Pharmacogenomics
Proteomic profiles of peritoneal-derived small extracellular vesicles correlate with outcome in ovarian cancer patients
J Clin Invest. 2024 Apr 2:e176161. doi: 10.1172/JCI176161. Online ahead of print.
ABSTRACT
Cancer-derived small extracellular vesicles (sEVs) are capable of modifying tumor microenvironment and promoting tumor progression. Ovarian cancer (OvCa) is a lethal malignancy that preferentially spreads through the abdominal cavity. Thus, the secretion of such vesicles into the peritoneal fluid could be a determinant factor in the dissemination and behavior of this disease. We designed a prospective observational study to assess the impact of peritoneal fluid-derived sEVs (PFD-sEVs) in OvCa clinical outcome. For this purpose, two patient cohorts were enrolled, including OvCa cases who underwent a diagnostic or cytoreductive surgery, and non-oncological patients as controls, who underwent abdominal surgery for benign gynecological conditions. PFD-sEVs systematic extraction from surgical samples enabled us to observe significant quantitative and qualitative differences associated with cancer diagnosis, disease stage and platinum chemosensitivity. Proteomic profiling of PFD-sEVs led to the identification of molecular pathways and proteins of interest and to the biological validation of S100A4 and STX5. In addition, unsupervised analysis of PFD-sEVs proteomic profiles in high-grade serous ovarian carcinomas (HGSOC) revealed two clusters with different outcomes in terms of overall survival. In conclusion, comprehensive characterization of the PFD-sEVs content provided a prognostic value with potential implications in HGSOC clinical management.
PMID:38564289 | DOI:10.1172/JCI176161
The frequency of <em>NUDT15</em> rs116855232 and its impact on mercaptopurine-induced toxicity in Syrian children with acute lymphoblastic leukemia
Front Oncol. 2024 Mar 18;14:1334846. doi: 10.3389/fonc.2024.1334846. eCollection 2024.
ABSTRACT
INTRODUCTION: Polymorphisms in NUDT15 may result in differences in mercaptopurine-induced toxicity. This study aimed to identify the frequency of the NUDT15 (c.415C>T; rs116855232) polymorphism and investigate the effect of this polymorphism on mercaptopurine-induced toxicity in a population of Syrian patients with childhood acute lymphoblastic leukemia (ALL).
METHODS: This is a retrospective study that included children with ALL reaching at least 6 months of maintenance therapy. The NUDT15 genotyping was determined using standard targeted sequencing of polymerase chain reaction products. The odds ratio (OR) for the association between toxicity and genotype was evaluated.
RESULTS: A total of 92 patients were enrolled. The majority of the patients in the study population were low-risk (63.04%), followed by intermediate-risk (25%), and high-risk (11.96%). There were 5 patients (5.4%) with NUDT15 (c.415C>T; rs116855232) CT genotype, and 1 patient (1.08%) with NUDT15 TT genotype, with allele frequencies of C=0.962 and T=0.038. The mercaptopurine median dose intensity was 100%, 54.69%, and 5% for the genotypes CC, CT, and TT, respectively (P=0.009). Early onset leukopenia was significantly associated with the NUDT15 polymorphism (OR: 6.16, 95% CI: 1.11-34.18, P=0.037). There was no association between the NUDT15 genotype and hepatotoxicity.
CONCLUSION: Approximately 6.5% of the study population exhibited reduced NUDT15 activity. The mercaptopurine dose intensity was considerably low in NUDT15 rs116855232 TT genotype compared with CT and CC. The dosage of mercaptopurine should be adjusted according to the NUDT15 genotype in pediatric patients with ALL.
PMID:38562167 | PMC:PMC10982510 | DOI:10.3389/fonc.2024.1334846
Effect of CYP2C19 polymorphism on response to bortezomib-based therapy in multiple myeloma patients
Am J Med Sci. 2024 Mar 30:S0002-9629(24)01149-2. doi: 10.1016/j.amjms.2024.03.022. Online ahead of print.
ABSTRACT
BACKGROUND: Bortezomib, a commonly used anti-myeloma drug, is metabolized by liver microsomal enzymes which may be polymorphic and responsible for lack of response in 30% patients. Hence, the association of CYP2C19 polymorphism with treatment response was explored in this study.
METHODS: Treatment naive multiple myeloma (MM) patients, eligible for bortezomib based induction treatment, were recruited as per the inclusion - exclusion criteria. The genotyping of CYP2C19 was done using polymerase chain reaction-restriction fragment length polymorphism for *2, *3 and *17 allele. The incidence and severity of peripheral neuropathy was noted at follow-up visits and graded as per CTCAE criteria ver 5.0.
RESULTS: Total 220 patients were recruited from August 2016 till May 2021 with a mean age of 55.6 (9.5) years and 65.9% males. Bortezomib+cyclophosphamide+dexamethasone (41.8%) and bortezomib+lenalidomide+dexamethasone (38.2%) were the most prescribed regimens. The CYP2C19 was polymorphic in 38.6%, 2.3% and 23.7% patients for *2, *3 and *17 allele respectively. There were 195 treatment responders and 25 non-responders, and CYP2C19*2 allele was different between responders and non-responders (p=0.02). All extensive metabolisers (n=54) were noted to be treatment responders. Peripheral neuropathy was reported by 23.2% patients. The frequency of peripheral neuropathy was somewhat lower in patients having either *2/*2 or *3/*3 allele pattern for CYP2C19 (p=0.44).
CONCLUSIONS: Polymorphism in CYP2C19 enzyme is likely to have an impact on bortezomib treatment response and peripheral neuropathy. The study suggests the role of pharmacogenetics in personalised treatment of MM.
PMID:38561047 | DOI:10.1016/j.amjms.2024.03.022
Current and future genomic applications for surgeons
Ann R Coll Surg Engl. 2024 Apr;106(4):321-328. doi: 10.1308/rcsann.2024.0031.
ABSTRACT
Genomics is a crucial part of managing surgical disease. This review focuses on some of the genomic advances that are available now and looks to the future of their application in surgical practice. Whole-genome sequencing enables unbiased coverage across the entire human genome of approximately three billion base pairs. Newer technologies, such as those that permit long-read sequence analysis, provide additional information in longer phased fragment and base pair epigenomic (methylomic) data. Whole-genome sequencing is currently available in England for cancers in children, teenagers and young adults, central nervous system tumours, sarcoma and haematological malignancies. Circulating tumour DNA (ctDNA), immunotherapy and pharmacogenomics have emerged as groundbreaking approaches in the field of cancer treatment. These are now revolutionising the way oncologists and surgeons approach curative cancer surgery. Cancer vaccines offer an innovative approach to reducing recurrence after surgery by priming the immune system to trigger an immune response. The Cancer Vaccine Launch Pad project facilitates cancer vaccine studies in England. The BNT122-01 trial is recruiting patients with ctDNA-positive high-risk colorectal cancer after surgery to assess the impact of cancer vaccines. The evolving landscape of cancer treatment demands a dynamic and integrated approach from the surgical multidisciplinary team. Immunotherapy, ctDNA, pharmacogenomics, vaccines, mainstreaming and whole-genome sequencing are just some of the innovations that have the potential to redefine the standards of care. The continued exploration of these innovative diagnostics and therapies, the genomic pathway evolution and their application in diverse cancer types highlights the transformative impact of precision medicine in surgery.
PMID:38555869 | DOI:10.1308/rcsann.2024.0031
Utilising SNP Association Analysis as a Prospective Approach for Personalising Androgenetic Alopecia Treatment
Dermatol Ther (Heidelb). 2024 Mar 31. doi: 10.1007/s13555-024-01142-y. Online ahead of print.
ABSTRACT
INTRODUCTION: Androgenetic alopecia (AGA) is a prevalent, multifactorial form of hair loss involving complex aetiological factors, such as altered androgen regulation and energy metabolism. Existing treatments offer limited success, thus highlighting the need for advanced, personalised therapeutic strategies. This study focuses on correlating the genetic mechanisms of AGA with molecular targets involved in the response to current treatment modalities.
METHODS: An anonymised database including 26,607 patients was subjected to analysis. The dataset included information on patients' genotypes in 26 single nucleotide polymorphisms (SNPs), specifically, and diagnosed AGA grades, representing a broad range of ethnic backgrounds.
RESULTS: In our sample, 64.6% of males and 35.4% of females were diagnosed with female pattern hair loss. This distribution aligns well with prior studies, thus validating the representativeness of our dataset. AGA grading was classified using the Hamilton-Norwood and Ludwig scales, although no association was found to the grade of the disease. SNP association analysis revealed eight SNPs, namely rs13283456 (PTGES2), rs523349 (SRD5A2), rs1800012 (COL1A1), rs4343 (ACE), rs10782665 (PTGFR), rs533116 (PTGDR2), rs12724719 (CRABP2) and rs545659 (PTGDR2), to be statistically significant with a p-value below 0.05.
CONCLUSIONS: The study establishes a preliminary association between eight specific SNPs and AGA. These genetic markers offer insights into the variability of therapeutic responses, thus underlining the importance of personalised treatment approaches. Our findings show the potential for more targeted research to understand these SNPs' and further roles in AGA pathophysiology and in modulating treatment response.
PMID:38555553 | DOI:10.1007/s13555-024-01142-y
Current treatments of alcohol use disorder
Int Rev Neurobiol. 2024;175:127-152. doi: 10.1016/bs.irn.2024.02.005. Epub 2024 Mar 19.
ABSTRACT
Emerging treatments for alcohol dependence reveal an intricate interplay of neurobiological, psychological, and circumstantial factors that contribute to Alcohol Use Disorder (AUD). The approved strategies balancing these factors involve extensive manipulations of neurotransmitter systems such as GABA, Glutamate, Dopamine, Serotonin, and Acetylcholine. Innovative developments are engaging mechanisms such as GABA reuptake inhibition and allosteric modulation. Closer scrutiny is placed on the role of Glutamate in chronic alcohol consumption, with treatments like NMDA receptor antagonists and antiglutamatergic medications showing significant promise. Complementing these neurobiological approaches is the progressive shift towards Personalized Medicine. This strategy emphasizes unique genetic, epigenetic and physiological factors, employing pharmacogenomic principles to optimize treatment response. Concurrently, psychological therapies have become an integral part of the treatment landscape, tackling the cognitive-behavioral dimension of addiction. In instances of AUD comorbidity with other psychiatric disorders, Personalized Medicine becomes pivotal, ensuring treatment and prognosis are closely defined by individual characteristics, as exemplified by Lesch Typology models. Given the high global prevalence and wide distribution of AUD, a persistent necessity exists for development and improvement of treatments. Current research efforts are steadily paving paths towards more sophisticated, effective typology-based treatments: a testament to the recognized imperative for enhanced treatment strategies. The potential encapsulated within the ongoing research suggests a promising future where the clinical relevance of current strategies is not just maintained but significantly improved to effectively counter alcohol dependence.
PMID:38555114 | DOI:10.1016/bs.irn.2024.02.005
Survival analysis in association with GST gene polymorphism and Treatment outcomes of Gemcitabine and Cisplatin/Carboplatin-based chemotherapy among patients with Gallbladder Carcinoma
J Cancer Res Ther. 2024 Jan 1;20(1):289-296. doi: 10.4103/jcrt.jcrt_1897_22. Epub 2023 Jun 26.
ABSTRACT
PURPOSE: Majority of the gallbladder cancer (GBC) cases are diagnosed at an advanced stage where chemotherapy alone (or in combination with other treatment methods) is mainly opted as therapeutic approach. However, success or failure of this approach largely depends on the interindividual genetic differences. Careful consideration on the genetic association could assist in the evaluation of patient's treatment response and survival rate. Hence, the present study aims to investigate the survival of patients with GBC and their treatment response to gemcitabine and cisplatin/carboplatin-based chemotherapy in association with Glutathione S-transferase (GSTs) gene polymorphism.
MATERIAL AND METHODS: A total of 216 histologically confirmed cases of gallbladder cancer were recruited. A total of 180 patients were treated with gemcitabine and cisplatin/carboplatin-based chemotherapy. GSTM1, GSTT1, and GSTP1 genotypes were determined by multiplex PCR and by PCR restriction fragment length polymorphism (PCR-RFLP), respectively. The influence of genetic polymorphism on overall survival was analyzed by Kaplan-Meier method, survival rate difference was analyzed by log-rank test, and hazard ratio for mortality outcomes was estimated using Cox regression method.
RESULTS: GBC patients having genotype GSTP1 (AG + GG) showed poor 3-year survival rate of 0.8% compared to 10.9% of GSTP1 (AA) genotype (χ2 = 6.456, P = 0.011). The multivariate Cox regression results showed that the death risk was significantly higher in GSTP1 (AG + GG) genotype (HR = 3.858, P = 0.050). We found no association of GSTM1 and GSTT1 gene polymorphism with the survival; however, the combined genotypes of GSM1/GSTP1, GSTT1/GSTP1, and GSTM1/GSTT1/GSTP1 were associated with survival (P = 0.053, 0.006, and 0.058, respectively). Increased death hazard was noted by the genotype combinations of GSTM1+/GSTP1AG + GG (HR = 3.484, P = 0.024), GSTM1-/GSTP1AG + GG (HR = 2.721, P = 0.014), GSTT1+/GSTP1AG + GG (HR = 20.690, P = 0.001), and GSTT1-/GSTP1AA (HR = 26.111, P < 0.0001). Our findings indicate that chemotherapy treatment response of GSTP1 (AG + GG) has 1.62-fold increased risk for progression compared to GSTP1 (AA) genotype (p = 0.018); however, none of the genotypes showed association with overall survival and death risk after chemotherapeutic treatment.
CONCLUSION: We found that the presence of GSTP1 (AG + GG) genotype showed survival disadvantage and poor treatment outcomes in response to gemcitabine and cisplatin/carboplatin-based chemotherapy. This could serve as biomarker, and future research in pharmacogenomics will definitely pave the way for the development of better treatment approach for GBC.
PMID:38554336 | DOI:10.4103/jcrt.jcrt_1897_22
Very important pharmacogenetic variants landscape and potential clinical relevance in the Zhuang population from Yunnan province
Sci Rep. 2024 Mar 29;14(1):7495. doi: 10.1038/s41598-024-58092-w.
ABSTRACT
The gradual evolution of pharmacogenomics has shed light on the genetic basis for inter-individual drug response variations across diverse populations. This study aimed to identify pharmacogenomic variants that differ in Zhuang population compared with other populations and investigate their potential clinical relevance in gene-drug and genotypic-phenotypic associations. A total of 48 variants from 24 genes were genotyped in 200 Zhuang subjects using the Agena MassARRAY platform. The allele frequencies and genotype distribution data of 26 populations were obtained from the 1000 Genomes Project, followed by a comparison and statistical analysis. After Bonferroni correction, significant differences in genotype frequencies were observed of CYP3A5 (rs776746), ACE (rs4291), KCNH2 (rs1805123), and CYP2D6 (rs1065852) between the Zhuang population and the other 26 populations. It was also found that the Chinese Dai in Xishuangbanna, China, Han Chinese in Beijing, China, and Southern Han Chinese, China showed least deviation from the Zhuang population. The Esan in Nigeria, Gambian in Western Division, The Gambia, and Yoruba in Ibadan, Nigeria exhibited the largest differences. This was also proved by structural analysis, Fst analysis and phylogenetic tree. Furthermore, these differential variants may be associated with the pharmacological efficacy and toxicity of Captopril, Amlodipine, Lisinopril, metoclopramide, and alpha-hydroxymetoprolol in the Zhuang population. Our study has filled the gap of pharmacogenomic information in the Zhuang population and has provided a theoretical framework for the secure administration of drugs in the Zhuang population.
PMID:38553524 | DOI:10.1038/s41598-024-58092-w
Donor genetic determinant of thymopoiesis, rs2204985, and stem cell transplantation outcome in a multipopulation cohort
Hum Immunol. 2024 Mar 28:110791. doi: 10.1016/j.humimm.2024.110791. Online ahead of print.
ABSTRACT
BACKGROUND: A genetic polymorphism, rs2204985, has been reported to be associated with the diversity of T-cell antigen receptor repertoire and TREC levels, reflecting the function of the thymus. As the thymus function can be assumed to be an important factor regulating the outcome of stem cell transplantation (SCT), it was of great interest that rs2204985 showed a genetic association to disease-free and overall survival in a German SCT donor cohort. Tools to predict the outcome of SCT more accurately would help in risk assessment and patient safety.
OBJECTIVE: To evaluate the general validity of the original genetic association found in the German cohort, we determined genetic associations between rs2204985 and the outcome of SCT in 1,473 SCT donors from four different populations.
STUDY DESIGN: Genetic associations between rs2204985 genotype AA versus AG/GG and overall survival (OS) and disease-free survival (DFS) in 1,473 adult, allogeneic SCT from Finland, the United Kingdom, Spain, and Poland were performed using the Kaplan-Meier analysis and log-rank tests. We adjusted the survival models with covariates using Cox regression.
RESULTS: In unrelated SCT donors (N = 425), the OS of genotype AA versus AG/GG had a trend for a similar association (p = 0.049, log-rank test) as previously reported in the German cohort. The trend did not remain significant in the Cox regression analysis with covariates. No other associations were found.
CONCLUSION: Weak support for the genetic association between rs2204985, previously also associated with thymus function, and the outcome of SCT could be found in a cohort from four populations.
PMID:38553383 | DOI:10.1016/j.humimm.2024.110791
Cyclosporine A-Induced Systemic Metabolic Perturbations in Rats: A Comprehensive Metabolome Analysis
Toxicol Lett. 2024 Mar 27:S0378-4274(24)00063-8. doi: 10.1016/j.toxlet.2024.03.009. Online ahead of print.
ABSTRACT
A better understanding of cyclosporine A (CsA)-induced nephro- and hepatotoxicity at the molecular level is necessary for safe and effective use. Utilizing a sophisticated study design, this study explored metabolic alterations after long-term CsA treatment in vivo. Rats were exposed to CsA with 4, 10, and 25mg/kg for 4 weeks and then sacrificed to obtain liver, kidney, urine, and serum for untargeted metabolomics analysis. Differential network analysis was conducted to explore the biological relevance of metabolites significantly altered by toxicity-induced disturbance. Dose-dependent toxicity was observed in all biospecimens. The toxic effects were characterized by alterations of metabolites related to energy metabolism and cellular membrane composition, which could lead to the cholestasis-induced accumulation of bile acids in the tissues. The unfavorable impacts were also demonstrated in the serum and urine. Intriguingly, phenylacetylglycine was increased in the kidney, urine, and serum treated with high doses versus controls. Differential correlation network analysis revealed the strong correlations of deoxycytidine and guanosine with other metabolites in the network, which highlighted the influence of repeated CsA exposure on DNA synthesis, triggering apoptosis. Overall, prolonged CsA administration had system-level dose-dependent effects on the metabolome in treated rats, suggesting the need for cautious usage and dose adjustment.
PMID:38552811 | DOI:10.1016/j.toxlet.2024.03.009
Characterization of Mitoribosomal Small Subunit unit genes related immune and pharmacogenomic landscapes in renal cell carcinoma
IUBMB Life. 2024 Mar 29. doi: 10.1002/iub.2818. Online ahead of print.
ABSTRACT
Mitoribosomes are essential for the production of biological energy. The Human Mitoribosomal Small Subunit unit (MRPS) family, responsible for encoding mitochondrial ribosomal small subunits, is actively engaged in protein synthesis within the mitochondria. Intriguingly, MRPS family genes appear to play a role in cancer. A multistep process was employed to establish a risk model associated with MRPS genes, aiming to delineate the immune and pharmacogenomic landscapes in clear cell renal cell carcinoma (ccRCC). MRPScores were computed for individual patients to assess their responsiveness to various treatment modalities and their susceptibility to different therapeutic targets and drugs. While MRPS family genes have been implicated in various cancers as oncogenes, our findings reveal a contrasting tumor suppressor role for MRPS genes in ccRCC. Utilizing an MRPS-related risk model, we observed its excellent prognostic capability in predicting survival outcomes for ccRCC patients. Remarkably, the subgroup with high MRPS-related scores (MRPScore) displayed poorer prognosis but exhibited a more robust response to immunotherapy. Through in silico screening of 2183 drug targets and 1646 compounds, we identified two targets (RRM2 and OPRD1) and eight agents (AZ960, carmustine, lasalocid, SGI-1776, AZD8055_1059, BPD.00008900_1998, MK.8776_2046, and XAV939_1268) with potential therapeutic implications for high-MRPScore patients. Our study represents the pioneering effort in proposing that molecular classification, diagnosis, and treatment strategies can be formulated based on MRPScores. Indeed, a high MRPScore profile appears to elevate the risk of tumor progression and mortality, potentially through its influence on immune regulation. This suggests that the MRPS-related risk model holds promise as a prognostic predictor and may offer novel insights into personalized therapeutic strategies.
PMID:38551358 | DOI:10.1002/iub.2818
Cardiovascular precision medicine - A pharmacogenomic perspective
Camb Prism Precis Med. 2023 Jun 29;1:e28. doi: 10.1017/pcm.2023.17. eCollection 2023.
ABSTRACT
Precision medicine envisages the integration of an individual's clinical and biological features obtained from laboratory tests, imaging, high-throughput omics and health records, to drive a personalised approach to diagnosis and treatment with a higher chance of success. As only up to half of patients respond to medication prescribed following the current one-size-fits-all treatment strategy, the need for a more personalised approach is evident. One of the routes to transforming healthcare through precision medicine is pharmacogenomics (PGx). Around 95% of the population is estimated to carry one or more actionable pharmacogenetic variants and over 75% of adults over 50 years old are on a prescription with a known PGx association. Whilst there are compelling examples of pharmacogenomic implementation in clinical practice, the case for cardiovascular PGx is still evolving. In this review, we shall summarise the current status of PGx in cardiovascular diseases and look at the key enablers and barriers to PGx implementation in clinical practice.
PMID:38550953 | PMC:PMC10953758 | DOI:10.1017/pcm.2023.17
Maturing pharmacogenomic factors deliver improvements and cost efficiencies
Camb Prism Precis Med. 2022 Oct 6;1:e3. doi: 10.1017/pcm.2022.3. eCollection 2023.
ABSTRACT
An ever-expanding annotation of the human genome sequence continues to promise a new era of precision medicine. Advances in knowledge management and the ability to leverage genetic information to make clinically relevant, predictive, diagnostic, and targeted therapeutic choices offer the ability to improve patient outcomes and reduce the overall cost of healthcare. However, numerous barriers have resulted in a modest start to the clinical use of genetics at scale. Examples of successful deployments include oncologic disease treatment with targeted prescribing; however, even in these cases, genome-informed decision-making has yet to achieve standard of care in most major healthcare systems. In the last two decades, advances in genetic testing, therapeutic coverage, and clinical decision support have resulted in early-stage adoption of pharmacogenomics - the use of genetic information to routinely determine the safety and efficacy profile of specific medications for individuals. Here, through their complicated histories, we review the current state of pharmacogenomic testing technologies, the information tools that can unlock clinical utility, and value-driving implementation strategies that represent the future of pharmacogenomics-enabled healthcare decision-making. We conclude with real-world economic and clinical outcomes from a full-scale deployment and ultimately provide insight into potential tipping points for global adoption, including recent lessons from the rapid scale-up of high-volume test delivery during the global SARS-CoV2 epidemic.
PMID:38550951 | PMC:PMC10953741 | DOI:10.1017/pcm.2022.3
Optimizing human performance in extreme environments through precision medicine: From spaceflight to high-performance operations on Earth
Camb Prism Precis Med. 2023 Jun 30;1:e27. doi: 10.1017/pcm.2023.16. eCollection 2023.
ABSTRACT
Humans operating in extreme environments often conduct their operations at the edges of the limits of human performance. Sometimes, they are required to push these limits to previously unattained levels. As a result, their margins for error in execution are much smaller than that found in the general public. These same small margins for error that impact execution may also impact risk, safety, health, and even survival. Thus, humans operating in extreme environments have a need for greater refinement in their preparation, training, fitness, and medical care. Precision medicine (PM) is uniquely suited to address the needs of those engaged in these extreme operations because of its depth of molecular analysis, derived precision countermeasures, and ability to match each individual (and his or her specific molecular phenotype) with any given operating context (environment). Herein, we present an overview of a systems approach to PM in extreme environments, which affords clinicians one method to contextualize the inputs, processes, and outputs that can form the basis of a formal practice. For the sake of brevity, this overview is focused on molecular dynamics, while providing only a brief introduction to the also important physiologic and behavioral phenotypes in PM. Moreover, rather than a full review, it highlights important concepts, while using only selected citations to illustrate those concepts. It further explores, by demonstration, the basic principles of using functionally characterized molecular networks to guide the practical application of PM in extreme environments. At its core, PM in extreme environments is about attention to incremental gains and losses in molecular network efficiency that can scale to produce notable changes in health and performance. The aim of this overview is to provide a conceptual overview of one approach to PM in extreme environments, coupled with a selected suite of practical considerations for molecular profiling and countermeasures.
PMID:38550927 | PMC:PMC10953751 | DOI:10.1017/pcm.2023.16
Polypharmacy and precision medicine
Camb Prism Precis Med. 2023 Mar 10;1:e22. doi: 10.1017/pcm.2023.10. eCollection 2023.
ABSTRACT
Precision medicine is an approach to maximise the effectiveness of disease treatment and prevention and minimise harm from medications by considering relevant demographic, clinical, genomic and environmental factors in making treatment decisions. Precision medicine is complex, even for decisions about single drugs for single diseases, as it requires expert consideration of multiple measurable factors that affect pharmacokinetics and pharmacodynamics, and many patient-specific variables. Given the increasing number of patients with multiple conditions and medications, there is a need to apply lessons learned from precision medicine in monotherapy and single disease management to optimise polypharmacy. However, precision medicine for optimisation of polypharmacy is particularly challenging because of the vast number of interacting factors that influence drug use and response. In this narrative review, we aim to provide and apply the latest research findings to achieve precision medicine in the context of polypharmacy. Specifically, this review aims to (1) summarise challenges in achieving precision medicine specific to polypharmacy; (2) synthesise the current approaches to precision medicine in polypharmacy; (3) provide a summary of the literature in the field of prediction of unknown drug-drug interactions (DDI) and (4) propose a novel approach to provide precision medicine for patients with polypharmacy. For our proposed model to be implemented in routine clinical practice, a comprehensive intervention bundle needs to be integrated into the electronic medical record using bioinformatic approaches on a wide range of data to predict the effects of polypharmacy regimens on an individual. In addition, clinicians need to be trained to interpret the results of data from sources including pharmacogenomic testing, DDI prediction and physiological-pharmacokinetic-pharmacodynamic modelling to inform their medication reviews. Future studies are needed to evaluate the efficacy of this model and to test generalisability so that it can be implemented at scale, aiming to improve outcomes in people with polypharmacy.
PMID:38550925 | PMC:PMC10953761 | DOI:10.1017/pcm.2023.10
Advancing Precision Medicine in Paediatrics: Past, present and future
Camb Prism Precis Med. 2023 Jan 10;1:e11. doi: 10.1017/pcm.2022.14. eCollection 2023.
ABSTRACT
Precision Medicine is an approach to disease treatment and prevention taking into account individual genetic, environmental, therapeutic and lifestyle variability for each person. This holistic approach to therapeutics is intended to enhance drug efficacy and safety not only across healthcare systems but for individual patients. While weight and to some extent gestational age have been considered in determining drug dosing in children, historically other factors including genetic variability have not been factored into therapeutic decision making. As our knowledge of the role of ontogeny and genetics in determining drug efficacy and safety has expanded, these insights have provided new opportunities to apply principles of Precision Medicine to the care of infants, children and youth. These opportunities are most likely to be achieved first in select sub-groups of children. While there are many challenges to the successful implementation of Precision Medicine in children including the need to ensure that Precision Medicine enhances rather than reduces equity in children's health care rather, there are many more opportunities. Research, advocacy, planning and teamwork are required to move Precision Medicine forward in children in pursuit of the common goal of safe and effective drug therapy.
PMID:38550924 | PMC:PMC10953768 | DOI:10.1017/pcm.2022.14
Building a precision medicine infrastructure at a national level: The Swedish experience
Camb Prism Precis Med. 2023 Feb 27;1:e15. doi: 10.1017/pcm.2023.3. eCollection 2023.
ABSTRACT
Precision medicine has the potential to transform healthcare by moving from one-size-fits-all to personalised treatment and care. This transition has been greatly facilitated through new high-throughput sequencing technologies that can provide the unique molecular profile of each individual patient, along with the rapid development of targeted therapies directed to the Achilles heels of each disease. To implement precision medicine approaches in healthcare, many countries have adopted national strategies and initiated genomic/precision medicine initiatives to provide equal access to all citizens. In other countries, such as Sweden, this has proven more difficult due to regionally organised healthcare. Using a bottom-up approach, key stakeholders from academia, healthcare, industry and patient organisations joined forces and formed Genomic Medicine Sweden (GMS), a national infrastructure for the implementation of precision medicine across the country. To achieve this, Genomic Medicine Centres have been established to provide regionally distributed genomic services, and a national informatics infrastructure has been built to allow secure data handling and sharing. GMS has a broad scope focusing on rare diseases, cancer, pharmacogenomics, infectious diseases and complex diseases, while also providing expertise in informatics, ethical and legal issues, health economy, industry collaboration and education. In this review, we summarise our experience in building a national infrastructure for precision medicine. We also provide key examples how precision medicine already has been successfully implemented within our focus areas. Finally, we bring up challenges and opportunities associated with precision medicine implementation, the importance of international collaboration, as well as the future perspective in the field of precision medicine.
PMID:38550923 | PMC:PMC10953755 | DOI:10.1017/pcm.2023.3
Forging the path to precision medicine in Qatar: a public health perspective on pharmacogenomics initiatives
Front Public Health. 2024 Mar 14;12:1364221. doi: 10.3389/fpubh.2024.1364221. eCollection 2024.
ABSTRACT
Pharmacogenomics (PGx) is an important component of precision medicine that promises tailored treatment approaches based on an individual's genetic information. Exploring the initiatives in research that help to integrate PGx test into clinical setting, identifying the potential barriers and challenges as well as planning the future directions, are all important for fruitful PGx implementation in any population. Qatar serves as an exemplar case study for the Middle East, having a small native population compared to a diverse immigrant population, advanced healthcare system, national genome program, and several educational initiatives on PGx and precision medicine. This paper attempts to outline the current state of PGx research and implementation in Qatar within the global context, emphasizing ongoing initiatives and educational efforts. The inclusion of PGx in university curricula and healthcare provider training, alongside precision medicine conferences, showcase Qatar's commitment to advancing this field. However, challenges persist, including the requirement for population specific implementation strategies, complex genetic data interpretation, lack of standardization, and limited awareness. The review suggests policy development for future directions in continued research investment, conducting clinical trials for the feasibility of PGx implementation, ethical considerations, technological advancements, and global collaborations to overcome these barriers.
PMID:38550311 | PMC:PMC10977610 | DOI:10.3389/fpubh.2024.1364221
Utilizing Peripheral Nerve Blocks for Pain Management in Pediatric Patients during Embolization and Sclerotherapy for Vascular Malformations
Children (Basel). 2024 Mar 20;11(3):368. doi: 10.3390/children11030368.
ABSTRACT
Vascular anomalies are a diverse group of abnormal blood vessel developments that can occur at birth or shortly afterward. Embolization and sclerotherapy have been utilized as a treatment option for these malformations but may cause moderate-to-severe pain. This study aims to evaluate the utilization of peripheral nerve blocks in opioid consumption, pain scores, and length of stay. A retrospective chart review was conducted at the UPMC Children's Hospital of Pittsburgh for all patients who underwent embolization and sclerotherapy between 2011 and 2020. Patient data were collected to compare opioid consumption, pain scores, and length of stay. In total, 854 procedures were performed on 347 patients. The morphine milligram equivalent per kilogram mean difference between groups was 0.9 (0.86, 0.95) with a p-value of <0.001. The pain score mean ratio was -1.17 (-2.2, -0.1) with a p-value of 0.027. The length of stay had an incident rate ratio of 0.94 (0.4, 2) and a p-value of 0.875. By decreasing opioid consumption and postoperative pain scores, peripheral nerve blocks may have utility in patients undergoing embolization and sclerotherapy while not clinically increasing the length of stay for patients. Their use should be individualized and carefully discussed with the interventional radiologist.
PMID:38539403 | PMC:PMC10969119 | DOI:10.3390/children11030368
Identification of ADME genes polymorphic variants linked to trastuzumab-induced cardiotoxicity in breast cancer patients: Case series of mono-institutional experience
Biomed Pharmacother. 2024 Mar 27;174:116478. doi: 10.1016/j.biopha.2024.116478. Online ahead of print.
ABSTRACT
BACKGROUND: Long-term survival induced by anticancer treatments discloses emerging frailty among breast cancer (BC) survivors. Trastuzumab-induced cardiotoxicity (TIC) is reported in at least 5% of HER2+BC patients. However, TIC mechanism remains unclear and predictive genetic biomarkers are still lacking. Interaction between systemic inflammation, cytokine release and ADME genes in cancer patients might contribute to explain mechanisms underlying individual susceptibility to TIC and drug response variability. We present a single institution case series to investigate the potential role of genetic variants in ADME genes in HER2+BC patients TIC experienced.
METHODS: We selected data related to 40 HER2+ BC patients undergone to DMET genotyping of ADME constitutive variant profiling, with the aim to prospectively explore their potential role in developing TIC. Only 3 patients ("case series"), who experienced TIC, were compared to 37 "control group" matched patients cardiotoxicity-sparing. All patients underwent to left ventricular ejection fraction (LVEF) evaluation at diagnosis and during anti-HER2 therapy. Each single probe was clustered to detect SNPs related to cardiotoxicity.
RESULTS: In this retrospective analysis, our 3 cases were homogeneous in terms of clinical-pathological characteristics, trastuzumab-based treatment and LVEF decline. We identified 9 polymorphic variants in 8 ADME genes (UGT1A1, UGT1A6, UGT1A7, UGT2B15, SLC22A1, CYP3A5, ABCC4, CYP2D6) potentially associated with TIC.
CONCLUSION: Real-world TIC incidence is higher compared to randomized clinical trials and biomarkers with potential predictive value aren't available. Our preliminary data, as proof of concept, could suggest a predictive role of pharmacogenomic approach in the identification of cardiotoxicity risk biomarkers for anti-HER2 treatment.
PMID:38547766 | DOI:10.1016/j.biopha.2024.116478