing mice. Global transcriptional profiling of cells from affected individuals revealed a shared pattern of gene dysregulation and significant enrichment of genes encoding matrix proteins, including P3H2, which hints at a potential disease mechanism. Our results suggest that GZF1 mutations cause a phenotype of severe myopia and significant articular involvement not previously described in Larsen syndrome.
PMID: 28475863 [PubMed - in process]
A cumulative effect involving malfunction of the PTH1R and ATP4A genes explains a familial gastric neuroendocrine tumor with hypothyroidism and arthritis.
A cumulative effect involving malfunction of the PTH1R and ATP4A genes explains a familial gastric neuroendocrine tumor with hypothyroidism and arthritis.
Gastric Cancer. 2017 May 04;:
Authors: Calvete O, Herraiz M, Reyes J, Patiño A, Benitez J
Abstract
BACKGROUND: Type I gastric neuroendocrine tumors (gNETs) classically arise because of hypergastrinemia and involve destruction of parietal cells, which are responsible for gastric acid secretion through the ATP4A proton pump and for intrinsic factor production.
METHODS: By whole exome sequencing, we studied a family with three members with gNETs plus hypothyroidism and rheumatoid arthritis to uncover their genetic origin.
RESULTS: A heterozygous missense mutation in the ATP4A gene was identified. Carriers of this variant had low ferritin and vitamin B12 levels but did not develop gNETs. A second heterozygous mutation was also uncovered (PTH1R p.E546K). Carriers exhibited hypothyroidism and one of them had rheumatoid arthritis. Gastrin activates parathyroid hormone like hormone/parathyroid hormone 1 receptor (PTH1R) signaling, which is involved in gastric cell homeostasis. Activation of parathyroid hormone/PTH1R, which is upregulated by thyrotropin in the thyroid, is also involved in RANKL expression, which regulates bone homeostasis. Thyrotropin and RANKL expression were deregulated in PTH1R mutation carriers, suggesting a link between the PTH1R gene, hypothyroidism, rheumatoid arthritis, and gastric disease. Only patients with both mutations developed gNETs plus hypothyroidism and rheumatoid arthritis.
CONCLUSION: Both mutations suggest that a collaborative mechanism is operative in this family, in which mutations in these genes affect the function and viability of parietal cells and lead to the achlorhydria that drives hypergastrinemia and the formation of gNETs.
PMID: 28474257 [PubMed - as supplied by publisher]
Use of Clinical Exome Sequencing in Isolated Congenital Heart Disease.
Use of Clinical Exome Sequencing in Isolated Congenital Heart Disease.
Circ Cardiovasc Genet. 2017 Jun;10(3):
Authors: Zahavich L, Bowdin S, Mital S
PMID: 28473349 [PubMed - in process]
A Case Report of Hypoglycemia and Hypogammaglobulinemia: DAVID syndrome in a patient with a novel NFKB2 mutation.
A Case Report of Hypoglycemia and Hypogammaglobulinemia: DAVID syndrome in a patient with a novel NFKB2 mutation.
J Clin Endocrinol Metab. 2017 May 03;:
Authors: Lal RA, Bachrach LK, Hoffman AR, Inlora J, Rego S, Snyder MP, Lewis DB
Abstract
Context: DAVID syndrome (Deficient Anterior pituitary with Variable Immune Deficiency) is a rare disorder in which children present with symptomatic ACTH deficiency preceded by hypogammaglobulinemia from B-cell dysfunction with recurrent infections, termed common variable immunodeficiency (CVID). Subsequent whole exome sequencing studies have revealed germline heterozygous C-terminal mutations of NFKB2 as either a cause of DAVID syndrome or of CVID without clinical hypopituitarism. However, to the best of our knowledge there have been no cases in which the endocrinopathy has presented in the absence of a prior clinical history of CVID.
Case Description: A previously healthy 7 year-old boy with no history of clinical immunodeficiency, presented with profound hypoglycemia and seizures. He was found to have secondary adrenal insufficiency and was started on glucocorticoid replacement. An evaluation for autoimmune disease, including for anti-pituitary antibodies, was negative. Evaluation unexpectedly revealed hypogammaglobulinemia (decreased IgG, IgM, and IgA). He had moderately reduced serotype-specific IgG responses following pneumococcal polysaccharide vaccine. Subsequently, he was found to have growth hormone (GH) deficiency. Six years after initial presentation, whole exome sequencing revealed a novel de novo heterozygous NFKB2 missense mutation c.2596A>C (p.Ser866Arg) in the C-terminal region predicted to abrogate the processing of the p100 NFKB2 protein to its active p52 form.
Conclusions: Isolated early-onset ACTH deficiency is rare and C-terminal region NFKB2 mutations should be considered as an etiology even in the absence of a clinical history of CVID. Early immunologic evaluation is indicated in the diagnosis and management of isolated ACTH deficiency.
PMID: 28472507 [PubMed - as supplied by publisher]
Electronic health record phenotype in subjects with genetic variants associated with arrhythmogenic right ventricular cardiomyopathy: a study of 30,716 subjects with exome sequencing.
Electronic health record phenotype in subjects with genetic variants associated with arrhythmogenic right ventricular cardiomyopathy: a study of 30,716 subjects with exome sequencing.
Genet Med. 2017 May 04;:
Authors: Haggerty CM, James CA, Calkins H, Tichnell C, Leader JB, Hartzel DN, Nevius CD, Pendergrass SA, Person TN, Schwartz M, Ritchie MD, Carey DJ, Ledbetter DH, Williams MS, Dewey FE, Lopez A, Penn J, Overton JD, Reid JG, Lebo M, Mason-Suares H, Austin-Tse C, Rehm HL, Delisle BP, Makowski DJ, Mehra VC, Murray MF, Fornwalt BK
Abstract
PurposeArrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart disease. Clinical follow-up of incidental findings in ARVC-associated genes is recommended. We aimed to determine the prevalence of disease thus ascertained.MethodsIndividuals (n = 30,716) underwent exome sequencing. Variants in PKP2, DSG2, DSC2, DSP, JUP, TMEM43, or TGFβ3 that were database-listed as pathogenic or likely pathogenic were identified and evidence-reviewed. For subjects with putative loss-of-function (pLOF) variants or variants of uncertain significance (VUS), electronic health records (EHR) were reviewed for ARVC diagnosis, diagnostic criteria, and International Classification of Diseases (ICD-9) codes.ResultsEighteen subjects had pLOF variants; none of these had an EHR diagnosis of ARVC. Of 14 patients with an electrocardiogram, one had a minor diagnostic criterion; the rest were normal. A total of 184 subjects had VUS, none of whom had an ARVC diagnosis. The proportion of subjects with VUS with major (4%) or minor (13%) electrocardiogram diagnostic criteria did not differ from that of variant-negative controls. ICD-9 codes showed no difference in defibrillator use, electrophysiologic abnormalities or nonischemic cardiomyopathies in patients with pLOF or VUSs compared with controls.ConclusionpLOF variants in an unselected cohort were not associated with ARVC phenotypes based on EHR review. The negative predictive value of EHR review remains uncertain.GENETICS in MEDICINE advance online publication, 4 May 2017; doi:10.1038/gim.2017.40.
PMID: 28471438 [PubMed - as supplied by publisher]
Assessment of the ExAC data set for the presence of individuals with pathogenic genotypes implicated in severe Mendelian pediatric disorders.
Assessment of the ExAC data set for the presence of individuals with pathogenic genotypes implicated in severe Mendelian pediatric disorders.
Genet Med. 2017 May 04;:
Authors: Tarailo-Graovac M, Zhu JYA, Matthews A, van Karnebeek CDM, Wasserman WW
Abstract
PurposeWe analyzed the Exome Aggregation Consortium (ExAC) data set for the presence of individuals with pathogenic genotypes implicated in Mendelian pediatric disorders.MethodsClinVar likely/pathogenic variants supported by at least one peer-reviewed publication were assessed within the ExAC database to identify individuals expected to exhibit a childhood disorder based on concordance with disease inheritance modes: heterozygous (for dominant), homozygous (for recessive) or hemizygous (for X-linked recessive conditions). Variants from 924 genes reported to cause Mendelian childhood disorders were considered.ResultsWe identified ExAC individuals with candidate pathogenic genotypes for 190 previously published likely/pathogenic variants in 128 genes. After curation, we determined that 113 of the variants have sufficient support for pathogenicity and identified 1,717 ExAC individuals (~2.8% of the ExAC population) with corresponding possible/disease-associated genotypes implicated in rare Mendelian disorders, ranging from mild (e.g., due to SCN2A deficiency) to severe pediatric conditions (e.g., due to FGFR1 deficiency).ConclusionLarge-scale sequencing projects and data aggregation consortia provide unprecedented opportunities to determine the prevalence of pathogenic genotypes in unselected populations. This knowledge is crucial for understanding the penetrance of disease-associated variants, phenotypic variability, somatic mosaicism, as well as published literature curation for variant classification procedures and predicted clinical outcomes.GENETICS in MEDICINE advance online publication, 4 May 2017; doi:10.1038/gim.2017.50.
PMID: 28471432 [PubMed - as supplied by publisher]
Systematic Cell-Based Phenotyping of Missense Alleles.
Systematic Cell-Based Phenotyping of Missense Alleles.
Methods Mol Biol. 2017;1601:215-228
Authors: Thormählen AS, Runz H
Abstract
Sequencing of the protein-coding genome, the exome, has proven powerful to unravel links between genetic variation and disease for both Mendelian and complex conditions. Importantly, however, the increasing number of sequenced human exomes and mapping of disease-associated alleles is accompanied by a simultaneous, yet exponential increase in the overall number of rare and low frequency alleles identified. For most of these novel alleles, biological consequences remain unknown since reliable experimental approaches to better characterize their impact on protein function are only slowly emerging.Here we review a scalable, cell-based strategy that we have recently established to systematically profile the biological impact of rare and low frequency missense variants in vitro. By applying this approach to missense alleles identified through cohort-level exome sequencing in the low-density lipoprotein receptor (LDLR) we are able to distinguish rare alleles that predispose to familial hypercholesterolemia and myocardial infarction from alleles without obvious impact on LDLR levels or functions. We propose that systematic implementation of such and similar strategies will significantly advance our understanding of the protein-coding human genome and how rare and low frequency genetic variation impacts on health and disease.
PMID: 28470529 [PubMed - in process]
A deep intronic CLRN1 (USH3A) founder mutation generates an aberrant exon and underlies severe Usher syndrome on the Arabian Peninsula.
A deep intronic CLRN1 (USH3A) founder mutation generates an aberrant exon and underlies severe Usher syndrome on the Arabian Peninsula.
Sci Rep. 2017 May 03;7(1):1411
Authors: Khan AO, Becirovic E, Betz C, Neuhaus C, Altmüller J, Maria Riedmayr L, Motameny S, Nürnberg G, Nürnberg P, Bolz HJ
Abstract
Deafblindness is mostly due to Usher syndrome caused by recessive mutations in the known genes. Mutation-negative patients therefore either have distinct diseases, mutations in yet unknown Usher genes or in extra-exonic parts of the known genes - to date a largely unexplored possibility. In a consanguineous Saudi family segregating Usher syndrome type 1 (USH1), NGS of genes for Usher syndrome, deafness and retinal dystrophy and subsequent whole-exome sequencing each failed to identify a mutation. Genome-wide linkage analysis revealed two small candidate regions on chromosome 3, one containing the USH3A gene CLRN1, which has never been associated with Usher syndrome in Saudi Arabia. Whole-genome sequencing (WGS) identified a homozygous deep intronic mutation, c.254-649T > G, predicted to generate a novel donor splice site. CLRN1 minigene-based analysis confirmed the splicing of an aberrant exon due to usage of this novel motif, resulting in a frameshift and a premature termination codon. We identified this mutation in an additional two of seven unrelated mutation-negative Saudi USH1 patients. Locus-specific markers indicated that c.254-649T > G CLRN1 represents a founder allele that may significantly contribute to deafblindness in this population. Our finding underlines the potential of WGS to uncover atypically localized, hidden mutations in patients who lack exonic mutations in the known disease genes.
PMID: 28469144 [PubMed - in process]
Mutations in the vesicular trafficking protein annexin A11 are associated with amyotrophic lateral sclerosis.
Mutations in the vesicular trafficking protein annexin A11 are associated with amyotrophic lateral sclerosis.
Sci Transl Med. 2017 May 03;9(388):
Authors: Smith BN, Topp SD, Fallini C, Shibata H, Chen HJ, Troakes C, King A, Ticozzi N, Kenna KP, Soragia-Gkazi A, Miller JW, Sato A, Dias DM, Jeon M, Vance C, Wong CH, de Majo M, Kattuah W, Mitchell JC, Scotter EL, Parkin NW, Sapp PC, Nolan M, Nestor PJ, Simpson M, Weale M, Lek M, Baas F, Vianney de Jong JM, Ten Asbroek ALMA, Redondo AG, Esteban-Pérez J, Tiloca C, Verde F, Duga S, Leigh N, Pall H, Morrison KE, Al-Chalabi A, Shaw PJ, Kirby J, Turner MR, Talbot K, Hardiman O, Glass JD, De Belleroche J, Maki M, Moss SE, Miller C, Gellera C, Ratti A, Al-Sarraj S, Brown RH, Silani V, Landers JE, Shaw CE
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder. We screened 751 familial ALS patient whole-exome sequences and identified six mutations including p.D40G in the ANXA11 gene in 13 individuals. The p.D40G mutation was absent from 70,000 control whole-exome sequences. This mutation segregated with disease in two kindreds and was present in another two unrelated cases (P = 0.0102), and all mutation carriers shared a common founder haplotype. Annexin A11-positive protein aggregates were abundant in spinal cord motor neurons and hippocampal neuronal axons in an ALS patient carrying the p.D40G mutation. Transfected human embryonic kidney cells expressing ANXA11 with the p.D40G mutation and other N-terminal mutations showed altered binding to calcyclin, and the p.R235Q mutant protein formed insoluble aggregates. We conclude that mutations in ANXA11 are associated with ALS and implicate defective intracellular protein trafficking in disease pathogenesis.
PMID: 28469040 [PubMed - in process]
A case report of novel mutation in PRF1 gene, which causes familial autosomal recessive hemophagocytic lymphohistiocytosis.
A case report of novel mutation in PRF1 gene, which causes familial autosomal recessive hemophagocytic lymphohistiocytosis.
BMC Med Genet. 2017 May 03;18(1):49
Authors: Bordbar MR, Modarresi F, Farazi Fard MA, Dastsooz H, Shakib Azad N, Faghihi MA
Abstract
BACKGROUND: Hemophagocytic Lymphohistiocytosis (HLH) is a life-threatening immunodeficiency and multi-organ disease that affects people of all ages and ethnic groups. Common symptoms and signs of this disease are high fever, hepatosplenomegaly, and cytopenias. Familial form of HLH disease, which is an autosomal recessive hematological disorder is due to disease-causing mutations in several genes essential for NK and T-cell granule-mediated cytotoxic function. For an effective cytotoxic response from cytotoxic T lymphocyte or NK cell encountering an infected cell or tumor cell, different processes are required, including trafficking, docking, priming, membrane fusion, and entry of cytotoxic granules into the target cell leading to apoptosis. Therefore, genes involved in these steps play important roles in the pathogenesis of HLH disease which include PRF1, UNC13D (MUNC13-4), STX11, and STXBP2 (MUNC18-2).
CASE PRESENTATION: Here, we report a novel missense mutation in an 8-year-old boy suffered from hepatosplenomegaly, hepatitis, epilepsy and pancytopenia. The patient was born to a first-cousin parents with no previous documented disease in his parents. To identify mutated gene in the proband, Whole Exome Sequencing (WES) utilizing next generation sequencing was used on an Illumina HiSeq 2000 platform on DNA sample from the patient. Results showed a novel deleterious homozygous missense mutation in PRF1 gene (NM_001083116: exon3: c. 1120 T > G, p.W374G) in the patient and then using Sanger sequencing it was confirmed in the proband and his parents. Since his parents were heterozygous for the identified mutation, autosomal recessive pattern of inheritance was confirmed in the family.
CONCLUSIONS: Our study identified a rare new pathogenic missense mutation in PRF1 gene in patient with HLH disease and it is the first report of mutation in PRF1 in Iranian patients with this disease.
PMID: 28468610 [PubMed - in process]
Mutations in EXTL3 Cause Neuro-immuno-skeletal Dysplasia Syndrome.
Mutations in EXTL3 Cause Neuro-immuno-skeletal Dysplasia Syndrome.
Am J Hum Genet. 2017 Feb 02;100(2):281-296
Authors: Oud MM, Tuijnenburg P, Hempel M, van Vlies N, Ren Z, Ferdinandusse S, Jansen MH, Santer R, Johannsen J, Bacchelli C, Alders M, Li R, Davies R, Dupuis L, Cale CM, Wanders RJ, Pals ST, Ocaka L, James C, Müller I, Lehmberg K, Strom T, Engels H, Williams HJ, Beales P, Roepman R, Dias P, Brunner HG, Cobben JM, Hall C, Hartley T, Le Quesne Stabej P, Mendoza-Londono R, Davies EG, de Sousa SB, Lessel D, Arts HH, Kuijpers TW
Abstract
EXTL3 regulates the biosynthesis of heparan sulfate (HS), important for both skeletal development and hematopoiesis, through the formation of HS proteoglycans (HSPGs). By whole-exome sequencing, we identified homozygous missense mutations c.1382C>T, c.1537C>T, c.1970A>G, and c.2008T>G in EXTL3 in nine affected individuals from five unrelated families. Notably, we found the identical homozygous missense mutation c.1382C>T (p.Pro461Leu) in four affected individuals from two unrelated families. Affected individuals presented with variable skeletal abnormalities and neurodevelopmental defects. Severe combined immunodeficiency (SCID) with a complete absence of T cells was observed in three families. EXTL3 was most abundant in hematopoietic stem cells and early progenitor T cells, which is in line with a SCID phenotype at the level of early T cell development in the thymus. To provide further support for the hypothesis that mutations in EXTL3 cause a neuro-immuno-skeletal dysplasia syndrome, and to gain insight into the pathogenesis of the disorder, we analyzed the localization of EXTL3 in fibroblasts derived from affected individuals and determined glycosaminoglycan concentrations in these cells as well as in urine and blood. We observed abnormal glycosaminoglycan concentrations and increased concentrations of the non-sulfated chondroitin disaccharide D0a0 and the disaccharide D0a4 in serum and urine of all analyzed affected individuals. In summary, we show that biallelic mutations in EXTL3 disturb glycosaminoglycan synthesis and thus lead to a recognizable syndrome characterized by variable expression of skeletal, neurological, and immunological abnormalities.
PMID: 28132690 [PubMed - indexed for MEDLINE]
Biallelic Mutations in DNAJC12 Cause Hyperphenylalaninemia, Dystonia, and Intellectual Disability.
Biallelic Mutations in DNAJC12 Cause Hyperphenylalaninemia, Dystonia, and Intellectual Disability.
Am J Hum Genet. 2017 Feb 02;100(2):257-266
Authors: Anikster Y, Haack TB, Vilboux T, Pode-Shakked B, Thöny B, Shen N, Guarani V, Meissner T, Mayatepek E, Trefz FK, Marek-Yagel D, Martinez A, Huttlin EL, Paulo JA, Berutti R, Benoist JF, Imbard A, Dorboz I, Heimer G, Landau Y, Ziv-Strasser L, Malicdan MC, Gemperle-Britschgi C, Cremer K, Engels H, Meili D, Keller I, Bruggmann R, Strom TM, Meitinger T, Mullikin JC, Schwartz G, Ben-Zeev B, Gahl WA, Harper JW, Blau N, Hoffmann GF, Prokisch H, Opladen T, Schiff M
Abstract
Phenylketonuria (PKU, phenylalanine hydroxylase deficiency), an inborn error of metabolism, can be detected through newborn screening for hyperphenylalaninemia (HPA). Most individuals with HPA harbor mutations in the gene encoding phenylalanine hydroxylase (PAH), and a small proportion (2%) exhibit tetrahydrobiopterin (BH4) deficiency with additional neurotransmitter (dopamine and serotonin) deficiency. Here we report six individuals from four unrelated families with HPA who exhibited progressive neurodevelopmental delay, dystonia, and a unique profile of neurotransmitter deficiencies without mutations in PAH or BH4 metabolism disorder-related genes. In these six affected individuals, whole-exome sequencing (WES) identified biallelic mutations in DNAJC12, which encodes a heat shock co-chaperone family member that interacts with phenylalanine, tyrosine, and tryptophan hydroxylases catalyzing the BH4-activated conversion of phenylalanine into tyrosine, tyrosine into L-dopa (the precursor of dopamine), and tryptophan into 5-hydroxytryptophan (the precursor of serotonin), respectively. DNAJC12 was undetectable in fibroblasts from the individuals with null mutations. PAH enzyme activity was reduced in the presence of DNAJC12 mutations. Early treatment with BH4 and/or neurotransmitter precursors had dramatic beneficial effects and resulted in the prevention of neurodevelopmental delay in the one individual treated before symptom onset. Thus, DNAJC12 deficiency is a preventable and treatable cause of intellectual disability that should be considered in the early differential diagnosis when screening results are positive for HPA. Sequencing of DNAJC12 may resolve any uncertainty and should be considered in all children with unresolved HPA.
PMID: 28132689 [PubMed - indexed for MEDLINE]