Pharmacogenomics
Transthyretin amyloid polyneuropathy in France: A cross-sectional study with 413 patients and real-world tafamidis meglumine use (2009-2019)
Rev Neurol (Paris). 2024 Apr 19:S0035-3787(24)00489-2. doi: 10.1016/j.neurol.2024.02.393. Online ahead of print.
ABSTRACT
OBJECTIVE: We aimed to describe characteristics of patients with ATTR variant polyneuropathy (ATTRv-PN) and ATTRv-mixed and assess the real-world use and safety profile of tafamidis meglumine 20mg.
METHODS: Thirty-eight French hospitals were invited. Patient files were reviewed to identify clinical manifestations, diagnostic methods, and treatment compliance.
RESULTS: Four hundred and thirteen patients (296 ATTRv-PN, 117 ATTRv-mixed) were analyzed. Patients were predominantly male (68.0%) with a mean age of 57.2±17.2 years. Interval between first symptom(s) and diagnosis was 3.4±4.3 years. First symptoms included sensory complaints (85.9%), dysautonomia (38.5%), motor deficits (26.4%), carpal tunnel syndrome (31.5%), shortness of breath (13.3%), and unexplained weight loss (16.0%). Mini-invasive accessory salivary gland or punch skin and nerve biopsies were most common, with a performance of 78.8-100%. TTR genetic sequencing, performed in all patients, revealed 31 TTR variants. Tafamidis meglumine was initiated in 156/214 (72.9%) ATTRv-PN patients at an early disease stage. Median treatment duration was 6.00 years in ATTRv-PN and 3.42 years in ATTRv-mixed patients. Tafamidis was well tolerated, with 20 adverse events likely related to study drug among the 336 patients.
CONCLUSION: In France, ATTRv patients are usually identified early thanks to the national network and the help of diagnosis combining genetic testing and mini-invasive biopsies.
PMID:38643028 | DOI:10.1016/j.neurol.2024.02.393
Machine Learning Algorithms to Predict Colistin-Induced Nephrotoxicity from Electronic Health Records in Patients with Multidrug-Resistant Gram-Negative Infection
Int J Antimicrob Agents. 2024 Apr 18:107175. doi: 10.1016/j.ijantimicag.2024.107175. Online ahead of print.
ABSTRACT
OBJECTIVES: Colistin-induced nephrotoxicity prolongs hospitalization and increases mortality. The study aimed to construct machine learning models to predict colistin-induced nephrotoxicity in patients with multidrug-resistant gram-negative infection.
METHODS: Patients receiving colistin from three hospitals in the Clinical Research Database were included. Data were divided into a derivation cohort (2011∼2017) and a temporal validation cohort (2018∼2020). Fifteen machine learning models were established by categorical boosting, light gradient boosting machine, and random forest. Classifier performances were compared by the sensitivity, F1 score, Matthews correlation coefficient (MCC), area under the receiver operating characteristic (AUROC) curve, and area under the precision-recall curve (AUPRC). SHapley Additive exPlanations plots were drawn to understand feature importance and interactions.
RESULTS: The study included 1392 patients, with 360 (36.4%) and 165 (40.9%) experiencing nephrotoxicity in the derivation and temporal validation cohorts, respectively. The categorical boosting with oversampling achieved the highest performance with a sensitivity of 0.860, an F1 score of 0.740, an MCC of 0.533, an AUROC curve of 0.823, and an AUPRC of 0.737. The feature importance demonstrated that the days of colistin use, cumulative dose, daily dose, latest C-reactive protein, and baseline hemoglobin were the most important risk factors, especially for vulnerable patients. A cutoff colistin dose of 4.0 mg/kg body weight/day was identified for patients at higher risk of nephrotoxicity.
CONCLUSIONS: Machine learning techniques can be an early identification tool to predict colistin-induced nephrotoxicity. The observed interactions suggest a modification in dose adjustment guidelines. Future geographic and prospective validation studies are warranted to strengthen the real-world applicability.
PMID:38642812 | DOI:10.1016/j.ijantimicag.2024.107175
The SOS1 Inhibitor MRTX0902 Blocks KRAS Activation and Demonstrates Antitumor Activity in Cancers Dependent on KRAS Nucleotide Loading
Mol Cancer Ther. 2024 Apr 19. doi: 10.1158/1535-7163.MCT-23-0870. Online ahead of print.
ABSTRACT
KRAS is the most frequently mutated oncogene in human cancer and facilitates uncontrolled growth through hyperactivation of the RTK/MAPK pathway. The Son of Sevenless homolog 1 (SOS1) protein functions as a guanine nucleotide exchange factor (GEF) for the RAS subfamily of small GTPases and represents a druggable target in the pathway. Using a structure-based drug discovery approach, MRTX0902 was identified as a selective and potent SOS1 inhibitor that disrupts the KRAS:SOS1 protein-protein interaction to prevent SOS1-mediated nucleotide exchange on KRAS and translates into an anti-proliferative effect in cancer cell lines with genetic alterations of the KRAS-MAPK pathway. MRTX0902 augmented the antitumor activity of the KRAS G12C inhibitor adagrasib when dosed in combination in eight out of twelve KRAS G12C-mutant human non-small cell lung cancer (NSCLC) and colorectal cancer (CRC) xenograft models. Pharmacogenomic profiling in preclinical models identified cell cycle genes and the SOS2 homolog as genetic co-dependencies and implicated tumor suppressor genes (NF1, PTEN) in resistance following combination treatment. Lastly, combined vertical inhibition of RTK/MAPK pathway signaling by MRTX0902 with inhibitors of EGFR or RAF/MEK led to greater downregulation of pathway signaling and improved antitumor responses in KRAS-MAPK pathway-mutant models. These studies demonstrate the potential clinical application of dual inhibition of SOS1 and KRAS G12C and additional SOS1 combination strategies that will aide in the understanding of SOS1 and RTK/MAPK biology in targeted cancer therapy.
PMID:38641404 | DOI:10.1158/1535-7163.MCT-23-0870
Mechanisms and management of loss of response to anti-TNF therapy for patients with Crohn's disease: 3-year data from the prospective, multicentre PANTS cohort study
Lancet Gastroenterol Hepatol. 2024 Apr 16:S2468-1253(24)00044-X. doi: 10.1016/S2468-1253(24)00044-X. Online ahead of print.
ABSTRACT
BACKGROUND: We sought to report the effectiveness of infliximab and adalimumab over the first 3 years of treatment and to define the factors that predict anti-TNF treatment failure and the strategies that prevent or mitigate loss of response.
METHODS: Personalised Anti-TNF therapy in Crohn's disease (PANTS) is a UK-wide, multicentre, prospective observational cohort study reporting the rates of effectiveness of infliximab and adalimumab in anti-TNF-naive patients with active luminal Crohn's disease aged 6 years and older. At the end of the first year, sites were invited to enrol participants still receiving study drug into the 2-year PANTS-extension study. We estimated rates of remission across the whole cohort at the end of years 1, 2, and 3 of the study using a modified survival technique with permutation testing. Multivariable regression and survival analyses were used to identify factors associated with loss of response in patients who had initially responded to anti-TNF therapy and with immunogenicity. Loss of response was defined in patients who initially responded to anti-TNF therapy at the end of induction and who subsequently developed symptomatic activity that warranted an escalation of steroid, immunomodulatory, or anti-TNF therapy, resectional surgery, or exit from study due to treatment failure. This study was registered with ClinicalTrials.gov, NCT03088449, and is now complete.
FINDINGS: Between March 19, 2014, and Sept 21, 2017, 389 (41%) of 955 patients treated with infliximab and 209 (32%) of 655 treated with adalimumab in the PANTS study entered the PANTS-extension study (median age 32·5 years [IQR 22·1-46·8], 307 [51%] of 598 were female, and 291 [49%] were male). The estimated proportion of patients in remission at the end of years 1, 2, and 3 were, for infliximab 40·2% (95% CI 36·7-43·7), 34·4% (29·9-39·0), and 34·7% (29·8-39·5), and for adalimumab 35·9% (95% CI 31·2-40·5), 32·9% (26·8-39·2), and 28·9% (21·9-36·3), respectively. Optimal drug concentrations at week 14 to predict remission at any later timepoints were 6·1-10·0 mg/L for infliximab and 10·1-12·0 mg/L for adalimumab. After excluding patients who had primary non-response, the estimated proportions of patients who had loss of response by years 1, 2, and 3 were, for infliximab 34·4% (95% CI 30·4-38·2), 54·5% (49·4-59·0), and 60·0% (54·1-65·2), and for adalimumab 32·1% (26·7-37·1), 47·2% (40·2-53·4), and 68·4% (50·9-79·7), respectively. In multivariable analysis, loss of response at year 2 and 3 for patients treated with infliximab and adalimumab was predicted by low anti-TNF drug concentrations at week 14 (infliximab: hazard ratio [HR] for each ten-fold increase in drug concentration 0·45 [95% CI 0·30-0·67], adalimumab: 0·39 [0·22-0·70]). For patients treated with infliximab, loss of response was also associated with female sex (vs male sex; HR 1·47 [95% CI 1·11-1·95]), obesity (vs not obese 1·62 [1·08-2·42]), baseline white cell count (1·06 [1·02-1·11) per 1 × 109 increase in cells per L), and thiopurine dose quartile. Among patients treated with adalimumab, carriage of the HLA-DQA1*05 risk variant was associated with loss of response (HR 1·95 [95% CI 1·17-3·25]). By the end of year 3, the estimated proportion of patients who developed anti-drug antibodies associated with undetectable drug concentrations was 44·0% (95% CI 38·1-49·4) among patients treated with infliximab and 20·3% (13·8-26·2) among those treated with adalimumab. The development of anti-drug antibodies associated with undetectable drug concentrations was significantly associated with treatment without concomitant immunomodulator use for both groups (HR for immunomodulator use: infliximab 0·40 [95% CI 0·31-0·52], adalimumab 0·42 [95% CI 0·24-0·75]), and with carriage of HLA-DQA1*05 risk variant for infliximab (HR for carriage of risk variant: infliximab 1·46 [1·13-1·88]) but not for adalimumab (HR 1·60 [0·92-2·77]). Concomitant use of an immunomodulator before or on the day of starting infliximab was associated with increased time without the development of anti-drug antibodies associated with undetectable drug concentrations compared with use of infliximab alone (HR 2·87 [95% CI 2·20-3·74]) or introduction of an immunomodulator after anti-TNF initiation (1·70 [1·11-2·59]). In years 2 and 3, 16 (4%) of 389 patients treated with infliximab and 11 (5%) of 209 treated with adalimumab had adverse events leading to treatment withdrawal. Nine (2%) patients treated with infliximab and two (1%) of those treated with adalimumab had serious infections in years 2 and 3.
INTERPRETATION: Only around a third of patients with active luminal Crohn's disease treated with an anti-TNF drug were in remission at the end of 3 years of treatment. Low drug concentrations at the end of the induction period predict loss of response by year 3 of treatment, suggesting higher drug concentrations during the first year of treatment, particularly during induction, might lead to better long-term outcomes. Anti-drug antibodies associated with undetectable drug concentrations of infliximab, but not adalimumab, can be predicted by carriage of HLA-DQA1*05 and mitigated by concomitant immunomodulator use for both drugs.
FUNDING: Guts UK, Crohn's and Colitis UK, Cure Crohn's Colitis, AbbVie, Merck Sharp and Dohme, Napp Pharmaceuticals, Pfizer, and Celltrion Healthcare.
PMID:38640937 | DOI:10.1016/S2468-1253(24)00044-X
Influence of genetic polymorphisms on imatinib concentration and therapeutic response in patients with chronic-phase chronic myeloid leukemia
Int Immunopharmacol. 2024 Apr 17;133:112090. doi: 10.1016/j.intimp.2024.112090. Online ahead of print.
ABSTRACT
BACKGROUND: Diminished bioavailability of imatinib in leukemic cells contributes to poor clinical response. We examined the impact of genetic polymorphisms of imatinib on the pharmacokinetics and clinical response in 190 patients with chronic myeloid leukaemia (CML).
METHODS: Single nucleotide polymorphisms were genotyped using pyrophosphate sequencing. Plasma trough levels of imatinib were measured using liquid chromatography-tandem mass spectrometry.
RESULTS: Patients carrying the TT genotype for ABCB1 (rs1045642, rs2032582, and rs1128503), GG genotype for CYP3A5-rs776746 and AA genotype for ABCG2-rs2231142 polymorphisms showed higher concentration of imatinib. Patients with T allele for ABCB1 (rs1045642, rs2032582, and rs1128503), A allele for ABCG2-rs2231142, and G allele for CYP3A5-rs776746 polymorphisms showed better cytogenetic response and molecular response. In multivariate analysis, carriers of the CYP3A5-rs776746 G allele exhibited higher rates of complete cytogenetic response (CCyR) and major molecular response (MMR). Similarly, patients with the T allele of ABCB1-rs1045642 and rs1128503 demonstrated significantly increased CCyR rates. Patients with the A allele of ABCG2-rs2231142 were associated with higher MMR rates. The AA genotype for CYP3A5-rs776746, and the CC genotype for ABCB1-rs104562, and rs1128503 polymorphisms were associated with a higher risk of imatinib failure. Patients with the G allele for CYP3A5-rs776746 exhibited a higher incidence of anemia, and T allele for ABCB1-rs2032582 demonstrated an increased incidence of diarrhea.
CONCLUSIONS: Genotyping of ABCB1, ABCG2, and CYP3A5 genes may be considered in the management of patients with CML to tailor therapy and optimize clinical outcomes.
PMID:38640718 | DOI:10.1016/j.intimp.2024.112090
The pharmacogenetics as integral part of personalized medicine: problems and prospects
Probl Sotsialnoi Gig Zdravookhranenniiai Istor Med. 2024 Mar;32(2):173-179. doi: 10.32687/0869-866X-2024-32-2-173-179.
ABSTRACT
The article considers issues of implementation into clinical practice the principles of 5P medicine in its part of individualization of therapeutic tactics considering genetic characteristics of patients. The analysis of studies concerning influence of allelic variations on metabolism, safety and tolerance of the most often prescribed medicinal preparations was implemented. The main assumptions of pharmacogenomics were considered. Despite broad perspective of applying obtained data in clinical practice, there are a number of unresolved problems related to accessibility of genetic testing to population, ambiguity of approaches to interpretation of obtaining results, ethical issues and legal regulation.
PMID:38640209 | DOI:10.32687/0869-866X-2024-32-2-173-179
Precision medicine in inflammatory bowel disease
Precis Clin Med. 2023 Dec 18;6(4):pbad033. doi: 10.1093/pcmedi/pbad033. eCollection 2023 Dec.
ABSTRACT
Inflammatory bowel disease (IBD) is an incurable disease characterized by remission-relapse cycles throughout its course. Both Crohn's disease (CD) and ulcerative colitis (UC), the two main forms of IBD, exhibit tendency to develop complications and substantial heterogeneity in terms of frequency and severity of relapse, thus posing great challenges to the clinical management for IBD. Current treatment strategies are effective in different ways in induction and maintenance therapies for IBD. Recent advances in studies of genetics, pharmacogenetics, proteomics and microbiome provide a strong driving force for identifying molecular markers of prognosis and treatment response, which should help clinicians manage IBD patients more effectively, and then, improve clinical outcomes and reduce treatment costs of patients. In this review, we summarize and discuss precision medicine in IBD, focusing on predictive markers of disease course and treatment response, and monitoring indices during therapeutic drug monitoring.
PMID:38638127 | PMC:PMC11025389 | DOI:10.1093/pcmedi/pbad033
Genome-wide association analyses identify 95 risk loci and provide insights into the neurobiology of post-traumatic stress disorder
Nat Genet. 2024 Apr 18. doi: 10.1038/s41588-024-01707-9. Online ahead of print.
ABSTRACT
Post-traumatic stress disorder (PTSD) genetics are characterized by lower discoverability than most other psychiatric disorders. The contribution to biological understanding from previous genetic studies has thus been limited. We performed a multi-ancestry meta-analysis of genome-wide association studies across 1,222,882 individuals of European ancestry (137,136 cases) and 58,051 admixed individuals with African and Native American ancestry (13,624 cases). We identified 95 genome-wide significant loci (80 new). Convergent multi-omic approaches identified 43 potential causal genes, broadly classified as neurotransmitter and ion channel synaptic modulators (for example, GRIA1, GRM8 and CACNA1E), developmental, axon guidance and transcription factors (for example, FOXP2, EFNA5 and DCC), synaptic structure and function genes (for example, PCLO, NCAM1 and PDE4B) and endocrine or immune regulators (for example, ESR1, TRAF3 and TANK). Additional top genes influence stress, immune, fear and threat-related processes, previously hypothesized to underlie PTSD neurobiology. These findings strengthen our understanding of neurobiological systems relevant to PTSD pathophysiology, while also opening new areas for investigation.
PMID:38637617 | DOI:10.1038/s41588-024-01707-9
Study on genotype and phenotype of novel CYP2D6 variants using pharmacokinetic and pharmacodynamic models with metoprolol as a substrate drug
Pharmacogenomics J. 2024 Apr 18;24(3):13. doi: 10.1038/s41397-024-00332-3.
ABSTRACT
To investigate the pharmacokinetic and pharmacodynamic profiles of volunteers carrying CYP2D6 genotypes with unknow metabolic phenotypes, a total of 22 volunteers were recruited based on the sequencing results. Peripheral blood and urine samples were collected at specific time points after oral administration of metoprolol. A validated high-performance liquid chromatography (HPLC) method was used to determine the concentrations of metoprolol and α-hydroxymetoprolol. Blood pressure and electrocardiogram were also monitored. The results showed that the main pharmacokinetic parameters of metoprolol in CYP2D6*1/*34 carriers are similar to those in CYP2D6*1/*1 carriers. However, in individuals carrying the CYP2D6*10/*87, CYP2D6*10/*95, and CYP2D6*97/*97 genotypes, the area under the curve (AUC) and half-life (t1/2) of metoprolol increased by 2-3 times compared to wild type. The urinary metabolic ratio of metoprolol in these genotypes is consistent with the trends observed in plasma samples. Therefore, CYP2D6*1/*34 can be considered as normal metabolizers, while CYP2D6*10/*87, CYP2D6*10/*95, and CYP2D6*97/*97 are intermediate metabolizers. Although the blood concentration of metoprolol has been found to correlate with CYP2D6 genotype, its blood pressure-lowering effect reaches maximum effectiveness at a reduction of 25 mmHg. Furthermore, P-Q interval prolongation and heart rate reduction are not positively correlated with metoprolol blood exposure. Based on the pharmacokinetic-pharmacodynamic model, this study clarified the properties of metoprolol in subjects with novel CYP2D6 genotypes and provided important fundamental data for the translational medicine of this substrate drug.
PMID:38637522 | DOI:10.1038/s41397-024-00332-3
Machine learning-based identification of novel hub genes associated with oxidative stress in lupus nephritis: implications for diagnosis and therapeutic targets
Lupus Sci Med. 2024 Apr 18;11(1):e001126. doi: 10.1136/lupus-2023-001126.
ABSTRACT
BACKGROUND: Lupus nephritis (LN) is a complication of SLE characterised by immune dysfunction and oxidative stress (OS). Limited options exist for LN. We aimed to identify LN-related OS, highlighting the need for non-invasive diagnostic and therapeutic approaches.
METHODS: LN-differentially expressed genes (DEGs) were extracted from Gene Expression Omnibus datasets (GSE32591, GSE112943 and GSE104948) and Molecular Signatures Database for OS-associated DEGs (OSEGs). Functional enrichment analysis was performed for OSEGs related to LN. Weighted gene co-expression network analysis identified hub genes related to OS-LN. These hub OSEGs were refined as biomarker candidates via least absolute shrinkage and selection operator. The predictive value was validated using receiver operating characteristic (ROC) curves and nomogram for LN prognosis. We evaluated LN immune cell infiltration using single-sample gene set enrichment analysis and CIBERSORT. Additionally, gene set enrichment analysis explored the functional enrichment of hub OSEGs in LN.
RESULTS: The study identified four hub genes, namely STAT1, PRODH, TXN2 and SETX, associated with OS related to LN. These genes were validated for their diagnostic potential, and their involvement in LN pathogenesis was elucidated through ROC and nomogram. Additionally, alterations in immune cell composition in LN correlated with hub OSEG expression were observed. Immunohistochemical analysis reveals that the hub gene is most correlated with activated B cells and CD8 T cells. Finally, we uncovered that the enriched pathways of OSEGs were mainly involved in the PI3K-Akt pathway and the Janus kinase-signal transducer and activator of transcription pathway.
CONCLUSION: These findings contribute to advancing our understanding of the complex interplay between OS, immune dysregulation and molecular pathways in LN, laying a foundation for the identification of potential diagnostic biomarkers and therapeutic targets.
PMID:38637124 | DOI:10.1136/lupus-2023-001126
Polymorphisms in <em>ERBB4</em> and <em>TACR1</em> associated with dry mouth in clozapine-treated patients
Acta Neuropsychiatr. 2024 Apr 18:1-19. doi: 10.1017/neu.2024.9. Online ahead of print.
ABSTRACT
OBJECTIVE: Sialorrhea is a common and uncomfortable adverse effect of clozapine, and its severity varies between patients. The aim of the study was to select broadly genes related to the regulation of salivation and study associations between sialorrhea and dry mouth and polymorphisms in the selected genes.
METHODS: The study population consists of 237 clozapine-treated patients, of which 172 were genotyped. Associations between sialorrhea and dry mouth with age, sex, BMI, smoking, clozapine dose, clozapine and norclozapine serum levels, and other comedication were studied. Genetic associations were analyzed with linear and logistic regression models explaining sialorrhea and dry mouth with each SNP added separately to the model as coefficients.
RESULTS: Clozapine dose, clozapine or norclozapine concentration and their ratio were not associated with sialorrhea or dryness of mouth. Valproate use (p=0.013) and use of other antipsychotics (p=0.015) combined with clozapine were associated with excessive salivation. No associations were found between studied polymorphisms and sialorrhea. In analyses explaining dry mouth with logistic regression with age and sex as coefficients, two proxy-SNPs were associated with dry mouth: epidermal growth factor receptor 4 (ERBB4) rs3942465 (adjusted p=0.025) and tachykinin receptor 1 (TACR1) rs58933792 (adjusted p=0.029).
CONCLUSION: Use of valproate or antipsychotic polypharmacy may increase the risk of sialorrhea. Genetic variations in ERBB4 and TACR1 might contribute to experienced dryness of mouth among patients treated with clozapine.
PMID:38634369 | DOI:10.1017/neu.2024.9
Leveraging large-scale biobank EHRs to enhance pharmacogenetics of cardiometabolic disease medications
medRxiv [Preprint]. 2024 Apr 7:2024.04.06.24305415. doi: 10.1101/2024.04.06.24305415.
ABSTRACT
Electronic health records (EHRs) coupled with large-scale biobanks offer great promises to unravel the genetic underpinnings of treatment efficacy. However, medication-induced biomarker trajectories stemming from such records remain poorly studied. Here, we extract clinical and medication prescription data from EHRs and conduct GWAS and rare variant burden tests in the UK Biobank (discovery) and the All of Us program (replication) on ten cardiometabolic drug response outcomes including lipid response to statins, HbA1c response to metformin and blood pressure response to antihypertensives (N = 740-26,669). Our findings at genome-wide significance level recover previously reported pharmacogenetic signals and also include novel associations for lipid response to statins (N = 26,669) near LDLR and ZNF800 . Importantly, these associations are treatment-specific and not associated with biomarker progression in medication-naive individuals. Furthermore, we demonstrate that individuals with higher genetically determined low-density and total cholesterol baseline levels experience increased absolute, albeit lower relative biomarker reduction following statin treatment. In summary, we systematically investigated the common and rare pharmacogenetic contribution to cardiometabolic drug response phenotypes in over 50,000 UK Biobank and All of Us participants with EHR and identified clinically relevant genetic predictors for improved personalized treatment strategies.
PMID:38633781 | PMC:PMC11023668 | DOI:10.1101/2024.04.06.24305415
Editorial: Molecular targets for anticancer drug discovery and development
Front Genet. 2024 Apr 3;15:1374867. doi: 10.3389/fgene.2024.1374867. eCollection 2024.
NO ABSTRACT
PMID:38633405 | PMC:PMC11021751 | DOI:10.3389/fgene.2024.1374867
Pharmacogenomics of Hypertension in Africa: Paving the Way for a Pharmacogenetic-Based Approach for the Treatment of Hypertension in Africans
Int J Hypertens. 2023 May 30;2023:9919677. doi: 10.1155/2023/9919677. eCollection 2023.
ABSTRACT
In Africa, the burden of hypertension has been rising at an alarming rate for the last two decades and is a major cause for cardiovascular disease (CVD) mortality and morbidity. Hypertension is characterised by elevated blood pressure (BP) ≥ 140/90 mmHg. Current hypertension guidelines recommend the use of antihypertensives belonging to the following classes: calcium channel blockers (CCB), angiotensin converting inhibitors (ACEI), angiotensin receptor blockers (ARB), diuretics, β-blockers, and mineralocorticoid receptor antagonists (MRAs), to manage hypertension. Still, a considerable number of hypertensives in Africa have their BP uncontrolled due to poor drug response and remain at the risk of CVD events. Genetic factors are a major contributing factor, accounting for 20% to 80% of individual variability in therapy and poor response. Poor response to antihypertensive drug therapy is characterised by elevated BPs and occurrence of adverse drug reactions (ADRs). As a result, there have been numerous studies which have examined the role of genetic variation and its influence on antihypertensive drug response. These studies are predominantly carried out in non-African populations, including Europeans and Asians, with few or no Africans participating. It is important to note that the greatest genetic diversity is observed in African populations as well as the highest prevalence of hypertension. As a result, this warrants a need to focus on how genetic variation affects response to therapeutic interventions used to manage hypertension in African populations. In this paper, we discuss the implications of genetic diversity in CYP11B2, GRK4, NEDD4L, NPPA, SCNN1B, UMOD, CYP411, WNK, CYP3A4/5, ACE, ADBR1/2, GNB3, NOS3, B2, BEST3, SLC25A31, LRRC15 genes, and chromosome 12q loci on hypertension susceptibility and response to antihypertensive therapy. We show that African populations are poorly explored genetically, and for the few characterised genes, they exhibit qualitative and quantitative differences in the profile of pharmacogene variants when compared to other ethnic groups. We conclude by proposing prioritization of pharmacogenetics research in Africa and possible adoption of pharmacogenetic-guided therapies for hypertension in African patients. Finally, we outline the implications, challenges, and opportunities these studies present for populations of non-European descent.
PMID:38633331 | PMC:PMC11022520 | DOI:10.1155/2023/9919677
TGF-β mRNA levels in circulating extracellular vesicles are associated with response to anti-PD1 treatment in metastatic melanoma
Front Mol Biosci. 2024 Apr 3;11:1288677. doi: 10.3389/fmolb.2024.1288677. eCollection 2024.
ABSTRACT
Introduction: Immune checkpoint inhibitors (ICIs) represent the standard therapy for metastatic melanoma. However, a few patients do not respond to ICIs and reliable predictive biomarkers are needed. Methods: This pilot study investigates the association between mRNA levels of programmed cell death-1 (PD-1) ligand 1 (PD-L1), interferon-gamma (IFN-γ), and transforming growth factor-β (TGF-β) in circulating extracellular vesicles (EVs) and survival in 30 patients with metastatic melanoma treated with first line anti-PD-1 antibodies. Blood samples were collected at baseline and RNA extracted from EVs; the RNA levels of PD-L1, IFN-γ, and TGF-β were analysed by digital droplet PCR (ddPCR). A biomarker-radiomic correlation analysis was performed in a subset of patients. Results: Patients with high TGF-β expression (cut-off fractional abundance [FA] >0.19) at baseline had longer median progression-free survival (8.4 vs. 1.8 months; p = 0.006) and overall survival (17.9 vs. 2.63 months; p = 0.0009). Moreover, radiomic analysis demonstrated that patients with high TGF-β expression at baseline had smaller lesions (2.41 ± 3.27 mL vs. 42.79 ± 101.08 mL, p < 0.001) and higher dissimilarity (12.01 ± 28.23 vs. 5.65 ± 8.4; p = 0.018). Discussion: These results provide evidence that high TGF-β expression in EVs is associated with a better response to immunotherapy. Further investigation on a larger patient population is needed to validate the predictive power of this potential biomarker of response to ICIs.
PMID:38633217 | PMC:PMC11021649 | DOI:10.3389/fmolb.2024.1288677
Defining predictors of responsiveness to advanced therapies in Crohn's disease and ulcerative colitis: protocol for the IBD-RESPONSE and nested CD-metaRESPONSE prospective, multicentre, observational cohort study in precision medicine
BMJ Open. 2024 Apr 17;14(4):e073639. doi: 10.1136/bmjopen-2023-073639.
ABSTRACT
INTRODUCTION: Characterised by chronic inflammation of the gastrointestinal tract, inflammatory bowel disease (IBD) symptoms including diarrhoea, abdominal pain and fatigue can significantly impact patient's quality of life. Therapeutic developments in the last 20 years have revolutionised treatment. However, clinical trials and real-world data show primary non-response rates up to 40%. A significant challenge is an inability to predict which treatment will benefit individual patients.Current understanding of IBD pathogenesis implicates complex interactions between host genetics and the gut microbiome. Most cohorts studying the gut microbiota to date have been underpowered, examined single treatments and produced heterogeneous results. Lack of cross-treatment comparisons and well-powered independent replication cohorts hampers the ability to infer real-world utility of predictive signatures.IBD-RESPONSE will use multi-omic data to create a predictive tool for treatment response. Future patient benefit may include development of biomarker-based treatment stratification or manipulation of intestinal microbial targets. IBD-RESPONSE and downstream studies have the potential to improve quality of life, reduce patient risk and reduce expenditure on ineffective treatments.
METHODS AND ANALYSIS: This prospective, multicentre, observational study will identify and validate a predictive model for response to advanced IBD therapies, incorporating gut microbiome, metabolome, single-cell transcriptome, human genome, dietary and clinical data. 1325 participants commencing advanced therapies will be recruited from ~40 UK sites. Data will be collected at baseline, week 14 and week 54. The primary outcome is week 14 clinical response. Secondary outcomes include clinical remission, loss of response in week 14 responders, corticosteroid-free response/remission, time to treatment escalation and change in patient-reported outcome measures.
ETHICS AND DISSEMINATION: Ethical approval was obtained from the Wales Research Ethics Committee 5 (ref: 21/WA/0228). Recruitment is ongoing. Following study completion, results will be submitted for publication in peer-reviewed journals and presented at scientific meetings. Publications will be summarised at www.ibd-response.co.uk.
TRIAL REGISTRATION NUMBER: ISRCTN96296121.
PMID:38631839 | DOI:10.1136/bmjopen-2023-073639
Influence of CYP2C19 and CYP2D6 on side effects of aripiprazole and risperidone: A systematic review
J Psychiatr Res. 2024 Apr 6;174:137-152. doi: 10.1016/j.jpsychires.2024.04.001. Online ahead of print.
ABSTRACT
Variability in hepatic cytochrome P450 (CYP) enzymes such as 2C19 and 2D6 may influence side-effect and efficacy outcomes for antipsychotics. Aripiprazole and risperidone are two commonly prescribed antipsychotics, metabolized primarily through CYP2D6. Here, we aimed to provide an overview of the effect of CYP2C19 and CYP2D6 on side-effects of aripiprazole and risperidone, and expand on existing literature by critically examining methodological issues associated with pharmacogenetic studies. A PRISMA compliant search of six electronic databases (Pubmed, PsychInfo, Embase, Central, Web of Science, and Google Scholar) identified pharmacogenetic studies on aripiprazole and risperidone. 2007 publications were first identified, of which 34 were included. Quality of literature was estimated using Newcastle-Ottowa Quality Assessment Scale (NOS) and revised Cochrane Risk of Bias tool. The average NOS score was 5.8 (range: 3-8) for risperidone literature and 5 for aripiprazole (range: 4-6). All RCTs on aripiprazole were rated as high risk of bias, and four out of six for risperidone literature. Study populations ranged from healthy volunteers to inpatient individuals in psychiatric units and included adult and pediatric samples. All n = 34 studies examined CYP2D6. Only one study genotyped for CYP2C19 and found a positive association with neurological side-effects of risperidone. Most studies did not report any relationship between CYP2D6 and any side-effect outcome. Heterogeneity between and within studies limited the ability to synthesize data and draw definitive conclusions. Studies lacked statistical power due to small sample size, selective genotyping methods, and study design. Large-scale randomized trials with multiple measurements, providing robust evidence on this topic, are suggested.
PMID:38631139 | DOI:10.1016/j.jpsychires.2024.04.001
Pharmacogenetic intervention improves treatment outcomes in Chinese adult men with schizophrenia
J Psychiatr Res. 2024 Apr 11;174:129-136. doi: 10.1016/j.jpsychires.2024.04.020. Online ahead of print.
ABSTRACT
To investigate the clinical application value of pharmacogenetic testing in individualized drug therapy for adult male patients with schizophrenia. A total of 186 adult patients with schizophrenia were enrolled and randomised into the pharmacogenetic (PGx) intervention group and the standard care group. In the PGx intervention group, PGx testing was performed, and the medication regimen was adjusted according to the results of the pharmacogenomic analysis. In contrast, in the standard care group, patients were treated according to the physician's medication experience. Differences in the primary indicator of schizophrenia, the Positive and Negative Symptom Scale (PANSS), and the secondary efficacy measures, the Clinical Global Impressions-Severity of Illness scale (CGI-SI) and Clinical Global Impressions-Global Improvement (CGI-GI) scale, were compared between the intervention and standard care groups. At baseline, the PGx intervention group consisted of 109 individuals, while the standard care group had 77 participants. After 12 weeks of treatment, 49 individuals withdrew from the PGx group (a dropout rate of 45.0%), and 34 withdrew from the standard care group (a dropout rate of 44.2%), with no significant difference in dropout rates between the two groups. The PANSS score reduction rate in the PGx intervention group significantly exceeded that of the standard care group during weeks 3, 6, and 12 of follow-up (P < 0.05). At the 12th week, the PGx intervention group achieved a treatment response rate of 81.7%, significantly surpassing the 48.8% of the standard care group (odds ratio of 4.67, 95% confidence interval of 1.96-11.41; P = 0.001). Furthermore, the PGx intervention was significantly more effective than standard care regardless of whether the patient had a first episode or a relapse (P < 0.05). Furthermore, the Global Assessment of Functioning (GAF) scores and the Personal and Social Performance Scale (PSP) score changes in the PGx intervention group were both significantly different from those in the standard care group (P < 0.05). It is noteworthy that the PGx intervention similarly improves the prognostic outcomes for patients with and without a family history of mental disorders. In conclusion, the application of a PGx intervention treatment model based on PGx testing can significantly improve medication efficacy and shorten the time to achieve the effects of medication in schizophrenia.
PMID:38631138 | DOI:10.1016/j.jpsychires.2024.04.020
Spatial and single-cell explorations uncover prognostic significance and immunological functions of mitochondrial calcium uniporter in breast cancer
Cancer Cell Int. 2024 Apr 17;24(1):140. doi: 10.1186/s12935-024-03327-z.
ABSTRACT
The mitochondrial calcium uniporter (MCU) is a transmembrane protein facilitating the entry of calcium ions into mitochondria from the cell cytosol. Maintaining calcium balance is crucial for enhancing cellular energy supply and regulating cell death. The interplay of calcium balance through MCU and the sodium-calcium exchanger is known, but its regulation in the breast cancer tumor microenvironment remains elusive. Further investigations are warranted to explore MCU's potential in BRCA clinical pathology, tumor immune microenvironment, and precision oncology. Our study, employing a multi-omics approach, identifies MCU as an independent diagnostic biomarker for breast cancer (BRCA), correlated with advanced clinical status and poor overall survival. Utilizing public datasets from GEO and TCGA, we discern differentially expressed genes in BRCA and examine their associations with immune gene expression, overall survival, tumor stage, gene mutation status, and infiltrating immune cells. Spatial transcriptomics is employed to investigate MCU gene expression in various regions of BRCA, while spatial transcriptomics and single-cell RNA-sequencing methods explore the correlation between MCUs and immune cells. Our findings are validated through the analysis of 59 BRCA patient samples, utilizing immunohistochemistry and bioinformatics to examine the relationship between MCU expression, clinicopathological features, and prognosis. The study uncovers the expression of key gene regulators in BRCA associated with genetic variations, deletions, and the tumor microenvironment. Mutations in these regulators positively correlate with different immune cells in six immune datasets, playing a pivotal role in immune cell infiltration in BRCA. Notably, high MCU performance is linked to CD8 + T cells infiltration in BRCA. Furthermore, pharmacogenomic analysis of BRCA cell lines indicates that MCU inactivation is associated with increased sensitivity to specific small molecule drugs. Our findings suggest that MCU alterations may be linked to BRCA progression, unveiling new diagnostic and prognostic implications for MCU in BRCA. The study underscores MCU's role in the tumor immune microenvironment and cell cycle progression, positioning it as a potential tool for BRCA precision medicine and drug screening.
PMID:38632642 | DOI:10.1186/s12935-024-03327-z
Tissue-specific atlas of trans-models for gene regulation elucidates complex regulation patterns
BMC Genomics. 2024 Apr 17;25(1):377. doi: 10.1186/s12864-024-10317-y.
ABSTRACT
BACKGROUND: Deciphering gene regulation is essential for understanding the underlying mechanisms of healthy and disease states. While the regulatory networks formed by transcription factors (TFs) and their target genes has been mostly studied with relation to cis effects such as in TF binding sites, we focused on trans effects of TFs on the expression of their transcribed genes and their potential mechanisms.
RESULTS: We provide a comprehensive tissue-specific atlas, spanning 49 tissues of TF variations affecting gene expression through computational models considering two potential mechanisms, including combinatorial regulation by the expression of the TFs, and by genetic variants within the TF. We demonstrate that similarity between tissues based on our discovered genes corresponds to other types of tissue similarity. The genes affected by complex TF regulation, and their modelled TFs, were highly enriched for pharmacogenomic functions, while the TFs themselves were also enriched in several cancer and metabolic pathways. Additionally, genes that appear in multiple clusters are enriched for regulation of immune system while tissue clusters include cluster-specific genes that are enriched for biological functions and diseases previously associated with the tissues forming the cluster. Finally, our atlas exposes multilevel regulation across multiple tissues, where TFs regulate other TFs through the two tested mechanisms.
CONCLUSIONS: Our tissue-specific atlas provides hierarchical tissue-specific trans genetic regulations that can be further studied for association with human phenotypes.
PMID:38632500 | DOI:10.1186/s12864-024-10317-y