Semantic Web
From frames to OWL2: Converting the Foundational Model of Anatomy.
From frames to OWL2: Converting the Foundational Model of Anatomy.
Artif Intell Med. 2016 May;69:12-21
Authors: Detwiler LT, Mejino JL, Brinkley JF
Abstract
OBJECTIVE: The Foundational Model of Anatomy (FMA) [Rosse C, Mejino JLV. A reference ontology for bioinformatics: the Foundational Model of Anatomy. J. Biomed. Inform. 2003;36:478-500] is an ontology that represents canonical anatomy at levels ranging from the entire body to biological macromolecules, and has rapidly become the primary reference ontology for human anatomy, and a template for model organisms. Prior to this work, the FMA was developed in a knowledge modeling language known as Protégé Frames. Frames is an intuitive representational language, but is no longer the industry standard. Recognizing the need for an official version of the FMA in the more modern semantic web language OWL2 (hereafter referred to as OWL), the objective of this work was to create a generalizable Frames-to-OWL conversion tool, to use the tool to convert the FMA to OWL, to "clean up" the converted FMA so that it classifies under an EL reasoner, and then to do all further development in OWL.
METHODS: The conversion tool is a Java application that uses the Protégé knowledge representation API for interacting with the initial Frames ontology, and uses the OWL-API for producing new statements (axioms, etc.) in OWL. The converter is relation centric. The conversion is configurable, on a property-by-property basis, via user-specifiable XML configuration files. The best conversion, for each property, was determined in conjunction with the FMA knowledge author. The convertor is potentially generalizable, which we partially demonstrate by using it to convert our Ontology of Craniofacial Development and Malformation as well as the FMA. Post-conversion cleanup involved using the Explain feature of Protégé to trace classification errors under the ELK reasoner in Protégé, fixing the errors, then re-running the reasoner.
RESULTS: We are currently doing all our development in the converted and cleaned-up version of the FMA. The FMA (updated every 3 months) is available via our FMA web page http://si.washington.edu/projects/fma, which also provides access to mailing lists, an issue tracker, a SPARQL endpoint (updated every week), and an online browser. The converted OCDM is available at http://www.si.washington.edu/projects/ocdm. The conversion code is open source, and available at http://purl.org/sig/software/frames2owl. Prior to the post-conversion cleanup 73% of the more than 100,000 classes were unsatisfiable. After correction of six types of errors no classes remained unsatisfiable.
CONCLUSION: Because our FMA conversion captures all or most of the information in the Frames version, is the only complete OWL version that classifies under an EL reasoner, and is maintained by the FMA authors themselves, we propose that this version should be the only official release version of the FMA in OWL, supplanting all other versions. Although several issues remain to be resolved post-conversion, release of a single, standardized version of the FMA in OWL will greatly facilitate its use in informatics research and in the development of a global knowledge base within the semantic web. Because of the fundamental nature of anatomy in both understanding and organizing biomedical information, and because of the importance of the FMA in particular in representing human anatomy, the FMA in OWL should greatly accelerate the development of an anatomically based structural information framework for organizing and linking a large amount of biomedical information.
PMID: 27235801 [PubMed - as supplied by publisher]
Web Ontologies to Categorialy Structure Reality: Representations of Human Emotional, Cognitive, and Motivational Processes.
Web Ontologies to Categorialy Structure Reality: Representations of Human Emotional, Cognitive, and Motivational Processes.
Front Psychol. 2016;7:551
Authors: López-Gil JM, Gil R, García R
Abstract
This work presents a Web ontology for modeling and representation of the emotional, cognitive and motivational state of online learners, interacting with university systems for distance or blended education. The ontology is understood as a way to provide the required mechanisms to model reality and associate it to emotional responses, but without committing to a particular way of organizing these emotional responses. Knowledge representation for the contributed ontology is performed by using Web Ontology Language (OWL), a semantic web language designed to represent rich and complex knowledge about things, groups of things, and relations between things. OWL is a computational logic-based language such that computer programs can exploit knowledge expressed in OWL and also facilitates sharing and reusing knowledge using the global infrastructure of the Web. The proposed ontology has been tested in the field of Massive Open Online Courses (MOOCs) to check if it is capable of representing emotions and motivation of the students in this context of use.
PMID: 27199796 [PubMed]
BelSmile: a biomedical semantic role labeling approach for extracting biological expression language from text.
BelSmile: a biomedical semantic role labeling approach for extracting biological expression language from text.
Database (Oxford). 2016;2016
Authors: Lai PT, Lo YY, Huang MS, Hsiao YC, Tsai RT
Abstract
Biological expression language (BEL) is one of the most popular languages to represent the causal and correlative relationships among biological events. Automatically extracting and representing biomedical events using BEL can help biologists quickly survey and understand relevant literature. Recently, many researchers have shown interest in biomedical event extraction. However, the task is still a challenge for current systems because of the complexity of integrating different information extraction tasks such as named entity recognition (NER), named entity normalization (NEN) and relation extraction into a single system. In this study, we introduce our BelSmile system, which uses a semantic-role-labeling (SRL)-based approach to extract the NEs and events for BEL statements. BelSmile combines our previous NER, NEN and SRL systems. We evaluate BelSmile using the BioCreative V BEL task dataset. Our system achieved an F-score of 27.8%, ∼7% higher than the top BioCreative V system. The three main contributions of this study are (i) an effective pipeline approach to extract BEL statements, and (ii) a syntactic-based labeler to extract subject-verb-object tuples. We also implement a web-based version of BelSmile (iii) that is publicly available at iisrserv.csie.ncu.edu.tw/belsmile.
PMID: 27173520 [PubMed - as supplied by publisher]
DisGeNET-RDF: Harnessing the Innovative Power of the Semantic Web to Explore the Genetic Basis of Diseases.
DisGeNET-RDF: Harnessing the Innovative Power of the Semantic Web to Explore the Genetic Basis of Diseases.
Bioinformatics. 2016 Apr 22;
Authors: Queralt-Rosinach N, Piñero J, Bravo À, Sanz F, Furlong LI
Abstract
MOTIVATION: DisGeNET-RDF makes available knowledge on the genetic basis of human diseases in the Semantic Web (SW). Gene-disease associations (GDAs) and their provenance metadata are published as human-readable and machine-processable web resources. The information on GDAs included in DisGeNET-RDF is interlinked to other biomedical databases to support the development of bioinformatics approaches for translational research through evidence-based exploitation of a rich and fully interconnected Linked Open Data (LOD).
AVAILABILITY: http://rdf.disgenet.org/ CONTACT: support@disgenet.org.
PMID: 27153650 [PubMed - as supplied by publisher]