Deep learning
Deep Trans-Omic Network Fusion for Molecular Mechanism of Alzheimer's Disease
J Alzheimers Dis. 2024 May 9. doi: 10.3233/JAD-240098. Online ahead of print.
ABSTRACT
BACKGROUND: There are various molecular hypotheses regarding Alzheimer's disease (AD) like amyloid deposition, tau propagation, neuroinflammation, and synaptic dysfunction. However, detailed molecular mechanism underlying AD remains elusive. In addition, genetic contribution of these molecular hypothesis is not yet established despite the high heritability of AD.
OBJECTIVE: The study aims to enable the discovery of functionally connected multi-omic features through novel integration of multi-omic data and prior functional interactions.
METHODS: We propose a new deep learning model MoFNet with improved interpretability to investigate the AD molecular mechanism and its upstream genetic contributors. MoFNet integrates multi-omic data with prior functional interactions between SNPs, genes, and proteins, and for the first time models the dynamic information flow from DNA to RNA and proteins.
RESULTS: When evaluated using the ROS/MAP cohort, MoFNet outperformed other competing methods in prediction performance. It identified SNPs, genes, and proteins with significantly more prior functional interactions, resulting in three multi-omic subnetworks. SNP-gene pairs identified by MoFNet were mostly eQTLs specific to frontal cortex tissue where gene/protein data was collected. These molecular subnetworks are enriched in innate immune system, clearance of misfolded proteins, and neurotransmitter release respectively. We validated most findings in an independent dataset. One multi-omic subnetwork consists exclusively of core members of SNARE complex, a key mediator of synaptic vesicle fusion and neurotransmitter transportation.
CONCLUSIONS: Our results suggest that MoFNet is effective in improving classification accuracy and in identifying multi-omic markers for AD with improved interpretability. Multi-omic subnetworks identified by MoFNet provided insights of AD molecular mechanism with improved details.
PMID:38728189 | DOI:10.3233/JAD-240098
LENAS: Learning-Based Neural Architecture Search and Ensemble for 3-D Radiotherapy Dose Prediction
IEEE Trans Cybern. 2024 May 10;PP. doi: 10.1109/TCYB.2024.3390769. Online ahead of print.
ABSTRACT
Radiation therapy treatment planning requires balancing the delivery of the target dose while sparing normal tissues, making it a complex process. To streamline the planning process and enhance its quality, there is a growing demand for knowledge-based planning (KBP). Ensemble learning has shown impressive power in various deep learning tasks, and it has great potential to improve the performance of KBP. However, the effectiveness of ensemble learning heavily depends on the diversity and individual accuracy of the base learners. Moreover, the complexity of model ensembles is a major concern, as it requires maintaining multiple models during inference, leading to increased computational cost and storage overhead. In this study, we propose a novel learning-based ensemble approach named LENAS, which integrates neural architecture search with knowledge distillation for 3-D radiotherapy dose prediction. Our approach starts by exhaustively searching each block from an enormous architecture space to identify multiple architectures that exhibit promising performance and significant diversity. To mitigate the complexity introduced by the model ensemble, we adopt the teacher-student paradigm, leveraging the diverse outputs from multiple learned networks as supervisory signals to guide the training of the student network. Furthermore, to preserve high-level semantic information, we design a hybrid loss to optimize the student network, enabling it to recover the knowledge embedded within the teacher networks. The proposed method has been evaluated on two public datasets: 1) OpenKBP and 2) AIMIS. Extensive experimental results demonstrate the effectiveness of our method and its superior performance to the state-of-the-art methods. Code: github.com/hust-linyi/LENAS.
PMID:38728131 | DOI:10.1109/TCYB.2024.3390769
HOPE: High-Order Polynomial Expansion of Black-Box Neural Networks
IEEE Trans Pattern Anal Mach Intell. 2024 May 10;PP. doi: 10.1109/TPAMI.2024.3399197. Online ahead of print.
ABSTRACT
Despite their remarkable performance, deep neural networks remain mostly "black boxes", suggesting inexplicability and hindering their wide applications in fields requiring making rational decisions. Here we introduce HOPE (High-order Polynomial Expansion), a method for expanding a network into a high-order Taylor polynomial on a reference input. Specifically, we derive the high-order derivative rule for composite functions and extend the rule to neural networks to obtain their high-order derivatives quickly and accurately. From these derivatives, we can then derive the Taylor polynomial of the neural network, which provides an explicit expression of the network's local interpretations. We combine the Taylor polynomials obtained under different reference inputs to obtain the global interpretation of the neural network. Numerical analysis confirms the high accuracy, low computational complexity, and good convergence of the proposed method. Moreover, we demonstrate HOPE's wide applications built on deep learning, including function discovery, fast inference, and feature selection. We compared HOPE with other XAI methods and demonstrated our advantages. The code is available at https://github.com/HarryPotterXTX/HOPE.git.
PMID:38728128 | DOI:10.1109/TPAMI.2024.3399197
Systematic Assessment of Deep Learning-Based Predictors of Fragmentation Intensity Profiles
J Proteome Res. 2024 May 10. doi: 10.1021/acs.jproteome.3c00857. Online ahead of print.
ABSTRACT
In recent years, several deep learning-based methods have been proposed for predicting peptide fragment intensities. This study aims to provide a comprehensive assessment of six such methods, namely Prosit, DeepMass:Prism, pDeep3, AlphaPeptDeep, Prosit Transformer, and the method proposed by Guan et al. To this end, we evaluated the accuracy of the predicted intensity profiles for close to 1.7 million precursors (including both tryptic and HLA peptides) corresponding to more than 18 million experimental spectra procured from 40 independent submissions to the PRIDE repository that were acquired for different species using a variety of instruments and different dissociation types/energies. Specifically, for each method, distributions of similarity (measured by Pearson's correlation and normalized angle) between the predicted and the corresponding experimental b and y fragment intensities were generated. These distributions were used to ascertain the prediction accuracy and rank the prediction methods for particular types of experimental conditions. The effect of variables like precursor charge, length, and collision energy on the prediction accuracy was also investigated. In addition to prediction accuracy, the methods were evaluated in terms of prediction speed. The systematic assessment of these six methods may help in choosing the right method for MS/MS spectra prediction for particular needs.
PMID:38728051 | DOI:10.1021/acs.jproteome.3c00857
Voxel level dense prediction of acute stroke territory in DWI using deep learning segmentation models and image enhancement strategies
Jpn J Radiol. 2024 May 10. doi: 10.1007/s11604-024-01582-8. Online ahead of print.
ABSTRACT
PURPOSE: To build a stroke territory classifier model in DWI by designing the problem as a multiclass segmentation task by defining each stroke territory as distinct segmentation targets and leveraging the guidance of voxel wise dense predictions.
MATERIALS AND METHODS: Retrospective analysis of DWI images of 218 consecutive acute anterior or posterior ischemic stroke patients examined between January 2017 to April 2020 in a single center was carried out. Each stroke area was defined as distinct segmentation target with different class labels. U-Net based network was trained followed by majority voting of the voxel wise predictions of the model to transform them into patient level stroke territory classes. Effects of bias field correction and registration to a common space were explored.
RESULTS: Of the 218 patients included in this study, 141 (65%) were anterior stroke, and 77 were posterior stroke (35%) whereas 117 (53%) were male and 101 (47%) were female. The model built with original images reached 0.77 accuracy, while the model built with N4 bias corrected images reached 0.80 and the model built with images which were N4 bias corrected and then registered into a common space reached 0.83 accuracy values.
CONCLUSION: Voxel wise dense prediction coupled with bias field correction to eliminate artificial signal increase and registration to a common space help models for better performance than using original images. Knowing the properties of target domain while designing deep learning models is important for the overall success of these models.
PMID:38727961 | DOI:10.1007/s11604-024-01582-8
Application of Deep Learning for Studying NMDA Receptors
Methods Mol Biol. 2024;2799:281-290. doi: 10.1007/978-1-0716-3830-9_16.
ABSTRACT
Artificial intelligence underwent remarkable advancement in the past decade, revolutionizing our way of thinking and unlocking unprecedented opportunities across various fields, including drug development. The emergence of large pretrained models, such as ChatGPT, has even begun to demonstrate human-level performance in certain tasks.However, the difficulties of deploying and utilizing AI and pretrained model for nonexpert limited its practical use. To overcome this challenge, here we presented three highly accessible online tools based on a large pretrained model for chemistry, the Uni-Mol, for drug development against CNS diseases, including those targeting NMDA receptor: the blood-brain barrier (BBB) permeability prediction, the quantitative structure-activity relationship (QSAR) analysis system, and a versatile interface of the AI-based molecule generation model named VD-gen. We believe that these resources will effectively bridge the gap between cutting-edge AI technology and NMDAR experts, facilitating rapid and rational drug development.
PMID:38727914 | DOI:10.1007/978-1-0716-3830-9_16
An Update on the Use of Artificial Intelligence in Digital Pathology for Oral Epithelial Dysplasia Research
Head Neck Pathol. 2024 May 10;18(1):38. doi: 10.1007/s12105-024-01643-4.
ABSTRACT
INTRODUCTION: Oral epithelial dysplasia (OED) is a precancerous histopathological finding which is considered the most important prognostic indicator for determining the risk of malignant transformation into oral squamous cell carcinoma (OSCC). The gold standard for diagnosis and grading of OED is through histopathological examination, which is subject to inter- and intra-observer variability, impacting accurate diagnosis and prognosis. The aim of this review article is to examine the current advances in digital pathology for artificial intelligence (AI) applications used for OED diagnosis.
MATERIALS AND METHODS: We included studies that used AI for diagnosis, grading, or prognosis of OED on histopathology images or intraoral clinical images. Studies utilizing imaging modalities other than routine light microscopy (e.g., scanning electron microscopy), or immunohistochemistry-stained histology slides, or immunofluorescence were excluded from the study. Studies not focusing on oral dysplasia grading and diagnosis, e.g., to discriminate OSCC from normal epithelial tissue were also excluded.
RESULTS: A total of 24 studies were included in this review. Nineteen studies utilized deep learning (DL) convolutional neural networks for histopathological OED analysis, and 4 used machine learning (ML) models. Studies were summarized by AI method, main study outcomes, predictive value for malignant transformation, strengths, and limitations.
CONCLUSION: ML/DL studies for OED grading and prediction of malignant transformation are emerging as promising adjunctive tools in the field of digital pathology. These adjunctive objective tools can ultimately aid the pathologist in more accurate diagnosis and prognosis prediction. However, further supportive studies that focus on generalization, explainable decisions, and prognosis prediction are needed.
PMID:38727841 | DOI:10.1007/s12105-024-01643-4
Keratoconus Progression Determined at the First Visit: A Deep Learning Approach With Fusion of Imaging and Numerical Clinical Data
Transl Vis Sci Technol. 2024 May 1;13(5):7. doi: 10.1167/tvst.13.5.7.
ABSTRACT
PURPOSE: Multiple clinical visits are necessary to determine progression of keratoconus before offering corneal cross-linking. The purpose of this study was to develop a neural network that can potentially predict progression during the initial visit using tomography images and other clinical risk factors.
METHODS: The neural network's development depended on data from 570 keratoconus eyes. During the initial visit, numerical risk factors and posterior elevation maps from Scheimpflug imaging were collected. Increase of steepest keratometry of 1 diopter during follow-up was used as the progression criterion. The data were partitioned into training, validation, and test sets. The first two were used for training, and the latter for performance statistics. The impact of individual risk factors and images was assessed using ablation studies and class activation maps.
RESULTS: The most accurate prediction of progression during the initial visit was obtained by using a combination of MobileNet and a multilayer perceptron with an accuracy of 0.83. Using numerical risk factors alone resulted in an accuracy of 0.82. The use of only images had an accuracy of 0.77. The most influential risk factors in the ablation study were age and posterior elevation. The greatest activation in the class activation maps was seen at the highest posterior elevation where there was significant deviation from the best fit sphere.
CONCLUSIONS: The neural network has exhibited good performance in predicting potential future progression during the initial visit.
TRANSLATIONAL RELEVANCE: The developed neural network could be of clinical significance for keratoconus patients by identifying individuals at risk of progression.
PMID:38727695 | DOI:10.1167/tvst.13.5.7
Small-Molecule Inhibitors of TIPE3 Protein Identified through Deep Learning Suppress Cancer Cell Growth In Vitro
Cells. 2024 Apr 30;13(9):771. doi: 10.3390/cells13090771.
ABSTRACT
Tumor necrosis factor-α-induced protein 8-like 3 (TNFAIP8L3 or TIPE3) functions as a transfer protein for lipid second messengers. TIPE3 is highly upregulated in several human cancers and has been established to significantly promote tumor cell proliferation, migration, and invasion and inhibit the apoptosis of cancer cells. Thus, inhibiting the function of TIPE3 is expected to be an effective strategy against cancer. The advancement of artificial intelligence (AI)-driven drug development has recently invigorated research in anti-cancer drug development. In this work, we incorporated DFCNN, Autodock Vina docking, DeepBindBC, MD, and metadynamics to efficiently identify inhibitors of TIPE3 from a ZINC compound dataset. Six potential candidates were selected for further experimental study to validate their anti-tumor activity. Among these, three small-molecule compounds (K784-8160, E745-0011, and 7238-1516) showed significant anti-tumor activity in vitro, leading to reduced tumor cell viability, proliferation, and migration and enhanced apoptotic tumor cell death. Notably, E745-0011 and 7238-1516 exhibited selective cytotoxicity toward tumor cells with high TIPE3 expression while having little or no effect on normal human cells or tumor cells with low TIPE3 expression. A molecular docking analysis further supported their interactions with TIPE3, highlighting hydrophobic interactions and their shared interaction residues and offering insights for designing more effective inhibitors. Taken together, this work demonstrates the feasibility of incorporating deep learning and MD simulations in virtual drug screening and provides inhibitors with significant potential for anti-cancer drug development against TIPE3-.
PMID:38727307 | DOI:10.3390/cells13090771
Advancing spine care through AI and machine learning: overview and applications
EFORT Open Rev. 2024 May 10;9(5):422-433. doi: 10.1530/EOR-24-0019.
ABSTRACT
Machine learning (ML), a subset of artificial intelligence, is crucial for spine care and research due to its ability to improve treatment selection and outcomes, leveraging the vast amounts of data generated in health care for more accurate diagnoses and decision support. ML's potential in spine care is particularly notable in radiological image analysis, including the localization and labeling of anatomical structures, detection and classification of radiological findings, and prediction of clinical outcomes, thereby paving the way for personalized medicine. The manuscript discusses ML's application in spine care, detailing supervised and unsupervised learning, regression, classification, and clustering, and highlights the importance of both internal and external validation in assessing ML model performance. Several ML algorithms such as linear models, support vector machines, decision trees, neural networks, and deep convolutional neural networks, can be used in the spine domain to analyze diverse data types (visual, tabular, omics, and multimodal).
PMID:38726988 | DOI:10.1530/EOR-24-0019
Predicting and Recognizing Drug-Induced Type I Brugada Pattern Using ECG-Based Deep Learning
J Am Heart Assoc. 2024 May 10:e033148. doi: 10.1161/JAHA.123.033148. Online ahead of print.
ABSTRACT
BACKGROUND: Brugada syndrome (BrS) has been associated with sudden cardiac death in otherwise healthy subjects, and drug-induced BrS accounts for 55% to 70% of all patients with BrS. This study aims to develop a deep convolutional neural network and evaluate its performance in recognizing and predicting BrS diagnosis.
METHODS AND RESULTS: Consecutive patients who underwent ajmaline testing for BrS following a standardized protocol were included. ECG tracings from baseline and during ajmaline were transformed using wavelet analysis and a deep convolutional neural network was separately trained to (1) recognize and (2) predict BrS type I pattern. The resultant networks are referred to as BrS-Net. A total of 1188 patients were included, of which 361 (30.3%) patients developed BrS type I pattern during ajmaline infusion. When trained and evaluated on ECG tracings during ajmaline, BrS-Net recognized a BrS type I pattern with an AUC-ROC of 0.945 (0.921-0.969) and an AUC-PR of 0.892 (0.815-0.939). When trained and evaluated on ECG tracings at baseline, BrS-Net predicted a BrS type I pattern during ajmaline with an AUC-ROC of 0.805 (0.845-0.736) and an AUC-PR of 0.605 (0.460-0.664).
CONCLUSIONS: BrS-Net, a deep convolutional neural network, can identify BrS type I pattern with high performance. BrS-Net can predict from baseline ECG the development of a BrS type I pattern after ajmaline with good performance in an unselected population.
PMID:38726893 | DOI:10.1161/JAHA.123.033148
From deep learning to the discovery of promising VEGFR-2 inhibitors
ChemMedChem. 2024 May 10:e202400108. doi: 10.1002/cmdc.202400108. Online ahead of print.
ABSTRACT
Vascular endothelial growth factor receptor 2 (VEGFR-2) stands as a prominent therapeutic target in oncology, playing a critical role in angiogenesis, tumor growth, and metastasis. FDA-approved VEGFR-2 inhibitors are associated with diverse side effects. Thus, finding novel and more effective inhibitors is of utmost importance. In this study, a deep learning (DL) classification model was first developed and then employed to select putative active VEGFR-2 inhibitors from an in-house chemical library including 187 druglike compounds. A pool of 18 promising candidates was shortlisted and screened against VEGFR-2 by using molecular docking. Finally, two compounds, RHE-334 and EA-11, were prioritized as promising VEGFR-2 inhibitors by employing PLATO, our target fishing and bioactivity prediction platform. Based on this rationale, we prepared RHE-334 and EA-11 and successfully tested their anti-proliferative potential against MCF-7 human breast cancer cells with IC50 values of 26.78±4.02 and 38.73±3.84 µM, respectively. Their toxicities were instead challenged against the WI-38. Interestingly, expression studies indicated that, in the presence of RHE-334, VEGFR-2 was equal to 0.52±0.03, thus comparable to imatinib equal to 0.63±0.03. In conclusion, this workflow based on theoretical and experimental approaches demonstrates effective in identifying VEGFR-2 inhibitors and can be easily adapted to other medicinal chemistry goals.
PMID:38726553 | DOI:10.1002/cmdc.202400108
Three-Dimensional Leaf Edge Reconstruction Combining Two- and Three-Dimensional Approaches
Plant Phenomics. 2024 May 9;6:0181. doi: 10.34133/plantphenomics.0181. eCollection 2024.
ABSTRACT
Leaves, crucial for plant physiology, exhibit various morphological traits that meet diverse functional needs. Traditional leaf morphology quantification, largely 2-dimensional (2D), has not fully captured the 3-dimensional (3D) aspects of leaf function. Despite improvements in 3D data acquisition, accurately depicting leaf morphologies, particularly at the edges, is difficult. This study proposes a method for 3D leaf edge reconstruction, combining 2D image segmentation with curve-based 3D reconstruction. Utilizing deep-learning-based instance segmentation for 2D edge detection, structure from motion for estimation of camera positions and orientations, leaf correspondence identification for matching leaves among images, and curve-based 3D reconstruction for estimating 3D curve fragments, the method assembles 3D curve fragments into a leaf edge model through B-spline curve fitting. The method's performances were evaluated on both virtual and actual leaves, and the results indicated that small leaves and high camera noise pose greater challenges to reconstruction. We developed guidelines for setting a reliability threshold for curve fragments, considering factors occlusion, leaf size, the number of images, and camera error; the number of images had a lesser impact on this threshold compared to others. The method was effective for lobed leaves and leaves with fewer than 4 holes. However, challenges still existed when dealing with morphologies exhibiting highly local variations, such as serrations. This nondestructive approach to 3D leaf edge reconstruction marks an advancement in the quantitative analysis of plant morphology. It is a promising way to capture whole-plant architecture by combining 2D and 3D phenotyping approaches adapted to the target anatomical structures.
PMID:38726389 | PMC:PMC11079596 | DOI:10.34133/plantphenomics.0181
Automatic grading evaluation of winter wheat lodging based on deep learning
Front Plant Sci. 2024 Apr 25;15:1284861. doi: 10.3389/fpls.2024.1284861. eCollection 2024.
ABSTRACT
Lodging is a crucial factor that limits wheat yield and quality in wheat breeding. Therefore, accurate and timely determination of winter wheat lodging grading is of great practical importance for agricultural insurance companies to assess agricultural losses and good seed selection. However, using artificial fields to investigate the inclination angle and lodging area of winter wheat lodging in actual production is time-consuming, laborious, subjective, and unreliable in measuring results. This study addresses these issues by designing a classification-semantic segmentation multitasking neural network model MLP_U-Net, which can accurately estimate the inclination angle and lodging area of winter wheat lodging. This model can also comprehensively, qualitatively, and quantitatively evaluate the grading of winter wheat lodging. The model is based on U-Net architecture and improves the shift MLP module structure to achieve network refinement and segmentation for complex tasks. The model utilizes a common encoder to enhance its robustness, improve classification accuracy, and strengthen the segmentation network, considering the correlation between lodging degree and lodging area parameters. This study used 82 winter wheat varieties sourced from the regional experiment of national winter wheat in the Huang-Huai-Hai southern area of the water land group at the Henan Modern Agriculture Research and Development Base. The base is located in Xinxiang City, Henan Province. Winter wheat lodging images were collected using the unmanned aerial vehicle (UAV) remote sensing platform. Based on these images, winter wheat lodging datasets were created using different time sequences and different UAV flight heights. These datasets aid in segmenting and classifying winter wheat lodging degrees and areas. The results show that MLP_U-Net has demonstrated superior detection performance in a small sample dataset. The accuracies of winter wheat lodging degree and lodging area grading were 96.1% and 92.2%, respectively, when the UAV flight height was 30 m. For a UAV flight height of 50 m, the accuracies of winter wheat lodging degree and lodging area grading were 84.1% and 84.7%, respectively. These findings indicate that MLP_U-Net is highly robust and efficient in accurately completing the winter wheat lodging-grading task. This valuable insight provides technical references for UAV remote sensing of winter wheat disaster severity and the assessment of losses.
PMID:38726297 | PMC:PMC11079220 | DOI:10.3389/fpls.2024.1284861
Sequential graph convolutional network and DeepRNN based hybrid framework for epileptic seizure detection from EEG signal
Digit Health. 2024 May 7;10:20552076241249874. doi: 10.1177/20552076241249874. eCollection 2024 Jan-Dec.
ABSTRACT
Automated epileptic seizure detection from ectroencephalogram (EEG) signals has attracted significant attention in the recent health informatics field. The serious brain condition known as epilepsy, which is characterized by recurrent seizures, is typically described as a sudden change in behavior caused by a momentary shift in the excessive electrical discharges in a group of brain cells, and EEG signal is primarily used in most cases to identify seizure to revitalize the close loop brain. The development of various deep learning (DL) algorithms for epileptic seizure diagnosis has been driven by the EEG's non-invasiveness and capacity to provide repetitive patterns of seizure-related electrophysiological information. Existing DL models, especially in clinical contexts where irregular and unordered structures of physiological recordings make it difficult to think of them as a matrix; this has been a key disadvantage to producing a consistent and appropriate diagnosis outcome due to EEG's low amplitude and nonstationary nature. Graph neural networks have drawn significant improvement by exploiting implicit information that is present in a brain anatomical system, whereas inter-acting nodes are connected by edges whose weights can be determined by either temporal associations or anatomical connections. Considering all these aspects, a novel hybrid framework is proposed for epileptic seizure detection by combined with a sequential graph convolutional network (SGCN) and deep recurrent neural network (DeepRNN). Here, DepRNN is developed by fusing a gated recurrent unit (GRU) with a traditional RNN; its key benefit is that it solves the vanishing gradient problem and achieve this hybrid framework greater sophistication. The line length feature, auto-covariance, auto-correlation, and periodogram are applied as a feature from the raw EEG signal and then grouped the resulting matrix into time-frequency domain as inputs for the SGCN to use for seizure classification. This model extracts both spatial and temporal information, resulting in improved accuracy, precision, and recall for seizure detection. Extensive experiments conducted on the CHB-MIT and TUH datasets showed that the SGCN-DeepRNN model outperforms other deep learning models for seizure detection, achieving an accuracy of 99.007%, with high sensitivity and specificity.
PMID:38726217 | PMC:PMC11080778 | DOI:10.1177/20552076241249874
Deep convolutional neural network for weld defect classification in radiographic images
Heliyon. 2024 May 1;10(9):e30590. doi: 10.1016/j.heliyon.2024.e30590. eCollection 2024 May 15.
ABSTRACT
The quality of welds is critical to the safety of structures in construction, so early detection of irregularities is crucial. Advances in machine vision inspection technologies, such as deep learning models, have improved the detection of weld defects. This paper presents a new CNN model based on ResNet50 to classify four types of weld defects in radiographic images: crack, pore, non-penetration, and no defect. Stratified cross-validation, data augmentation, and regularization were used to improve generalization and avoid over-fitting. The model was tested on three datasets, RIAWELC, GDXray, and a private dataset of low image quality, obtaining an accuracy of 98.75 %, 90.255 %, and 75.83 %, respectively. The model proposed in this paper achieves high accuracies on different datasets and constitutes a valuable tool to improve the efficiency and effectiveness of quality control processes in the welding industry. Moreover, experimental tests show that the proposed approach performs well on even low-resolution images.
PMID:38726185 | PMC:PMC11079250 | DOI:10.1016/j.heliyon.2024.e30590
Cortical signals analysis to recognize intralimb mobility using modified RNN and various EEG quantities
Heliyon. 2024 Apr 30;10(9):e30406. doi: 10.1016/j.heliyon.2024.e30406. eCollection 2024 May 15.
ABSTRACT
Electroencephalogram (EEG) signals are critical in interpreting sensorimotor activities for predicting body movements. However, their efficacy in identifying intralimb movements, such as the dorsiflexion and plantar flexion of the foot, remains suboptimal. This study aims to explore whether various EEG signal quantities can effectively recognize intralimb movements to facilitate the development of Brain-Computer Interface (BCI) devices for foot rehabilitation. This research involved twenty-two healthy, right-handed participants. EEG data were collected using 21 electrodes positioned over the motor cortex, while two electromyography (EMG) electrodes recorded the onset of ankle joint movements. The study focused on analyzing slow cortical potential (SCP) and sensorimotor rhythms (SMR) in alpha and beta bands from the EEG. Five key features-fourth-order Autoregressive feature, variance, waveform length, standard deviation, and permutation entropy-were extracted. A modified Recurrent Neural Network (RNN) including Long Short-term Memory (LSTM) and Gated Recurrent Unit (GRU) algorithms was developed for movement recognition. These were compared against conventional machine learning algorithms, including nonlinear Support Vector Machine (SVM) and k Nearest Neighbourhood (kNN) classifiers. The performance of the proposed models was assessed using two data schemes: within-subject and across-subjects. The findings demonstrated that the GRU and LSTM models significantly outperformed traditional machine learning algorithms in recognizing different EEG signal quantities for intralimb movement. The study indicates that deep learning models, particularly GRU and LSTM, hold superior potential over standard machine learning techniques in identifying intralimb movements using EEG signals. Where the accuracies of LSTM for within and across subjects were 98.87 ± 1.80 % and 87.38 ± 0.86 % respectively. Whereas the accuracy of GRU within and across subjects were 99.18 ± 1.28 % and 86.44 ± 0.69 % respectively. This advancement could significantly benefit the development of BCI devices aimed at foot rehabilitation, suggesting a new avenue for enhancing physical therapy outcomes.
PMID:38726180 | PMC:PMC11079093 | DOI:10.1016/j.heliyon.2024.e30406
Assessing the quality of experience in wireless networks for multimedia applications: A comprehensive analysis utilizing deep learning-based techniques
Heliyon. 2024 Apr 25;10(9):e30351. doi: 10.1016/j.heliyon.2024.e30351. eCollection 2024 May 15.
ABSTRACT
In the context of the burgeoning progression of wireless network technology and the corresponding escalation in the demand for mobile Internet-based multimedia transmission services, the task of preserving and augmenting user satisfaction has emerged as an imperative concern. This necessitates a sophisticated and accurate evaluation of multimedia service quality within the sphere of wireless networks. To systematically address the nuanced issue of user experience quality, the present study introduces a novel method for evaluating multimedia Quality of Experience (QoE) in wireless networks, employing an advanced deep learning model as the underlying analytical framework. Initially, the research undertakes the task of modeling the video session process, giving due consideration to the status of each temporal interval within the session's architecture. Subsequently, the challenge of QoE prediction is dissected and investigated through the lens of recurrent neural networks (RNNs), culminating in the proposition of an all-encompassing QoE prediction model that harmoniously integrates video information, Quality of Service (QoS) data, user behavior analytics, and facial expression analysis. The empirical segment of this research serves to validate the efficacy of the suggested video QoE evaluation method, engaging both quantitative and qualitative comparison metrics with contemporaneous state-of-the-art QoE models, employing the RTVCQoE dataset as the empirical foundation. The experimental findings illuminate that the QoE model elucidated in this study transcends competing models in performance metrics such as PLCC, SRCC, and KRCC. Consequently, this investigation stands as a seminal contribution to academic literature, furnishing an exacting and dependable QoE evaluation methodology. Such a contribution augments the user experience landscape in multimedia services within wireless networks, and instigates further scholarly exploration and technological innovation in the mobile Internet domain.
PMID:38726158 | PMC:PMC11079109 | DOI:10.1016/j.heliyon.2024.e30351
Segmentation and Volume Estimation of the Habenula Using Deep Learning in Patients With Depression
Biol Psychiatry Glob Open Sci. 2024 Apr 3;4(4):100314. doi: 10.1016/j.bpsgos.2024.100314. eCollection 2024 Jul.
ABSTRACT
BACKGROUND: The habenula is involved in the pathophysiology of depression. However, its small structure limits the accuracy of segmentation methods, and the findings regarding its volume have been inconsistent. This study aimed to create a highly accurate habenula segmentation model using deep learning, test its generalizability to clinical magnetic resonance imaging, and examine differences between healthy participants and patients with depression.
METHODS: This multicenter study included 382 participants (patients with depression: N = 234, women 47.0%; healthy participants: N = 148, women 37.8%). A 3-dimensional residual U-Net was used to create a habenula segmentation model on 3T magnetic resonance images. The reproducibility and generalizability of the predictive model were tested on various validation cohorts. Thereafter, differences between the habenula volume of healthy participants and that of patients with depression were examined.
RESULTS: A Dice coefficient of 86.6% was achieved in the derivation cohort. The test-retest dataset showed a mean absolute percentage error of 6.66, indicating sufficiently high reproducibility. A Dice coefficient of >80% was achieved for datasets with different imaging conditions, such as magnetic field strengths, spatial resolutions, and imaging sequences, by adjusting the threshold. A significant negative correlation with age was observed in the general population, and this correlation was more pronounced in patients with depression (p < 10-7, r = -0.59). Habenula volume decreased with depression severity in women even when the effects of age and scanner were excluded (p = .019, η2 = 0.099).
CONCLUSIONS: Habenula volume could be a pathophysiologically relevant factor and diagnostic and therapeutic marker for depression, particularly in women.
PMID:38726037 | PMC:PMC11078767 | DOI:10.1016/j.bpsgos.2024.100314
Integrated neural network and evolutionary algorithm approach for liver fibrosis staging: Can artificial intelligence reduce patient costs?
JGH Open. 2024 May 9;8(5):e13075. doi: 10.1002/jgh3.13075. eCollection 2024 May.
ABSTRACT
BACKGROUND AND AIM: Staging liver fibrosis is important, and liver biopsy is the gold standard diagnostic tool. We aim to design and evaluate an artificial neural network (ANN) method by taking advantage of the Teaching Learning-Based Optimization (TLBO) algorithm for the prediction of liver fibrosis stage in blood donors and hepatitis C patients.
METHODS: We propose a method based on a selection of machine learning classification methods including multilayer perceptron (MLP) neural network, Naive Bayesian (NB), decision tree, and deep learning. Initially, the synthetic minority oversampling technique (SMOTE) is performed to address the imbalance in the dataset. Afterward, the integration of MLP and TLBO is implemented.
RESULTS: We propose a novel algorithm that reduces the number of required patient features to seven inputs. The accuracy of MLP using 12 features is 0.903, while that of the proposed MLP with TLBO is 0.891. Besides, the diagnostic accuracy of all methods, except the model designed with the Bayesian network, increases when the SMOTE balancer is applied.
CONCLUSION: The decision tree-based deep learning methods show the highest levels of accuracy with 12 features. Interestingly, with the use of TLBO and seven features, MLP reached an accuracy rate of 0.891, which is quite satisfactory when compared with those of similar studies. The proposed model provides high diagnostic accuracy, while reducing the required number of properties from the samples. The results of our study show that the recruited algorithm of our study is more straightforward, with a smaller number of required properties and similar accuracy.
PMID:38725944 | PMC:PMC11079785 | DOI:10.1002/jgh3.13075