Deep learning
Multiregional Radiogenomic Assessment of Prostate Microenvironments with Multiparametric MR Imaging and DNA Whole-Exome Sequencing of Prostate Glands with Adenocarcinoma.
Multiregional Radiogenomic Assessment of Prostate Microenvironments with Multiparametric MR Imaging and DNA Whole-Exome Sequencing of Prostate Glands with Adenocarcinoma.
Radiology. 2017 Jul;284(1):109-119
Authors: Jamshidi N, Margolis DJ, Raman S, Huang J, Reiter RE, Kuo MD
Abstract
Purpose To assess the underlying genomic variation of prostate gland microenvironments of patients with prostate adenocarcinoma in the context of colocalized multiparametric magnetic resonance (MR) imaging and histopathologic assessment of normal and abnormal regions by using whole-exome sequencing. Materials and Methods Six patients with prostate adenocarcinoma who underwent robotic prostatectomy with whole-mount preservation of the prostate were identified, which enabled spatial mapping between preoperative multiparametric MR imaging and the gland. Four regions of interest were identified within each gland, including regions found to be normal and abnormal via histopathologic analysis. Whole-exome DNA sequencing (>50 times coverage) was performed on each of these spatially targeted regions. Radiogenomic analysis of imaging and mutation data were performed with hierarchical clustering, phylogenetic analysis, and principal component analysis. Results Radiogenomic multiparametric MR imaging and whole-exome spatial characterization in six patients with prostate adenocarcinoma (three patients, Gleason score of 3 + 4; and three patients, Gleason score of 4 + 5) was performed across 23 spatially distinct regions. Hierarchical clustering separated histopathologic analysis-proven high-grade lesions from the normal regions, and this reflected concordance between multiparametric MR imaging and resultant histopathologic analysis in all patients. Seventy-seven mutations involving 29 cancer-associated genes across the 23 spatially distinct prostate samples were identified. There was no significant difference in mutation load in cancer-associated genes between regions that were proven to be normal via histopathologic analysis (34 mutations per sample ± 19), mildly suspicious via multiparametric MR imaging (37 mutations per sample ± 21), intermediately suspicious via multiparametric MR imaging (31 mutations per sample ± 15), and high-grade cancer (33 mutations per sample ± 18) (P = .30). Principal component analysis resolved samples from different patients and further classified samples (regardless of histopathologic status) from prostate glands with Gleason score 3 + 4 versus 4 + 5 samples. Conclusion Multiregion spatial multiparametric MR imaging and whole-exome radiogenomic analysis of prostate glands with adenocarcinoma shows a continuum of mutations across regions that were found via histologic analysis to be high grade and normal. (©) RSNA, 2017 Online supplemental material is available for this article.
PMID: 28453432 [PubMed - indexed for MEDLINE]
Bainbridge-Ropers syndrome caused by loss-of-function variants in ASXL3: a recognizable condition.
Bainbridge-Ropers syndrome caused by loss-of-function variants in ASXL3: a recognizable condition.
Eur J Hum Genet. 2017 Feb;25(2):183-191
Authors: Kuechler A, Czeschik JC, Graf E, Grasshoff U, Hüffmeier U, Busa T, Beck-Woedl S, Faivre L, Rivière JB, Bader I, Koch J, Reis A, Hehr U, Rittinger O, Sperl W, Haack TB, Wieland T, Engels H, Prokisch H, Strom TM, Lüdecke HJ, Wieczorek D
Abstract
Truncating ASXL3 mutations were first identified in 2013 by Bainbridge et al. as a cause of syndromic intellectual disability in four children with similar phenotypes using whole-exome sequencing. The clinical features - postulated by Bainbridge et al. to be overlapping with Bohring-Opitz syndrome - were developmental delay, severe feeding difficulties, failure to thrive and neurological abnormalities. This condition was included in OMIM as 'Bainbridge-Ropers syndrome' (BRPS, #615485). To date, a total of nine individuals with BRPS have been published in the literature in four reports (Bainbridge et al., Dinwiddie et al, Srivastava et al. and Hori et al.). In this report, we describe six unrelated patients with newly diagnosed heterozygous de novo loss-of-function variants in ASXL3 and concordant clinical features: severe muscular hypotonia with feeding difficulties in infancy, significant motor delay, profound speech impairment, intellectual disability and a characteristic craniofacial phenotype (long face, arched eyebrows with mild synophrys, downslanting palpebral fissures, prominent columella, small alae nasi, high, narrow palate and relatively little facial expression). The majority of key features characteristic for Bohring-Opitz syndrome were absent in our patients (eg, the typical posture of arms, intrauterine growth retardation, microcephaly, trigonocephaly, typical facial gestalt with nevus flammeus of the forehead and exophthalmos). Therefore we emphasize that BRPS syndrome, caused by ASXL3 loss-of-function variants, is a clinically distinct intellectual disability syndrome with a recognizable phenotype distinguishable from that of Bohring-Opitz syndrome.
PMID: 27901041 [PubMed - indexed for MEDLINE]
Targeted Sequencing and Meta-Analysis of Preterm Birth.
Targeted Sequencing and Meta-Analysis of Preterm Birth.
PLoS One. 2016;11(5):e0155021
Authors: Uzun A, Schuster J, McGonnigal B, Schorl C, Dewan A, Padbury J
Abstract
Understanding the genetic contribution(s) to the risk of preterm birth may lead to the development of interventions for treatment, prediction and prevention. Twin studies suggest heritability of preterm birth is 36-40%. Large epidemiological analyses support a primary maternal origin for recurrence of preterm birth, with little effect of paternal or fetal genetic factors. We exploited an "extreme phenotype" of preterm birth to leverage the likelihood of genetic discovery. We compared variants identified by targeted sequencing of women with 2-3 generations of preterm birth with term controls without history of preterm birth. We used a meta-genomic, bi-clustering algorithm to identify gene sets coordinately associated with preterm birth. We identified 33 genes including 217 variants from 5 modules that were significantly different between cases and controls. The most frequently identified and connected genes in the exome library were IGF1, ATM and IQGAP2. Likewise, SOS1, RAF1 and AKT3 were most frequent in the haplotype library. Additionally, SERPINB8, AZU1 and WASF3 showed significant differences in abundance of variants in the univariate comparison of cases and controls. The biological processes impacted by these gene sets included: cell motility, migration and locomotion; response to glucocorticoid stimulus; signal transduction; metabolic regulation and control of apoptosis.
PMID: 27163930 [PubMed - indexed for MEDLINE]
Critical Genomic Networks and Vasoreactive Variants in Idiopathic Pulmonary Arterial Hypertension.
Critical Genomic Networks and Vasoreactive Variants in Idiopathic Pulmonary Arterial Hypertension.
Am J Respir Crit Care Med. 2016 Aug 15;194(4):464-75
Authors: Hemnes AR, Zhao M, West J, Newman JH, Rich S, Archer SL, Robbins IM, Blackwell TS, Cogan J, Loyd JE, Zhao Z, Gaskill C, Jetter C, Kropski JA, Majka SM, Austin ED
Abstract
RATIONALE: Idiopathic pulmonary arterial hypertension (IPAH) is usually without an identified genetic cause, despite clinical and molecular similarity to bone morphogenetic protein receptor type 2 mutation-associated heritable pulmonary arterial hypertension (PAH). There is phenotypic heterogeneity in IPAH, with a minority of patients showing long-term improvement with calcium channel-blocker therapy.
OBJECTIVES: We sought to identify gene variants (GVs) underlying IPAH and determine whether GVs differ in vasodilator-responsive IPAH (VR-PAH) versus vasodilator-nonresponsive IPAH (VN-PAH).
METHODS: We performed whole-exome sequencing (WES) on 36 patients with IPAH: 17 with VR-PAH and 19 with VN-PAH. Wnt pathway differences were explored in human lung fibroblasts.
MEASUREMENTS AND MAIN RESULTS: We identified 1,369 genes with 1,580 variants unique to IPAH. We used a gene ontology approach to analyze variants and identified overrepresentation of several pathways, including cytoskeletal function and ion binding. By mapping WES data to prior genome-wide association study data, Wnt pathway genes were highlighted. Using the connectivity map to define genetic differences between VR-PAH and VN-PAH, we found enrichment in vascular smooth muscle cell contraction pathways and greater genetic variation in VR-PAH versus VN-PAH. Using human lung fibroblasts, we found increased stimulated Wnt activity in IPAH versus controls.
CONCLUSIONS: A pathway-based analysis of WES data in IPAH demonstrated multiple rare GVs that converge on key biological pathways, such as cytoskeletal function and Wnt signaling pathway. Vascular smooth muscle contraction-related genes were enriched in VR-PAH, suggesting a potentially different genetic predisposition for VR-PAH. This pathway-based approach may be applied to next-generation sequencing data in other diseases to uncover the contribution of unexpected or multiple GVs to a phenotype.
PMID: 26926454 [PubMed - indexed for MEDLINE]
Two Siblings with a Mutation in CCDC8 Presenting with Mild Short Stature: A Case of 3-M Syndrome.
Two Siblings with a Mutation in CCDC8 Presenting with Mild Short Stature: A Case of 3-M Syndrome.
Horm Res Paediatr. 2017 Jul 04;:
Authors: Liao L, Gan HW, Hwa V, Dattani M, Dauber A
Abstract
BACKGROUND: Short stature can be caused by mutations in a multitude of different genes. 3-M syndrome is a rare growth disorder marked by severe pre- and postnatal growth retardation along with subtle dysmorphic features. There have only been 2 prior reports of mutations in CCDC8 causing 3-M syndrome.
METHODS: Two patients presenting with mild short stature underwent whole exome sequencing. The mutation was confirmed via Sanger sequencing. We compare the clinical characteristics of our 2 patients to patients previously reported with mutations in the same gene.
RESULTS: Exome sequencing identified a homozygous frameshift mutation in CCDC8 in both patients. They presented with a much milder phenotype than previously described patients with the same mutation.
CONCLUSION: In this study, we report a case of 2 sisters with relatively mild short stature who were found via exome sequencing to carry a previously reported homozygous mutation in CCDC8. These patients expand the anthropometric phenotype of 3-M syndrome and demonstrate the power of exome sequencing in the diagnosis of children with short stature. 3-M syndrome should be considered in children with mild skeletal abnormalities, normal/high growth hormone-IGF axis parameters, and normal intelligence.
PMID: 28675896 [PubMed - as supplied by publisher]
PD-1 inhibition in congenital pigment synthesizing metastatic melanoma.
PD-1 inhibition in congenital pigment synthesizing metastatic melanoma.
Pediatr Blood Cancer. 2017 Jul 04;:
Authors: Weyand AC, Mody RJ, Rabah RM, Opipari VP
Abstract
A newborn female child was born with a congenital pigment synthesizing melanoma of the scalp. Further workup revealed metastatic disease within the liver, lungs, and left tibia. Whole exome sequencing was performed on multiple samples that revealed one somatic mutation, lysine methyltransferase 2C (KMT2C), at low allelic frequency but no v-Raf murine sarcoma viral oncogene homolog B (BRAF), NF-1 mutation. Programmed death ligand 1 was moderately expressed. Treatment was initiated with the programmed cell death protein 1 inhibitor nivolumab. The patient tolerated this treatment well with minimal toxicity. She is now over a year out from initial diagnosis, continuing on nivolumab, with stable disease.
PMID: 28675691 [PubMed - as supplied by publisher]
Compound heterozygosity for loss-of-function GARS variants results in a multi-system developmental syndrome that includes severe growth retardation.
Compound heterozygosity for loss-of-function GARS variants results in a multi-system developmental syndrome that includes severe growth retardation.
Hum Mutat. 2017 Jul 04;:
Authors: Oprescu SN, Chepa-Lotrea X, Takase R, Golas G, Markello TC, Adams DR, Toro C, Gropman AL, Hou YM, Malicdan MCV, Gahl WA, Tifft CJ, Antonellis A
Abstract
Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed enzymes that ligate amino acids onto tRNA molecules. Genes encoding ARSs have been implicated in myriad dominant and recessive disease phenotypes. Glycyl-tRNA synthetase (GARS) is a bi-functional ARS that charges tRNA(Gly) in the cytoplasm and mitochondria. GARS variants have been associated with dominant Charcot-Marie-Tooth disease but have not been convincingly implicated in recessive phenotypes. Here we describe a patient from the NIH Undiagnosed Diseases Program with a multi-system, developmental phenotype. Whole-exome sequence analysis revealed that the patient is compound heterozygous for one frameshift (p.Glu83Ilefs*6) and one missense (p.Arg310Gln) GARS variant. Using in vitro and in vivo functional studies, we show that both GARS variants cause a loss-of-function effect: the frameshift variant results in depleted protein levels and the missense variant reduces GARS tRNA charging activity. In support of GARS variant pathogenicity, our patient shows striking phenotypic overlap with other patients having ARS-related recessive diseases, including features associated with variants in both cytoplasmic and mitochondrial ARSs; this observation is consistent with the essential function of GARS in both cellular locations. In summary, our clinical, genetic, and functional analyses expand the phenotypic spectrum associated with GARS variants. This article is protected by copyright. All rights reserved.
PMID: 28675565 [PubMed - as supplied by publisher]
Epileptic Encephalopathies as Neurodegenerative Disorders.
Epileptic Encephalopathies as Neurodegenerative Disorders.
Adv Neurobiol. 2017;15:295-315
Authors: Helbig I, von Deimling M, Marsh ED
Abstract
The epileptic encephalopathies are severe and often treatment-resistant conditions that are associated with a progressive disturbance of brain function, resulting in a broad range of neurological and non-neurological comorbidities. The concept of epileptic encephalopathies entails that the encephalopathy aspect of the overall condition is primarily driven by the epileptic activity of the disease, which often manifests as specific and pathological features on the electroencephalogram. Genetic factors in epileptic encephalopathies are increasingly recognized. As of 2016, more than 30 genes have been securely implicated as causative genes for genetic epileptic encephalopathies. Even though the traditional concept of epileptic encephalopathies entails that the progressive disturbance of brain dysfunction is primarily due to the abnormal hypersynchronous activity that underlies the seizure disorders, this strict concept rarely holds true for patients with identified genetic etiologies. More commonly, an underlying genetic etiology is thought to predispose both to the neurodevelopmental comorbidities and to the seizure phenotype with a complex interaction between both. In this chapter, we will elucidate to what extent neurodegeneration rather than epilepsy-related regression is a feature of the common epileptic encephalopathies, drawing parallels between two relatively separate fields of neurogenetic research.
PMID: 28674986 [PubMed - in process]
A Novel Hypokalemic-Alkalotic Salt-Losing Tubulopathy in Patients with CLDN10 Mutations.
A Novel Hypokalemic-Alkalotic Salt-Losing Tubulopathy in Patients with CLDN10 Mutations.
J Am Soc Nephrol. 2017 Jul 03;:
Authors: Bongers EMHF, Shelton LM, Milatz S, Verkaart S, Bech AP, Schoots J, Cornelissen EAM, Bleich M, Hoenderop JGJ, Wetzels JFM, Lugtenberg D, Nijenhuis T
Abstract
Mice lacking distal tubular expression of CLDN10, the gene encoding the tight junction protein Claudin-10, show enhanced paracellular magnesium and calcium permeability and reduced sodium permeability in the thick ascending limb (TAL), leading to a urine concentrating defect. However, the function of renal Claudin-10 in humans remains undetermined. We identified and characterized CLDN10 mutations in two patients with a hypokalemic-alkalotic salt-losing nephropathy. The first patient was diagnosed with Bartter syndrome (BS) >30 years ago. At re-evaluation, we observed hypocalciuria and hypercalcemia, suggesting Gitelman syndrome (GS). However, serum magnesium was in the upper normal to hypermagnesemic range, thiazide responsiveness was not blunted, and genetic analyses did not show mutations in genes associated with GS or BS. Whole-exome sequencing revealed compound heterozygous CLDN10 sequence variants [c.446C>G (p.Pro149Arg) and c.465-1G>A (p.Glu157_Tyr192del)]. The patient had reduced urinary concentrating ability, with a preserved aquaporin-2 response to desmopressin and an intact response to furosemide. These findings were not in line with any other known salt-losing nephropathy. Subsequently, we identified a second unrelated patient showing a similar phenotype, in whom we detected compound heterozygous CLDN10 sequence variants [c.446C>G (p.(Pro149Arg) and c.217G>A (p.Asp73Asn)]. Cell surface biotinylation and immunofluorescence experiments in cells expressing the encoded mutants showed that only one mutation caused significant differences in Claudin-10 membrane localization and tight junction strand formation, indicating that these alterations do not fully explain the phenotype. These data suggest that pathogenic CLDN10 mutations affect TAL paracellular ion transport and cause a novel tight junction disease characterized by a non-BS, non-GS autosomal recessive hypokalemic-alkalotic salt-losing phenotype.
PMID: 28674042 [PubMed - as supplied by publisher]
Brain involvement in Charcot-Marie-Tooth disease due to ganglioside-induced differentiation associated-protein 1 mutation.
Brain involvement in Charcot-Marie-Tooth disease due to ganglioside-induced differentiation associated-protein 1 mutation.
Neuromuscul Disord. 2017 Jun 07;:
Authors: Al-Ghamdi F, Anselm I, Yang E, Ghosh PS
Abstract
Charcot-Marie-Tooth (CMT) due to ganglioside-induced differentiation associated-protein 1 (GDAP1) gene mutation can be inherited as an autosomal recessive (severe phenotype) or dominant (milder phenotype) disorder. GDAP1 protein, located in the outer mitochondrial membrane, is involved in the mitochondrial fission. Brain imaging abnormalities have not been reported in this condition. We described an 8-year-old boy who had an early onset autosomal recessive neuropathy. Whole exome sequencing revealed compound heterozygous mutations in the GDAP1 gene: c.313_313delA, p.Arg105Glufs*3 - a novel mutation (maternally inherited) and c.358C>T, pR120W - a known pathogenic mutation (paternally inherited). He had abnormal brain MRI findings since infancy localized to the middle cerebellar peduncles and cerebellar white matter with sparing of the supratentorial brain. We speculate that GDAP1 protein due to its widespread distribution and mitochondrial location is responsible for these imaging abnormalities. This report expands the spectrum of brain imaging abnormalities seen in different types of CMT.
PMID: 28673555 [PubMed - as supplied by publisher]
SEQSpark: A Complete Analysis Tool for Large-Scale Rare Variant Association Studies using Whole-Genome and Exome Sequence Data.
SEQSpark: A Complete Analysis Tool for Large-Scale Rare Variant Association Studies using Whole-Genome and Exome Sequence Data.
Am J Hum Genet. 2017 Jun 27;:
Authors: Zhang D, Zhao L, Li B, He Z, Wang GT, Liu DJ, Leal SM
Abstract
Massively parallel sequencing technologies provide great opportunities for discovering rare susceptibility variants involved in complex disease etiology via large-scale imputation and exome and whole-genome sequence-based association studies. Due to modest effect sizes, large sample sizes of tens to hundreds of thousands of individuals are required for adequately powered studies. Current analytical tools are obsolete when it comes to handling these large datasets. To facilitate the analysis of large-scale sequence-based studies, we developed SEQSpark which implements parallel processing based on Spark to increase the speed and efficiency of performing data quality control, annotation, and association analysis. To demonstrate the versatility and speed of SEQSpark, we analyzed whole-genome sequence data from the UK10K, testing for associations with waist-to-hip ratios. The analysis, which was completed in 1.5 hr, included loading data, annotation, principal component analysis, and single variant and rare variant aggregate association analysis of >9 million variants. For rare variant aggregate analysis, an exome-wide significant association (p < 2.5 × 10(-6)) was observed with CCDC62 (SKAT-O [p = 6.89 × 10(-7)], combined multivariate collapsing [p = 1.48 × 10(-6)], and burden of rare variants [p = 1.48 × 10(-6)]). SEQSpark was also used to analyze 50,000 simulated exomes and it required 1.75 hr for the analysis of a quantitative trait using several rare variant aggregate association methods. Additionally, the performance of SEQSpark was compared to Variant Association Tools and PLINK/SEQ. SEQSpark was always faster and in some situations computation was reduced to a hundredth of the time. SEQSpark will empower large sequence-based epidemiological studies to quickly elucidate genetic variation involved in the etiology of complex traits.
PMID: 28669402 [PubMed - as supplied by publisher]
Driving to Cancer on a Four-Lane Expressway.
Driving to Cancer on a Four-Lane Expressway.
Trends Genet. 2017 Jun 28;:
Authors: Galluzzi L, Vitale I
Abstract
Recent findings from a prospective clinical study involving multiregion whole-exome sequencing suggest that driver mutations in cancer-relevant genes including EGFR and TP53 are often clonal and precede whole-genome duplication events in early lung carcinogenesis. This paves an expressway to extensive subclonal diversification, elevated intratumoral heterogeneity, and dismal disease outcome.
PMID: 28668385 [PubMed - as supplied by publisher]
Exome sequencing reveals DNMT3A and ASXL1 variants associate with progression of chronic myeloid leukemia after tyrosine kinase inhibitor therapy.
Exome sequencing reveals DNMT3A and ASXL1 variants associate with progression of chronic myeloid leukemia after tyrosine kinase inhibitor therapy.
Leuk Res. 2017 Jun 16;59:142-148
Authors: Kim T, Tyndel MS, Zhang Z, Ahn J, Choi S, Szardenings M, Lipton JH, Kim HJ, Kim Dong Hwan D
Abstract
OBJECTIVE: The development of tyrosine kinase inhibitors (TKIs) has significantly improved the treatment of chronic myeloid leukemia (CML). However, approximately one third of patients are resistant to TKI and/or progress to advanced disease stages. TKI therapy failure has a well-known association with ABL1 kinase domain (KD) mutations, but only around half of TKI non-responders have detectable ABL1 KD mutations.
METHOD: We attempt to identify genetic markers associated with TKI therapy failure in 13 patients (5 resistant, 8 progressed) without ABL1 KD mutations using whole-exome sequencing.
RESULTS: In 6 patients, we detected mutations in 6 genes commonly mutated in other myeloid neoplasms: ABL1, ASXL1, DNMT3A, IDH1, SETBP1, and TP63. We then used targeted deep sequencing to validate our finding in an independent cohort consisting of 100 CML patients with varying drug responses (74 responsive, 18 resistant, and 8 progressed patients). Mutations in genes associated with epigenetic regulations such as DNMT3A and ASXL1 seem to play an important role in the pathogenesis of CML progression and TKI-resistance independent of ABL1 KD mutations.
CONCLUSION: This study suggests the involvement of other somatic mutations in the development of TKI resistant progression to advanced disease stages in CML, particularly in patients lacking ABL1 KD mutations.
PMID: 28667884 [PubMed - as supplied by publisher]
Untangling Genetic Risk for Alzheimer's Disease.
Untangling Genetic Risk for Alzheimer's Disease.
Biol Psychiatry. 2017 May 22;:
Authors: Pimenova AA, Raj T, Goate AM
Abstract
Alzheimer's disease (AD) is a genetically heterogeneous neurodegenerative disorder caused by fully penetrant single gene mutations in a minority of cases, while the majority of cases are sporadic or show modest familial clustering. These cases are of late onset and likely result from the interaction of many genes and the environment. More than 30 loci have been implicated in AD by a combination of linkage, genome-wide association, and whole genome/exome sequencing. We have learned from these studies that perturbations in endolysosomal, lipid metabolism, and immune response pathways substantially contribute to sporadic AD pathogenesis. We review here current knowledge about functions of AD susceptibility genes, highlighting cells of the myeloid lineage as drivers of at least part of the genetic component in late-onset AD. Although targeted resequencing utilized for the identification of causal variants has discovered coding mutations in some AD-associated genes, a lot of risk variants lie in noncoding regions. Here we discuss the use of functional genomics approaches that integrate transcriptomic, epigenetic, and endophenotype traits with systems biology to annotate genetic variants, and to facilitate discovery of AD risk genes. Further validation in cell culture and mouse models will be necessary to establish causality for these genes. This knowledge will allow mechanism-based design of novel therapeutic interventions in AD and promises coherent implementation of treatment in a personalized manner.
PMID: 28666525 [PubMed - as supplied by publisher]
(exome OR "exome sequencing") AND disease; +13 new citations
13 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
(exome OR "exome sequencing") AND disease
These pubmed results were generated on 2017/07/01
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
Landscape and variation of novel retroduplications in 26 human populations.
Landscape and variation of novel retroduplications in 26 human populations.
PLoS Comput Biol. 2017 Jun 29;13(6):e1005567
Authors: Zhang Y, Li S, Abyzov A, Gerstein MB
Abstract
Retroduplications come from reverse transcription of mRNAs and their insertion back into the genome. Here, we performed comprehensive discovery and analysis of retroduplications in a large cohort of 2,535 individuals from 26 human populations, as part of 1000 Genomes Phase 3. We developed an integrated approach to discover novel retroduplications combining high-coverage exome and low-coverage whole-genome sequencing data, utilizing information from both exon-exon junctions and discordant paired-end reads. We found 503 parent genes having novel retroduplications absent from the reference genome. Based solely on retroduplication variation, we built phylogenetic trees of human populations; these represent superpopulation structure well and indicate that variable retroduplications are effective population markers. We further identified 43 retroduplication parent genes differentiating superpopulations. This group contains several interesting insertion events, including a SLMO2 retroduplication and insertion into CAV3, which has a potential disease association. We also found retroduplications to be associated with a variety of genomic features: (1) Insertion sites were correlated with regular nucleosome positioning. (2) They, predictably, tend to avoid conserved functional regions, such as exons, but, somewhat surprisingly, also avoid introns. (3) Retroduplications tend to be co-inserted with young L1 elements, indicating recent retrotranspositional activity, and (4) they have a weak tendency to originate from highly expressed parent genes. Our investigation provides insight into the functional impact and association with genomic elements of retroduplications. We anticipate our approach and analytical methodology to have application in a more clinical context, where exome sequencing data is abundant and the discovery of retroduplications can potentially improve the accuracy of SNP calling.
PMID: 28662076 [PubMed - as supplied by publisher]
Clinical and genetic diversities of Charcot-Marie-Tooth disease with MFN2 mutations in a large case study.
Clinical and genetic diversities of Charcot-Marie-Tooth disease with MFN2 mutations in a large case study.
J Peripher Nerv Syst. 2017 Jun 29;:
Authors: Ando M, Hashiguchi A, Okamoto Y, Yoshimura A, Hiramatsu Y, Yuan J, Higuchi Y, Mitsui J, Ishiura H, Umemura A, Maruyama K, Matsushige T, Morishita S, Nakagawa M, Tsuji S, Takashima H
Abstract
Charcot-Marie-Tooth disease (CMT) constitutes a heterogeneous group affecting motor and sensory neurons in the peripheral nervous system. MFN2 mutations are the most common cause of axonal CMT. We describe the clinical and mutational spectra of CMT patients harboring MFN2 mutations in Japan. We analyzed 1334 unrelated patients with clinically suspected CMT referred by neurological and neuropediatric departments throughout Japan. We conducted mutation screening using a DNA microarray, targeted resequencing, and whole-exome sequencing. We identified pathogenic or likely pathogenic MFN2 variants from 79 CMT patients, comprising 44 heterozygous and 1 compound heterozygous variants. A total of 15 novel variants were detected. An autosomal dominant family history was determined in 43 cases, and the remaining 36 cases were reported as sporadic with no family history. The mean onset age of CMT in these patients was 12 ± 14 (range 0-59) years. We observed neuropathic symptoms in all patients. Some had optic atrophy, vocal cord paralysis, or spasticity. We detected a compound heterozygous MFN2 mutation in a patient with a severe phenotype and the co-occurrence of MFN2 and PMP22 mutations in a patient with an uncommon phenotype. MFN2 is the most frequent causative gene of CMT2 in Japan. We present 15 novel variants and broad clinical and mutational spectra of Japanese MFN2-related CMT patients. Regardless of the onset age and inheritance pattern, MFN2 gene analysis should be performed. Combinations of causative genes should be considered to explain the phenotypic diversity.
PMID: 28660751 [PubMed - as supplied by publisher]
Somatic Mutation Analyses in Studies of the Clonal Evolution and Diagnostic Targets of Prostate Cancer.
Somatic Mutation Analyses in Studies of the Clonal Evolution and Diagnostic Targets of Prostate Cancer.
Curr Genomics. 2017 Jun;18(3):236-243
Authors: Mikhaylenko DS, Efremov GD, Strelnikov VV, Zaletaev DV, Alekseev BY
Abstract
Prostate cancer (PC) is the most common uro-oncological disease in the global population and still requires a more efficient laboratory diagnosis. Point mutations of oncogenes and tumor sup-pressor genes are the most frequent molecular genetic events in carcinogenesis. The mutations are re-sponsible, to a great extent, for the clonal evolution of cancer and can be considered as primary candi-date molecular markers of PC. Using next-generation sequencing to analyze the mutations in PC, the main molecular PC subtypes were identified, which depended on the presence of fusion genes and FOXA1, CHD1, and SPOP point mutations; other driver mutations responsible for the progression of PC subclones were also characterized. This review summarizes the data on early PC genetic markers (an mtDNA deletion, and TMPRSS2:ERG expression), as well as these somatic mutations at later stages of PC. Emphasis is placed on a switch in AR synthesis to a constitutively active variant and the point muta-tions that facilitate PC transition to a castration-refractory state that is resistant to new AR inhibitors. Based on the current whole-exome sequencing data, the frequencies and localizations of the somatic mu-tations that may provide new genetic diagnostic markers and drug targets are described.
PMID: 28659719 [PubMed - in process]
Identification of EGFLAM, SPATC1L and RNASE13 as novel susceptibility loci for aortic aneurysm in Japanese individuals by exome-wide association studies.
Identification of EGFLAM, SPATC1L and RNASE13 as novel susceptibility loci for aortic aneurysm in Japanese individuals by exome-wide association studies.
Int J Mol Med. 2017 May;39(5):1091-1100
Authors: Yamada Y, Sakuma J, Takeuchi I, Yasukochi Y, Kato K, Oguri M, Fujimaki T, Horibe H, Muramatsu M, Sawabe M, Fujiwara Y, Taniguchi Y, Obuchi S, Kawai H, Shinkai S, Mori S, Arai T, Tanaka M
Abstract
We performed an exome-wide association study (EWAS) to identify genetic variants - in particular, low‑frequency or rare variants with a moderate to large effect size - that confer susceptibility to aortic aneurysm with 8,782 Japanese subjects (456 patients with aortic aneurysm, 8,326 control individuals) and with the use of Illumina HumanExome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays. The correlation of allele frequencies for 41,432 single nucleotide polymorphisms (SNPs) that passed quality control to aortic aneurysm was examined with Fisher's exact test. Based on Bonferroni's correction, a P-value of <1.21x10-6 was considered statistically significant. The EWAS revealed 59 SNPs that were significantly associated with aortic aneurysm. None of these SNPs was significantly (P<2.12x10-4) associated with aortic aneurysm by multivariable logistic regression analysis with adjustment for age, gender and hypertension, although 8 SNPs were related (P<0.05) to this condition. Examination of the correlation of these latter 8 SNPs to true or dissecting aortic aneurysm separately showed that rs1465567 [T/C (W229R)] of the EGF-like, fibronectin type III, and laminin G domains gene (EGFLAM) (dominant model; P=0.0014; odds ratio, 1.63) was significantly (P<0.0016) associated with true aortic aneurysm. We next performed EWASs for true or dissecting aortic aneurysm separately and found that 45 and 19 SNPs were significantly associated with these conditions, respectively. Multivariable logistic regression analysis with adjustment for covariates revealed that rs113710653 [C/T (E231K)] of the spermatogenesis- and centriole associated 1-like gene (SPATC1L) (dominant model; P=0.0002; odds ratio, 5.32) and rs143881017 [C/T (R140H)] of the ribonuclease A family member 13 gene (RNASE13) (dominant model; P=0.0006; odds ratio, 5.77) were significantly (P<2.78x10-4 or P<6.58x10-4, respectively) associated with true or dissecting aortic aneurysm, respectively. EGFLAM and SPATC1L may thus be susceptibility loci for true aortic aneurysm and RNASE13 may be such a locus for dissecting aneurysm in Japanese individuals.
PMID: 28339009 [PubMed - indexed for MEDLINE]
CD55 Deficiency, Early-Onset Protein-Losing Enteropathy, and Thrombosis.
CD55 Deficiency, Early-Onset Protein-Losing Enteropathy, and Thrombosis.
N Engl J Med. 2017 Jun 28;:
Authors: Ozen A, Comrie WA, Ardy RC, Domínguez Conde C, Dalgic B, Beser ÖF, Morawski AR, Karakoc-Aydiner E, Tutar E, Baris S, Ozcay F, Serwas NK, Zhang Y, Matthews HF, Pittaluga S, Folio LR, Unlusoy Aksu A, McElwee JJ, Krolo A, Kiykim A, Baris Z, Gulsan M, Ogulur I, Snapper SB, Houwen RHJ, Leavis HL, Ertem D, Kain R, Sari S, Erkan T, Su HC, Boztug K, Lenardo MJ
Abstract
Background Studies of monogenic gastrointestinal diseases have revealed molecular pathways critical to gut homeostasis and enabled the development of targeted therapies. Methods We studied 11 patients with abdominal pain and diarrhea caused by early-onset protein-losing enteropathy with primary intestinal lymphangiectasia, edema due to hypoproteinemia, malabsorption, and less frequently, bowel inflammation, recurrent infections, and angiopathic thromboembolic disease; the disorder followed an autosomal recessive pattern of inheritance. Whole-exome sequencing was performed to identify gene variants. We evaluated the function of CD55 in patients' cells, which we confirmed by means of exogenous induction of expression of CD55. Results We identified homozygous loss-of-function mutations in the gene encoding CD55 (decay-accelerating factor), which lead to loss of protein expression. Patients' T lymphocytes showed increased complement activation causing surface deposition of complement and the generation of soluble C5a. Costimulatory function and cytokine modulation by CD55 were defective. Genetic reconstitution of CD55 or treatment with a complement-inhibitory therapeutic antibody reversed abnormal complement activation. Conclusions CD55 deficiency with hyperactivation of complement, angiopathic thrombosis, and protein-losing enteropathy (the CHAPLE syndrome) is caused by abnormal complement activation due to biallelic loss-of-function mutations in CD55. (Funded by the National Institute of Allergy and Infectious Diseases and others.).
PMID: 28657829 [PubMed - as supplied by publisher]