Deep learning

Artificial intelligence in surgery

Mon, 2024-05-13 06:00

Nat Med. 2024 May 13. doi: 10.1038/s41591-024-02970-3. Online ahead of print.

ABSTRACT

Artificial intelligence (AI) is rapidly emerging in healthcare, yet applications in surgery remain relatively nascent. Here we review the integration of AI in the field of surgery, centering our discussion on multifaceted improvements in surgical care in the preoperative, intraoperative and postoperative space. The emergence of foundation model architectures, wearable technologies and improving surgical data infrastructures is enabling rapid advances in AI interventions and utility. We discuss how maturing AI methods hold the potential to improve patient outcomes, facilitate surgical education and optimize surgical care. We review the current applications of deep learning approaches and outline a vision for future advances through multimodal foundation models.

PMID:38740998 | DOI:10.1038/s41591-024-02970-3

Categories: Literature Watch

Structural annotation of unknown molecules in a miniaturized mass spectrometer based on a transformer enabled fragment tree method

Mon, 2024-05-13 06:00

Commun Chem. 2024 May 13;7(1):109. doi: 10.1038/s42004-024-01189-0.

ABSTRACT

Structural annotation of small molecules in tandem mass spectrometry has always been a central challenge in mass spectrometry analysis, especially using a miniaturized mass spectrometer for on-site testing. Here, we propose the Transformer enabled Fragment Tree (TeFT) method, which combines various types of fragmentation tree models and a deep learning Transformer module. It is aimed to generate the specific structure of molecules de novo solely from mass spectrometry spectra. The evaluation results on different open-source databases indicated that the proposed model achieved remarkable results in that the majority of molecular structures of compounds in the test can be successfully recognized. Also, the TeFT has been validated on a miniaturized mass spectrometer with low-resolution spectra for 16 flavonoid alcohols, achieving complete structure prediction for 8 substances. Finally, TeFT confirmed the structure of the compound contained in a Chinese medicine substance called the Anweiyang capsule. These results indicate that the TeFT method is suitable for annotating fragmentation peaks with clear fragmentation rules, particularly when applied to on-site mass spectrometry with lower mass resolution.

PMID:38740942 | DOI:10.1038/s42004-024-01189-0

Categories: Literature Watch

Computer vision models enable mixed linear modeling to predict arbuscular mycorrhizal fungal colonization using fungal morphology

Mon, 2024-05-13 06:00

Sci Rep. 2024 May 13;14(1):10866. doi: 10.1038/s41598-024-61181-5.

ABSTRACT

The presence of Arbuscular Mycorrhizal Fungi (AMF) in vascular land plant roots is one of the most ancient of symbioses supporting nitrogen and phosphorus exchange for photosynthetically derived carbon. Here we provide a multi-scale modeling approach to predict AMF colonization of a worldwide crop from a Recombinant Inbred Line (RIL) population derived from Sorghum bicolor and S. propinquum. The high-throughput phenotyping methods of fungal structures here rely on a Mask Region-based Convolutional Neural Network (Mask R-CNN) in computer vision for pixel-wise fungal structure segmentations and mixed linear models to explore the relations of AMF colonization, root niche, and fungal structure allocation. Models proposed capture over 95% of the variation in AMF colonization as a function of root niche and relative abundance of fungal structures in each plant. Arbuscule allocation is a significant predictor of AMF colonization among sibling plants. Arbuscules and extraradical hyphae implicated in nutrient exchange predict highest AMF colonization in the top root section. Our work demonstrates that deep learning can be used by the community for the high-throughput phenotyping of AMF in plant roots. Mixed linear modeling provides a framework for testing hypotheses about AMF colonization phenotypes as a function of root niche and fungal structure allocations.

PMID:38740920 | DOI:10.1038/s41598-024-61181-5

Categories: Literature Watch

Deep-learning survival analysis for patients with calcific aortic valve disease undergoing valve replacement

Mon, 2024-05-13 06:00

Sci Rep. 2024 May 13;14(1):10902. doi: 10.1038/s41598-024-61685-0.

ABSTRACT

Calcification of the aortic valve (CAVDS) is a major cause of aortic stenosis (AS) leading to loss of valve function which requires the substitution by surgical aortic valve replacement (SAVR) or transcatheter aortic valve intervention (TAVI). These procedures are associated with high post-intervention mortality, then the corresponding risk assessment is relevant from a clinical standpoint. This study compares the traditional Cox Proportional Hazard (CPH) against Machine Learning (ML) based methods, such as Deep Learning Survival (DeepSurv) and Random Survival Forest (RSF), to identify variables able to estimate the risk of death one year after the intervention, in patients undergoing either to SAVR or TAVI. We found that with all three approaches the combination of six variables, named albumin, age, BMI, glucose, hypertension, and clonal hemopoiesis of indeterminate potential (CHIP), allows for predicting mortality with a c-index of approximately 80 % . Importantly, we found that the ML models have a better prediction capability, making them as effective for statistical analysis in medicine as most state-of-the-art approaches, with the additional advantage that they may expose non-linear relationships. This study aims to improve the early identification of patients at higher risk of death, who could then benefit from a more appropriate therapeutic intervention.

PMID:38740898 | DOI:10.1038/s41598-024-61685-0

Categories: Literature Watch

NGMD: next generation malware detection in federated server with deep neural network model for autonomous networks

Mon, 2024-05-13 06:00

Sci Rep. 2024 May 13;14(1):10898. doi: 10.1038/s41598-024-61298-7.

ABSTRACT

Distributed denial-of-service (DDoS) attacks persistently proliferate, impacting individuals and Internet Service Providers (ISPs). Deep learning (DL) models are paving the way to address these challenges and the dynamic nature of potential threats. Traditional detection systems, relying on signature-based techniques, are susceptible to next-generation malware. Integrating DL approaches in cloud-edge/federated servers enhances the resilience of these systems. In the Internet of Things (IoT) and autonomous networks, DL, particularly federated learning, has gained prominence for attack detection. Unlike conventional models (centralized and localized DL), federated learning does not require access to users' private data for attack detection. This approach is gaining much interest in academia and industry due to its deployment on local and global cloud-edge models. Recent advancements in DL enable training a quality cloud-edge model across various users (collaborators) without exchanging personal information. Federated learning, emphasizing privacy preservation at the cloud-edge terminal, holds significant potential for facilitating privacy-aware learning among collaborators. This paper addresses: (1) The deployment of an optimized deep neural network for network traffic classification. (2) The coordination of federated server model parameters with training across devices in IoT domains. A federated flowchart is proposed for training and aggregating local model updates. (3) The generation of a global model at the cloud-edge terminal after multiple rounds between domains and servers. (4) Experimental validation on the BoT-IoT dataset demonstrates that the federated learning model can reliably detect attacks with efficient classification, privacy, and confidentiality. Additionally, it requires minimal memory space for storing training data, resulting in minimal network delay. Consequently, the proposed framework outperforms both centralized and localized DL models, achieving superior performance.

PMID:38740843 | DOI:10.1038/s41598-024-61298-7

Categories: Literature Watch

Local spatial and temporal relation discovery model based on attention mechanism for traffic forecasting

Mon, 2024-05-13 06:00

Neural Netw. 2024 May 6;176:106365. doi: 10.1016/j.neunet.2024.106365. Online ahead of print.

ABSTRACT

Recognizing the evolution pattern of traffic condition and making accurate prediction play a vital role in intelligent transportation systems (ITS). With the massive increase of available traffic data, deep learning-based models have attracted considerable attention for their impressive performance in traffic forecasting. However, the majority of existing approaches neglect to model of asynchronously dynamic spatio-temporal correlation and fail to consider the impact of historical traffic data on future condition. Additionally, the attribute of deep learning method presents challenges in interpreting the explicit spatiotemporal relationships. In order to enhance the accuracy of traffic prediction as well as extract comprehensive and explainable spatial-temporal relevance in traffic networks, we propose a novel attention-based local spatial and temporal relation discovery (ALSTRD) model. Our model firstly implements feature representation learning to effectively express latent input traffic information. Then, a local attention mechanism structure is established to model asynchronous dependencies of historical input data. Finally, another attention network and the Pearson Correlation Coefficient method are introduced to extract the elaborate influence of the historical traffic condition of neighboring roads on the future condition of the target road. The experiment results on several datasets demonstrate that our model achieves significant improvements in prediction accuracy compared to other baseline methods, which can be attributed to its ability to extract the fine-grained correlation among historical traffic data and capture the dynamic association between past and future data. In addition, the incorporation of attention mechanism and Pearson Correlation Coefficient promotes the model's ability to elucidate spatiotemporal correlations among traffic data, thereby providing a more robust explanation.

PMID:38739964 | DOI:10.1016/j.neunet.2024.106365

Categories: Literature Watch

Predicting Antimicrobial Peptides Using ESMFold-Predicted Structures and ESM-2-Based Amino Acid Features with Graph Deep Learning

Mon, 2024-05-13 06:00

J Chem Inf Model. 2024 May 13. doi: 10.1021/acs.jcim.3c02061. Online ahead of print.

ABSTRACT

Currently, antimicrobial resistance constitutes a serious threat to human health. Drugs based on antimicrobial peptides (AMPs) constitute one of the alternatives to address it. Shallow and deep learning (DL)-based models have mainly been built from amino acid sequences to predict AMPs. Recent advances in tertiary (3D) structure prediction have opened new opportunities in this field. In this sense, models based on graphs derived from predicted peptide structures have recently been proposed. However, these models are not in correspondence with state-of-the-art approaches to codify evolutionary information, and, in addition, they are memory- and time-consuming because depend on multiple sequence alignment. Herein, we presented a framework to create alignment-free models based on graph representations generated from ESMFold-predicted peptide structures, whose nodes are characterized with amino acid-level evolutionary information derived from the Evolutionary Scale Modeling (ESM-2) models. A graph attention network (GAT) was implemented to assess the usefulness of the framework in the AMP classification. To this end, a set comprised of 67,058 peptides was used. It was demonstrated that the proposed methodology allowed to build GAT models with generalization abilities consistently better than 20 state-of-the-art non-DL-based and DL-based models. The best GAT models were developed using evolutionary information derived from the 36- and 33-layer ESM-2 models. Similarity studies showed that the best-built GAT models codified different chemical spaces, and thus they were fused to significantly improve the classification. In general, the results suggest that esm-AxP-GDL is a promissory tool to develop good, structure-dependent, and alignment-free models that can be successfully applied in the screening of large data sets. This framework should not only be useful to classify AMPs but also for modeling other peptide and protein activities.

PMID:38739853 | DOI:10.1021/acs.jcim.3c02061

Categories: Literature Watch

A comprehensive review of protein-centric predictors for biomolecular interactions: from proteins to nucleic acids and beyond

Mon, 2024-05-13 06:00

Brief Bioinform. 2024 Mar 27;25(3):bbae162. doi: 10.1093/bib/bbae162.

ABSTRACT

Proteins interact with diverse ligands to perform a large number of biological functions, such as gene expression and signal transduction. Accurate identification of these protein-ligand interactions is crucial to the understanding of molecular mechanisms and the development of new drugs. However, traditional biological experiments are time-consuming and expensive. With the development of high-throughput technologies, an increasing amount of protein data is available. In the past decades, many computational methods have been developed to predict protein-ligand interactions. Here, we review a comprehensive set of over 160 protein-ligand interaction predictors, which cover protein-protein, protein-nucleic acid, protein-peptide and protein-other ligands (nucleotide, heme, ion) interactions. We have carried out a comprehensive analysis of the above four types of predictors from several significant perspectives, including their inputs, feature profiles, models, availability, etc. The current methods primarily rely on protein sequences, especially utilizing evolutionary information. The significant improvement in predictions is attributed to deep learning methods. Additionally, sequence-based pretrained models and structure-based approaches are emerging as new trends.

PMID:38739759 | DOI:10.1093/bib/bbae162

Categories: Literature Watch

CNSMolGen: A Bidirectional Recurrent Neural Network-Based Generative Model for De Novo Central Nervous System Drug Design

Mon, 2024-05-13 06:00

J Chem Inf Model. 2024 May 13. doi: 10.1021/acs.jcim.4c00504. Online ahead of print.

ABSTRACT

Central nervous system (CNS) drugs have had a significant impact on treating a wide range of neurodegenerative and psychiatric disorders. In recent years, deep learning-based generative models have shown great potential for accelerating drug discovery and improving efficacy. However, specific applications of these techniques in CNS drug discovery have not been widely reported. In this study, we developed the CNSMolGen model, which uses a framework of bidirectional recurrent neural networks (Bi-RNNs) for de novo molecular design of CNS drugs. Results showed that the pretrained model was able to generate more than 90% of completely new molecular structures, which possessed the properties of CNS drug molecules and were synthesizable. In addition, transfer learning was performed on small data sets with specific biological activities to evaluate the potential application of the model for CNS drug optimization. Here, we used drugs against the classical CNS disease target serotonin transporter (SERT) as a fine-tuned data set and generated a focused database against the target protein. The potential biological activities of the generated molecules were verified by using the physics-based induced-fit docking study. The success of this model demonstrates its potential in CNS drug design and optimization, which provides a new impetus for future CNS drug development.

PMID:38739718 | DOI:10.1021/acs.jcim.4c00504

Categories: Literature Watch

A multifaceted suite of metrics for comparative myoelectric prosthesis controller research

Mon, 2024-05-13 06:00

PLoS One. 2024 May 13;19(5):e0291279. doi: 10.1371/journal.pone.0291279. eCollection 2024.

ABSTRACT

Upper limb robotic (myoelectric) prostheses are technologically advanced, but challenging to use. In response, substantial research is being done to develop person-specific prosthesis controllers that can predict a user's intended movements. Most studies that test and compare new controllers rely on simple assessment measures such as task scores (e.g., number of objects moved across a barrier) or duration-based measures (e.g., overall task completion time). These assessment measures, however, fail to capture valuable details about: the quality of device arm movements; whether these movements match users' intentions; the timing of specific wrist and hand control functions; and users' opinions regarding overall device reliability and controller training requirements. In this work, we present a comprehensive and novel suite of myoelectric prosthesis control evaluation metrics that better facilitates analysis of device movement details-spanning measures of task performance, control characteristics, and user experience. As a case example of their use and research viability, we applied these metrics in real-time control experimentation. Here, eight participants without upper limb impairment compared device control offered by a deep learning-based controller (recurrent convolutional neural network-based classification with transfer learning, or RCNN-TL) to that of a commonly used controller (linear discriminant analysis, or LDA). The participants wore a simulated prosthesis and performed complex functional tasks across multiple limb positions. Analysis resulting from our suite of metrics identified 16 instances of a user-facing problem known as the "limb position effect". We determined that RCNN-TL performed the same as or significantly better than LDA in four such problem instances. We also confirmed that transfer learning can minimize user training burden. Overall, this study contributes a multifaceted new suite of control evaluation metrics, along with a guide to their application, for use in research and testing of myoelectric controllers today, and potentially for use in broader rehabilitation technologies of the future.

PMID:38739557 | DOI:10.1371/journal.pone.0291279

Categories: Literature Watch

Cross-Domain Mutual-Assistance Learning Framework for Fully Automated Diagnosis of Primary Tumor in Nasopharyngeal Carcinoma

Mon, 2024-05-13 06:00

IEEE Trans Med Imaging. 2024 May 13;PP. doi: 10.1109/TMI.2024.3400406. Online ahead of print.

ABSTRACT

Accurate T-staging of nasopharyngeal carcinoma (NPC) holds paramount importance in guiding treatment decisions and prognosticating outcomes for distinct risk groups. Regrettably, the landscape of deep learning-based techniques for T-staging in NPC remains sparse, and existing methodologies often exhibit suboptimal performance due to their neglect of crucial domain-specific knowledge pertinent to primary tumor diagnosis. To address these issues, we propose a new cross-domain mutual-assistance learning framework for fully automated diagnosis of primary tumor using H&N MR images. Specifically, we tackle primary tumor diagnosis task with the convolutional neural network consisting of a 3D cross-domain knowledge perception network (CKP net) for excavated cross-domain-invariant features emphasizing tumor intensity variations and internal tumor heterogeneity, and a multi-domain mutual-information sharing fusion network (M2SF net), comprising a dual-pathway domain-specific representation module and a mutual information fusion module, for intelligently gauging and amalgamating multi-domain, multi-scale T-stage diagnosis-oriented features. The proposed 3D cross-domain mutual-assistance learning framework not only embraces task-specific multi-domain diagnostic knowledge but also automates the entire process of primary tumor diagnosis. We evaluate our model on an internal and an external MR images dataset in a three-fold cross-validation paradigm. Exhaustive experimental results demonstrate that our method outperforms the state-of-the-art algorithms, and obtains promising performance for tumor segmentation and T-staging. These findings underscore its potential for clinical application, offering valuable assistance to clinicians in treatment decision-making and prognostication for various risk groups.

PMID:38739507 | DOI:10.1109/TMI.2024.3400406

Categories: Literature Watch

MultiModRLBP: A Deep Learning Approach for Multi-Modal RNA-Small Molecule Ligand Binding Sites Prediction

Mon, 2024-05-13 06:00

IEEE J Biomed Health Inform. 2024 May 13;PP. doi: 10.1109/JBHI.2024.3400521. Online ahead of print.

ABSTRACT

This study aims to tackle the intricate challenge of predicting RNA-small molecule binding sites to explore the potential value in the field of RNA drug targets. To address this challenge, we propose the MultiModRLBP method, which integrates multi-modal features using deep learning algorithms. These features include 3D structural properties at the nucleotide base level of the RNA molecule, relational graphs based on overall RNA structure, and rich RNA semantic information. In our investigation, we gathered 851 interactions between RNA and small molecule ligand from the RNAglib dataset and RLBind training set. Unlike conventional training sets, this collection broadened its scope by including RNA complexes that have the same RNA sequence but change their respective binding sites due to structural differences or the presence of different ligands. This enhancement enables the MultiModRLBP model to more accurately capture subtle changes at the structural level, ultimately improving its ability to discern nuances among similar RNA conformations. Furthermore, we evaluated MultiModRLBP on two classic test sets, Test18 and Test3, highlighting its performance disparities on small molecules based on metal and non-metal ions. Additionally, we conducted a structural sensitivity analysis on specific complex categories, considering RNA instances with varying degrees of structural changes and whether they share the same ligands. The research results indicate that MultiModRLBP outperforms the current state-of-the-art methods on multiple classic test sets, particularly excelling in predicting binding sites for non-metal ions and instances where the binding sites are widely distributed along the sequence. MultiModRLBP also can be used as a potential tool when the RNA structure is perturbed or the RNA experimental tertiary structure is not available. Most importantly, MultiModRLBP exhibits the capability to distinguish binding characteristics of RNA that are structurally diverse yet exhibit sequence similarity. These advancements hold promise in reducing the costs associated with the development of RNA-targeted drugs.

PMID:38739505 | DOI:10.1109/JBHI.2024.3400521

Categories: Literature Watch

Precision and Robust Models on Healthcare Institution Federated Learning for Predicting HCC on Portal Venous CT Images

Mon, 2024-05-13 06:00

IEEE J Biomed Health Inform. 2024 May 13;PP. doi: 10.1109/JBHI.2024.3400599. Online ahead of print.

ABSTRACT

Hepatocellular carcinoma (HCC), the most common type of liver cancer, poses significant challenges in detection and diagnosis. Medical imaging, especially computed tomography (CT), is pivotal in non-invasively identifying this disease, requiring substantial expertise for interpretation. This research introduces an innovative strategy that integrates two-dimensional (2D) and three-dimensional (3D) deep learning models within a federated learning (FL) framework for precise segmentation of liver and tumor regions in medical images. The study utilized 131 CT scans from the Liver Tumor Segmentation (LiTS) challenge and demonstrated the superior efficiency and accuracy of the proposed Hybrid-ResUNet model with a Dice score of 0.9433 and an AUC of 0.9965 compared to ResNet and EfficientNet models. This FL approach is beneficial for conducting large-scale clinical trials while safeguarding patient privacy across healthcare settings. It facilitates active engagement in problem-solving, data collection, model development, and refinement. The study also addresses data imbalances in the FL context, showing resilience and highlighting local models' robust performance. Future research will concentrate on refining federated learning algorithms and their incorporation into the continuous implementation and deployment (CI/CD) processes in AI system operations, emphasizing the dynamic involvement of clients. We recommend a collaborative human-AI endeavor to enhance feature extraction and knowledge transfer. These improvements are intended to boost equitable and efficient data collaboration across various sectors in practical scenarios, offering a crucial guide for forthcoming research in medical AI.

PMID:38739503 | DOI:10.1109/JBHI.2024.3400599

Categories: Literature Watch

The Impact of Drop Test Conditions on Brain Strain Location and Severity: A Novel Approach Using a Deep Learning Model

Mon, 2024-05-13 06:00

Ann Biomed Eng. 2024 May 13. doi: 10.1007/s10439-024-03525-w. Online ahead of print.

ABSTRACT

In contact sports such as rugby, players are at risk of sustaining traumatic brain injuries (TBI) due to high-intensity head impacts that generate high linear and rotational accelerations of the head. Previous studies have established a clear link between high-intensity head impacts and brain strains that result in concussions. This study presents a novel approach to investigating the effect of a range of laboratory controlled drop test parameters on regional peak and mean maximum principal strain (MPS) predictions within the brain using a trained convolutional neural network (CNN). The CNN is publicly available at https://github.com/Jilab-biomechanics/CNN-brain-strains . The results of this study corroborate previous findings that impacts to the side of the head result in significantly higher regional MPS than forehead impacts. Forehead impacts tend to result in the lowest region-averaged MPS values for impacts where the surface angle was at 0° and 45°, while side impacts tend to result in higher regional peak and mean MPS. The absence of a neck in drop tests resulted in lower regional peak and mean MPS values. The results indicated that the relationship between drop test parameters and resulting regional peak and mean MPS predictions is complex. The study's findings offer valuable insights into how deep learning models can be used to provide more detailed insights into how drop test conditions impact regional MPS. The novel approach used in this paper to predict brain strains can be applied in the development of better methods to reduce the brain strain resulting from head accelerations such as protective sports headgear.

PMID:38739210 | DOI:10.1007/s10439-024-03525-w

Categories: Literature Watch

Multitask Learning Deep Neural Networks Enable Embedded Design of Active Metamaterials

Mon, 2024-05-13 06:00

ACS Appl Mater Interfaces. 2024 May 13. doi: 10.1021/acsami.4c01730. Online ahead of print.

ABSTRACT

In this study, we propose and implement a deep neural network framework based on multitask learning aimed at simplifying the forward modeling and inverse design process of photonic devices integrating active metasurfaces. We demonstrate and validate our approach by constructing a continuously tunable bandpass filter that is effective in the midwave infrared region. The key to this filter is the combination of a metasurface and Fabry-Perot (F-P) cavity structure of the tunable phase-change material Ge2Sb2Se4Te (GSST) and the precise control of the crystallinity of the GSST by a silicon-based heater. With the help of a deep learning framework, we are able to independently model the crystallinity and geometric parameters of the filter to maximize the use of GSST tuning for bandpass filtering. Our model discusses the self-attention mechanism and the effect of noise and compares several existing popular algorithms, and the results show that a multitask deep learning strategy can better assist the on-demand reverse design of photonic structures with phase change materials. This opens up new possibilities for personalization and functional extension of optical devices.

PMID:38739095 | DOI:10.1021/acsami.4c01730

Categories: Literature Watch

A Scoping Review of Artificial Intelligence Detection of Voice Pathology: Challenges and Opportunities

Mon, 2024-05-13 06:00

Otolaryngol Head Neck Surg. 2024 May 13. doi: 10.1002/ohn.809. Online ahead of print.

ABSTRACT

OBJECTIVE: Survey the current literature on artificial intelligence (AI) applications for detecting and classifying vocal pathology using voice recordings, and identify challenges and opportunities for advancing the field forward.

DATA SOURCES: PubMed, EMBASE, CINAHL, and Scopus databases.

REVIEW METHODS: A comprehensive literature search was performed following the Preferred Reporting Items for Systematic Reviews and Meta-analyses Extension for Scoping Reviews guidelines. Peer-reviewed journal articles in the English language were included if they used an AI approach to detect or classify pathological voices using voice recordings from patients diagnosed with vocal pathologies.

RESULTS: Eighty-two studies were included in the review between the years 2000 and 2023, with an increase in publication rate from one study per year in 2012 to 10 per year in 2022. Seventy-two studies (88%) were aimed at detecting the presence of voice pathology, 24 (29%) at classifying the type of voice pathology present, and 4 (5%) at assessing pathological voice using the Grade, Roughness, Breathiness, Asthenia, and Strain scale. Thirty-six databases were used to collect and analyze speech samples. Fourteen articles (17%) did not provide information about their AI model validation methodology. Zero studies moved beyond the preclinical and offline AI model development stages. Zero studies specified following a reporting guideline for AI research.

CONCLUSION: There is rising interest in the potential of AI technology to aid the detection and classification of voice pathology. Three challenges-and areas of opportunities-for advancing this research are heterogeneity of databases, lack of clinical validation studies, and inconsistent reporting.

PMID:38738887 | DOI:10.1002/ohn.809

Categories: Literature Watch

Convergence in simulating global soil organic carbon by structurally different models after data assimilation

Mon, 2024-05-13 06:00

Glob Chang Biol. 2024 May;30(5):e17297. doi: 10.1111/gcb.17297.

ABSTRACT

Current biogeochemical models produce carbon-climate feedback projections with large uncertainties, often attributed to their structural differences when simulating soil organic carbon (SOC) dynamics worldwide. However, choices of model parameter values that quantify the strength and represent properties of different soil carbon cycle processes could also contribute to model simulation uncertainties. Here, we demonstrate the critical role of using common observational data in reducing model uncertainty in estimates of global SOC storage. Two structurally different models featuring distinctive carbon pools, decomposition kinetics, and carbon transfer pathways simulate opposite global SOC distributions with their customary parameter values yet converge to similar results after being informed by the same global SOC database using a data assimilation approach. The converged spatial SOC simulations result from similar simulations in key model components such as carbon transfer efficiency, baseline decomposition rate, and environmental effects on carbon fluxes by these two models after data assimilation. Moreover, data assimilation results suggest equally effective simulations of SOC using models following either first-order or Michaelis-Menten kinetics at the global scale. Nevertheless, a wider range of data with high-quality control and assurance are needed to further constrain SOC dynamics simulations and reduce unconstrained parameters. New sets of data, such as microbial genomics-function relationships, may also suggest novel structures to account for in future model development. Overall, our results highlight the importance of observational data in informing model development and constraining model predictions.

PMID:38738805 | DOI:10.1111/gcb.17297

Categories: Literature Watch

Deep Learning Model for Cosmetic Gel Classification Based on a Short-Time Fourier Transform and Spectrogram

Mon, 2024-05-13 06:00

ACS Appl Mater Interfaces. 2024 May 13. doi: 10.1021/acsami.4c03675. Online ahead of print.

ABSTRACT

Cosmetics and topical medications, such as gels, foams, creams, and lotions, are viscoelastic substances that are applied to the skin or mucous membranes. The human perception of these materials is complex and involves multiple sensory modalities. Traditional panel-based sensory evaluations have limitations due to individual differences in sensory receptors and factors such as age, race, and gender. Therefore, this study proposes a deep-learning-based method for systematically analyzing and effectively identifying the physical properties of cosmetic gels. Time-series friction signals generated by rubbing the gels were measured. These signals were preprocessed through short-time Fourier transform (STFT) and continuous wavelet transform (CWT), respectively, and the frequency factors that change over time were distinguished and analyzed. The deep learning model employed a ResNet-based convolution neural network (CNN) structure with optimization achieved through a learning rate scheduler. The optimized STFT-based 2D CNN model outperforms the CWT-based 2D and 1D CNN models. The optimized STFT-based 2D CNN model also demonstrated robustness and reliability through k-fold cross-validation. This study suggests the potential for an innovative approach to replace traditional expert panel evaluations and objectively assess the user experience of cosmetics.

PMID:38738662 | DOI:10.1021/acsami.4c03675

Categories: Literature Watch

GPSFun: geometry-aware protein sequence function predictions with language models

Mon, 2024-05-13 06:00

Nucleic Acids Res. 2024 May 13:gkae381. doi: 10.1093/nar/gkae381. Online ahead of print.

ABSTRACT

Knowledge of protein function is essential for elucidating disease mechanisms and discovering new drug targets. However, there is a widening gap between the exponential growth of protein sequences and their limited function annotations. In our prior studies, we have developed a series of methods including GraphPPIS, GraphSite, LMetalSite and SPROF-GO for protein function annotations at residue or protein level. To further enhance their applicability and performance, we now present GPSFun, a versatile web server for Geometry-aware Protein Sequence Function annotations, which equips our previous tools with language models and geometric deep learning. Specifically, GPSFun employs large language models to efficiently predict 3D conformations of the input protein sequences and extract informative sequence embeddings. Subsequently, geometric graph neural networks are utilized to capture the sequence and structure patterns in the protein graphs, facilitating various downstream predictions including protein-ligand binding sites, gene ontologies, subcellular locations and protein solubility. Notably, GPSFun achieves superior performance to state-of-the-art methods across diverse tasks without requiring multiple sequence alignments or experimental protein structures. GPSFun is freely available to all users at https://bio-web1.nscc-gz.cn/app/GPSFun with user-friendly interfaces and rich visualizations.

PMID:38738636 | DOI:10.1093/nar/gkae381

Categories: Literature Watch

FM-FCN: A Neural Network with Filtering Modules for Accurate Vital Signs Extraction

Mon, 2024-05-13 06:00

Research (Wash D C). 2024 May 10;7:0361. doi: 10.34133/research.0361. eCollection 2024.

ABSTRACT

Neural networks excel at capturing local spatial patterns through convolutional modules, but they may struggle to identify and effectively utilize the morphological and amplitude periodic nature of physiological signals. In this work, we propose a novel network named filtering module fully convolutional network (FM-FCN), which fuses traditional filtering techniques with neural networks to amplify physiological signals and suppress noise. First, instead of using a fully connected layer, we use an FCN to preserve the time-dimensional correlation information of physiological signals, enabling multiple cycles of signals in the network and providing a basis for signal processing. Second, we introduce the FM as a network module that adapts to eliminate unwanted interference, leveraging the structure of the filter. This approach builds a bridge between deep learning and signal processing methodologies. Finally, we evaluate the performance of FM-FCN using remote photoplethysmography. Experimental results demonstrate that FM-FCN outperforms the second-ranked method in terms of both blood volume pulse (BVP) signal and heart rate (HR) accuracy. It substantially improves the quality of BVP waveform reconstruction, with a decrease of 20.23% in mean absolute error (MAE) and an increase of 79.95% in signal-to-noise ratio (SNR). Regarding HR estimation accuracy, FM-FCN achieves a decrease of 35.85% in MAE, 29.65% in error standard deviation, and 32.88% decrease in 95% limits of agreement width, meeting clinical standards for HR accuracy requirements. The results highlight its potential in improving the accuracy and reliability of vital sign measurement through high-quality BVP signal extraction. The codes and datasets are available online at https://github.com/zhaoqi106/FM-FCN.

PMID:38737196 | PMC:PMC11082448 | DOI:10.34133/research.0361

Categories: Literature Watch

Pages