Drug Repositioning
Knowledge Mapping of Drug Repositioning's Theme and Development
Drug Des Devel Ther. 2023 Apr 18;17:1157-1174. doi: 10.2147/DDDT.S405906. eCollection 2023.
ABSTRACT
BACKGROUND: In recent years, the emergence of new diseases and resistance to known diseases have led to increasing demand for new drugs. By means of bibliometric analysis, this paper studied the relevant articles on drug repositioning in recent years and analyzed the current research foci and trends.
METHODOLOGY: The Web of Science database was searched to collect all relevant literature on drug repositioning from 2001 to 2022. These data were imported into CiteSpace and bibliometric online analysis platforms for bibliometric analysis. The processed data and visualized images predict the development trends in the research field.
RESULTS: The quality and quantity of articles published after 2011 have improved significantly, with 45 of them cited more than 100 times. Articles posted by journals from different countries have high citation values. Authors from other institutions have also collaborated to analyze drug rediscovery. Keywords found in the literature include molecular docking (N=223), virtual screening (N=170), drug discovery (N=126), machine learning (N=125), and drug-target interaction (N=68); these words represent the core content of drug repositioning.
CONCLUSION: The key focus of drug research and development is related to the discovery of new indications for drugs. Researchers are starting to retarget drugs after analyzing online databases and clinical trials. More and more drugs are being targeted at other diseases to treat more patients, based on saving money and time. It is worth noting that researchers need more financial and technical support to complete drug development.
PMID:37096060 | PMC:PMC10122475 | DOI:10.2147/DDDT.S405906
Advances in Drug Discovery Based on Genomics, Proteomics and Bioinformatics in Malaria
Curr Top Med Chem. 2023 Apr 18. doi: 10.2174/1568026623666230418114455. Online ahead of print.
ABSTRACT
Malaria is one of the neglected infectious diseases, and drugs are the first line of action taken against the onset of malaria as therapeutics. The drugs can be of either natural or artificial origin. Drug development has multiple impediments grouped under three categories, a. drug discovery and screening, b. the drug's action on the host and the pathogen, and c. clinical trials. Drug development takes coon's age from discovery to the market after FDA approval. At the same time, targeted organisms develop drug resistance quicker than drug approval, raising the requirement for advancement in drug development. The approach to explore drug candidates using the classical methods from natural sources, computation-based docking, mathematical and machine learning-based high throughput in silico models or drug repurposing has been investigated and developed. Also, drug development with information about the interaction between Plasmodium species and its host, humans, may facilitate obtaining an efficient drug cohort for further drug discovery or repurposing expedition. However, drugs may have side effects on the host system. Hence, machine learning and systems-based approaches may provide a holistic view of genomic, proteomic, and transcriptomic data and their interaction with the selected drug candidates. This review comprehensively describes the drug discovery workflows using drug and target screening methodologies, followed by possible ways to check the binding affinity of the drug and targets using various docking software.
PMID:37073654 | DOI:10.2174/1568026623666230418114455
Restoration of aberrant gene expression of monocytes in systemic lupus erythematosus via a combined transcriptome-reversal and network-based drug repurposing strategy
BMC Genomics. 2023 Apr 18;24(1):207. doi: 10.1186/s12864-023-09275-8.
ABSTRACT
BACKGROUND: Monocytes -key regulators of the innate immune response- are actively involved in the pathogenesis of systemic lupus erythematosus (SLE). We sought to identify novel compounds that might serve as monocyte-directed targeted therapies in SLE.
RESULTS: We performed mRNA sequencing in monocytes from 15 patients with active SLE and 10 healthy individuals. Disease activity was assessed with the Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2 K). Leveraging the drug repurposing platforms iLINCS, CLUE and L1000CDS2, we identified perturbagens capable of reversing the SLE monocyte signature. We identified transcription factors and microRNAs (miRNAs) that regulate the transcriptome of SLE monocytes, using the TRRUST and miRWalk databases, respectively. A gene regulatory network, integrating implicated transcription factors and miRNAs was constructed, and drugs targeting central components of the network were retrieved from the DGIDb database. Inhibitors of the NF-κB pathway, compounds targeting the heat shock protein 90 (HSP90), as well as a small molecule disrupting the Pim-1/NFATc1/NLRP3 signaling axis were predicted to efficiently counteract the aberrant monocyte gene signature in SLE. An additional analysis was conducted, to enhance the specificity of our drug repurposing approach on monocytes, using the iLINCS, CLUE and L1000CDS2 platforms on publicly available datasets from circulating B-lymphocytes, CD4+ and CD8+ T-cells, derived from SLE patients. Through this approach we identified, small molecule compounds, that could potentially affect more selectively the transcriptome of SLE monocytes, such as, certain NF-κB pathway inhibitors, Pim-1 and SYK kinase inhibitors. Furthermore, according to our network-based drug repurposing approach, an IL-12/23 inhibitor and an EGFR inhibitor may represent potential drug candidates in SLE.
CONCLUSIONS: Application of two independent - a transcriptome-reversal and a network-based -drug repurposing strategies uncovered novel agents that might remedy transcriptional disturbances of monocytes in SLE.
PMID:37072752 | DOI:10.1186/s12864-023-09275-8
Emerging treatment approaches for COVID-19 infection: A Critical Review
Curr Mol Med. 2023 Apr 17. doi: 10.2174/1566524023666230417112543. Online ahead of print.
ABSTRACT
In the present scenario, the SARS-CoV-2 virus has imposed enormous damage on human survival and the global financial system. It has been estimated that around 111 million people all around the world have been infected, and about 2.47 million people died due to this pandemic. The major symptoms were sneezing, coughing, cold, difficulty breathing, pneumonia, and multi-organ failure associated 1with SARS-CoV-2. Currently, two key problems, namely insufficient attempts to develop drugs against SARSCoV-2 and the lack of any biological regulating process, are mostly responsible for the havoc caused by this virus. Henceforth, developing a few novel drugs is urgently required to cure this pandemic. It has been noticed that the pathogenesis of COVID-19 is caused by two main events: infection and immune deficiency, that occur during the pathological process. Antiviral medication can treat both the virus and the host cells. Therefore, in the present review, the major approaches for the treatment have been divided into "target virus" and "target host" groups. These two mechanisms primarily rely on drug repositioning, novel approaches, and possible targets. Initially, we discussed the traditional drugs per the physicians' recommendations. Moreover, such therapeutics have no potential to fight against COVID-19. After that, detailed investigation and analysis were conducted to find some novel vaccines and monoclonal antibodies and conduct a few clinical trials to check their effectiveness against SARSCoV-2 and mutant strains. Additionally, this study presents the most successful methods for its treatment, including combinatorial therapy. Nanotechnology was studied to build efficient nanocarriers to overcome the traditional constraints of antiviral and biological therapies.
PMID:37070448 | DOI:10.2174/1566524023666230417112543
Deciphering molecular mechanisms of SARS-CoV-2 pathogenesis and drug repurposing through GRN motifs: a comprehensive systems biology study
3 Biotech. 2023 Apr;13(4):117. doi: 10.1007/s13205-023-03518-x. Epub 2023 Mar 13.
ABSTRACT
The world has recently been plagued by a new coronavirus infection called SARS-CoV-2. This virus may lead to severe acute respiratory syndrome followed by multiple organ failure. SARS-CoV-2 has approximately 80-90% genetic similarity to SARS-CoV. Given the limited omics data available for host response to the viruses (more limited data for SARS-CoV-2), we attempted to unveil the crucial molecular mechanisms underlying the SARS-CoV-2 pathogenesis by comparing its regulatory network motifs with SARS-CoV. We also attempted to identify the non-shared crucial molecules and their functions to predict the specific mechanisms for each infection and the processes responsible for their different manifestations. Deciphering the crucial shared and non-shared mechanisms at the molecular level and signaling pathways underlying both diseases may help shed light on their pathogenesis and pave the way for other new drug repurposing against COVID-19. We constructed the GRNs for host response to SARS-CoV and SARS-CoV-2 pathogens (in vitro) and identified the significant 3-node regulatory motifs by analyzing them topologically and functionally. We attempted to identify the shared and non-shared regulatory elements and signaling pathways between their host responses. Interestingly, our findings indicated that NFKB1, JUN, STAT1, FOS, KLF4, and EGR1 were the critical shared TFs between motif-related subnetworks in both SARS and COVID-1, which are considered genes with specific functions in the immune response. Enrichment analysis revealed that the NOD-like receptor signaling, TNF signaling, and influenza A pathway were among the first significant pathways shared between SARS and COVID-19 up-regulated DEGs networks, and the term "metabolic pathways" (hsa01100) among the down-regulated DEGs networks. WEE1, PMAIP1, and TSC22D2 were identified as the top three hubs specific to SARS. However, MYPN, SPRY4, and APOL6 were the tops specific to COVID-19 in vitro. The term "Complement and coagulation cascades" pathway was identified as the first top non-shared pathway for COVID-19 and the MAPK signaling pathway for SARS. We used the identified crucial DEGs to construct a drug-gene interaction network to propose some drug candidates. Zinc chloride, Fostamatinib, Copper, Tirofiban, Tretinoin, and Levocarnitine were the six drugs with higher scores in our drug-gene network analysis.
SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-023-03518-x.
PMID:37070032 | PMC:PMC10090260 | DOI:10.1007/s13205-023-03518-x
Artemisinin derivatives induce oxidative stress leading to DNA damage and caspase-mediated apoptosis in Theileria annulata-transformed cells
Cell Commun Signal. 2023 Apr 17;21(1):78. doi: 10.1186/s12964-023-01067-7.
ABSTRACT
BACKGROUND: Bovine theileriosis caused by the eukaryotic parasite Theileria annulata is an economically important tick-borne disease. If it is not treated promptly, this lymphoproliferative disease has a significant fatality rate. Buparvaquone (BPQ) is the only chemotherapy-based treatment available right now. However, with the emergence of BPQ resistance on the rise and no backup therapy available, it is critical to identify imperative drugs and new targets against Theileria parasites.
METHODS: Artemisinin and its derivatives artesunate (ARS), artemether (ARM), or dihydroartemisinin (DHART) are the primary defence line against malaria parasites. This study has analysed artemisinin and its derivatives for their anti-Theilerial activity and mechanism of action.
RESULTS: ARS and DHART showed potent activity against the Theileria-infected cells. BPQ in combination with ARS or DHART showed a synergistic effect. The compounds act specifically on the parasitised cells and have minimal cytotoxicity against the uninfected host cells. Treatment with ARS or DHART induces ROS-mediated oxidative DNA damage leading to cell death. Further blocking intracellular ROS by its scavengers antagonised the anti-parasitic activity of the compounds. Increased ROS production induces oxidative stress and DNA damage causing p53 activation followed by caspase-dependent apoptosis in the Theileria-infected cells.
CONCLUSIONS: Our findings give unique insights into the previously unknown molecular pathways underpinning the anti-Theilerial action of artemisinin derivatives, which may aid in formulating new therapies against this deadly parasite. Video abstract.
PMID:37069625 | DOI:10.1186/s12964-023-01067-7
Repurposing mucosal delivery devices for live attenuated tuberculosis vaccines
Front Immunol. 2023 Mar 30;14:1159084. doi: 10.3389/fimmu.2023.1159084. eCollection 2023.
ABSTRACT
Tuberculosis (TB) remains one of the most lethal infectious diseases globally. The only TB vaccine approved by the World Health Organization, Bacille Calmette-Guérin (BCG), protects children against severe and disseminated TB but provides limited protection against pulmonary TB in adults. Although several vaccine candidates have been developed to prevent TB and are undergoing preclinical and clinical testing, BCG remains the gold standard. Currently, BCG is administered as an intradermal injection, particularly in TB endemic countries. However, mounting evidence from experimental animal and human studies indicates that delivering BCG directly into the lungs provides enhanced immune responses and greater protection against TB. Inhalation therapy using handheld delivery devices is used for some diseases and allows the delivery of drugs or vaccines directly into the human respiratory tract. Whether this mode of delivery could also be applicable for live attenuated bacterial vaccines such as BCG or other TB vaccine candidates remains unknown. Here we discuss how two existing inhalation devices, the mucosal atomization device (MAD) syringe, used for influenza vaccines, and the Respimat® Soft Mist™ inhaler, used for chronic obstructive pulmonary disease (COPD) therapy, could be repurposed for mucosal delivery of live attenuated TB vaccines. We also outline the challenges and outstanding research questions that will require further investigations to ensure usefulness of respiratory delivery devices that are cost-effective and accessible to lower- and middle-income TB endemic countries.
PMID:37063870 | PMC:PMC10098179 | DOI:10.3389/fimmu.2023.1159084
FDA approved drugs with antiviral activity against SARS-CoV-2: From structure-based repurposing to host-specific mechanisms
Biomed Pharmacother. 2023 Mar 28;162:114614. doi: 10.1016/j.biopha.2023.114614. Online ahead of print.
ABSTRACT
The continuing heavy toll of the COVID-19 pandemic necessitates development of therapeutic options. We adopted structure-based drug repurposing to screen FDA-approved drugs for inhibitory effects against main protease enzyme (Mpro) substrate-binding pocket of SARS-CoV-2 for non-covalent and covalent binding. Top candidates were screened against infectious SARS-CoV-2 in a cell-based viral replication assay. Promising candidates included atovaquone, mebendazole, ouabain, dronedarone, and entacapone, although atovaquone and mebendazole were the only two candidates with IC50s that fall within their therapeutic plasma concentration. Additionally, we performed Mpro assays on the top hits, which demonstrated inhibition of Mpro by dronedarone (IC50 18 µM), mebendazole (IC50 19 µM) and entacapone (IC50 9 µM). Atovaquone showed only modest Mpro inhibition, and thus we explored other potential mechanisms. Although atovaquone is Dihydroorotate dehydrogenase (DHODH) inhibitor, we did not observe inhibition of DHODH at the respective SARS-CoV-2 IC50. Metabolomic profiling of atovaquone treated cells showed dysregulation of purine metabolism pathway metabolite, where ecto-5'-nucleotidase (NT5E) was downregulated by atovaquone at concentrations equivalent to its antiviral IC50. Atovaquone and mebendazole are promising candidates with SARS-CoV-2 antiviral activity. While mebendazole does appear to target Mpro, atovaquone may inhibit SARS-CoV-2 viral replication by targeting host purine metabolism.
PMID:37068330 | DOI:10.1016/j.biopha.2023.114614
Decoding Connectivity Map-based drug repurposing for oncotherapy
Brief Bioinform. 2023 Apr 17:bbad142. doi: 10.1093/bib/bbad142. Online ahead of print.
ABSTRACT
The rising global burden of cancer has driven considerable efforts into the research and development of effective anti-cancer agents. Fortunately, with impressive advances in transcriptome profiling technology, the Connectivity Map (CMap) database has emerged as a promising and powerful drug repurposing approach. It provides an important platform for systematically discovering of the associations among genes, small-molecule compounds and diseases, and elucidating the mechanism of action of drug, contributing toward efficient anti-cancer pharmacotherapy. Moreover, CMap-based computational drug repurposing is gaining attention because of its potential to overcome the bottleneck constraints faced by traditional drug discovery in terms of cost, time and risk. Herein, we provide a comprehensive review of the applications of drug repurposing for anti-cancer drug discovery and summarize approaches for computational drug repurposing. We focus on the principle of the CMap database and novel CMap-based software/algorithms as well as their progress achieved for drug repurposing in the field of oncotherapy. This article is expected to illuminate the emerging potential of CMap in discovering effective anti-cancer drugs, thereby promoting efficient healthcare for cancer patients.
PMID:37068308 | DOI:10.1093/bib/bbad142
Screening of Inhibitors Against Idiopathic Pulmonary Fibrosis: Few-Shot Machine Learning and Molecule Docking Based Drug Repurposing
Curr Comput Aided Drug Des. 2023 Apr 17. doi: 10.2174/1573409919666230417080832. Online ahead of print.
ABSTRACT
AIM: Idiopathic pulmonary fibrosis is a chronic progressive disorder and is diagnosed as post-COVID fibrosis. Idiopathic pulmonary fibrosis has no effective treatment because of the low therapeutic effects and side effects of currently available drugs.
INTRODUCTION: The aim is to screen new inhibitors against idiopathic pulmonary fibrosis from traditional Chinese medicines.
METHODS: Few-shot-based machine learning and molecule docking were used to predict the potential activities of candidates and calculate the ligand-receptor interactions. In vitro A549 cell model was taken to verify the effects of the selected leads on idiopathic pulmonary fibrosis.
RESULTS AND DISCUSSION: A logistic regression classifier model with an accuracy of 0.82 was built and, combined with molecule docking, used to predict the activities of candidates. 6 leads were finally screened out and 5 of them were in vitro experimentally verified as effective inhibitors against idiopathic pulmonary fibrosis.
CONCLUSION: Herbacetin, morusin, swertiamarin, vicenin-2, and vitexin were active inhibitors against idiopathic pulmonary fibrosis. Swertiamarin exhibited the highest anti-idiopathic pulmonary fibrosis effect and should be further in vivo investigated for its activity.
PMID:37066777 | DOI:10.2174/1573409919666230417080832
Repurposing the mucolytic agent ambroxol for treatment of sub-acute and chronic ischaemic stroke
Brain Commun. 2023 Mar 29;5(2):fcad099. doi: 10.1093/braincomms/fcad099. eCollection 2023.
ABSTRACT
Ambroxol is a well-known mucolytic expectorant, which has gained much attention in amyotrophic lateral sclerosis, Parkinson's and Gaucher's disease. A specific focus has been placed on ambroxol's glucocerebrosidase-stimulating activity, on grounds that the point mutation of the gba1 gene, which codes for this enzyme, is a risk factor for developing Parkinson's disease. However, ambroxol has been attributed other characteristics, such as the potent inhibition of sodium channels, modification of calcium homeostasis, anti-inflammatory effects and modifications of oxygen radical scavengers. We hypothesized that ambroxol could have a direct impact on neuronal rescue if administered directly after ischaemic stroke induction. We longitudinally evaluated 53 rats using magnetic resonance imaging to examine stroke volume, oedema, white matter integrity, resting state functional MRI and behaviour for 1 month after ischemic stroke onset. For closer mechanistic insights, we evaluated tissue metabolomics of different brain regions in a subgroup of animals using ex vivo nuclear magnetic resonance spectroscopy. Ambroxol-treated animals presented reduced stroke volumes, reduced cytotoxic oedema, reduced white matter degeneration, reduced necrosis, improved behavioural outcomes and complex changes in functional brain connectivity. Nuclear magnetic resonance spectroscopy tissue metabolomic data at 24 h post-stroke proposes several metabolites that are capable of minimizing post-ischaemic damage and that presented prominent shifts during ambroxol treatment in comparison to controls. Taking everything together, we propose that ambroxol catalyzes recovery in energy metabolism, cellular homeostasis, membrane repair mechanisms and redox balance. One week of ambroxol administration following stroke onset reduced ischaemic stroke severity and improved functional outcome in the subacute phase followed by reduced necrosis in the chronic stroke phase.
PMID:37065090 | PMC:PMC10090797 | DOI:10.1093/braincomms/fcad099
Repurposing of drug molecules from FDA database against Hepatitis C virus E2 protein using ensemble docking approach
Mol Divers. 2023 Apr 16. doi: 10.1007/s11030-023-10646-2. Online ahead of print.
ABSTRACT
Hepatitis C virus, a member of the Flaviviridae family and genus Hepacivirus, is an enveloped, positively single stranded RNA virus. Its surface consists of a heterodimer of E1 and E2 proteins which play a crucial role in receptor binding and membrane fusion. In this study we have used in silico virtual screening by utilizing ensemble docking on the approved drugs. These drugs can bind with high efficiency to the 36 prominent conformations of the CD81 binding site clustered from a total of 3 µs MD simulation data on the E2 protein. We started with 9213 compounds from the FDA list of drugs and progressively came down to 5 compounds which have been seen to bind with very high efficiency to not only all the conformations but also the two predicted druggable pockets that encompass the CD81 binding site. MM/PBSA binding energy calculations also point to the highly stable interaction of the compounds to the E2 protein. This study may in future broaden the arsenal of therapeutics for use against HCV infection and lead to more effective care against the virus.
PMID:37061608 | DOI:10.1007/s11030-023-10646-2
Controlling cell proliferation by targeting cyclin-dependent kinase 6 using drug repurposing approach
Adv Protein Chem Struct Biol. 2023;135:97-124. doi: 10.1016/bs.apcsb.2023.01.003. Epub 2023 Mar 11.
ABSTRACT
Cyclin-dependent kinase 6 (CDK6) is an essential kinase in cell cycle progression, which is a viable target for inhibitors in various malignancies, including breast cancer. This study aimed to virtually screen efficient compounds as new leads in treating breast cancer using a drug repurposing approach. Apoptosis regulatory compounds were taken from the seleckchem database. Molecular docking experiments were carried out in the presence of abemaciclib, a routinely used FDA drug. Compared to conventional drugs, the two compounds demonstrated a higher binding affinity for CDK6. Compounds (N-benzyl-6-[(4-hydroxyphenyl)methyl]-8-(naphthalen-1-ylmethyl)-4,7-dioxo-3,6,9,9a-tetrahydro-2H-pyrazino[1,2-a]pyrimidine-1-carboxamide) and (1'-[4-[1-(4-fluorophenyl)indol-3-yl]butyl]spiro[1H-2-benzofuran-3,4'-piperidine]) were discovered to have an inhibitory effect against CDK6 at -8.49 and -6.78kcal/mol, respectively, compared to -8.09kcal/mol of the control molecule, the interacting residues of these two new compounds were found to fall within the binding site of the CDK6 molecule. Both compounds exhibited equal ADME features compared with abemaciclib and would be well distributed and metabolized by the body with an appropriate druglikeness range. Lastly, molecular dynamics was initiated for 200ns for the selected potent inhibitors and abemaciclib as complexed with CDK6. The RMSD, RMSF, Rg, H-Bond interactions, SASA, PCA, FEL, and MM/PBSA analysis were performed for the complexes to assess the stability, fluctuations, radius of gyration, hydrogen bond interaction, solvent accessibility, essential dynamics, free energy landscape, and MM/PBSA. The selected two compounds are small molecules in the appropriate druglikeness range. The results observed in molecular docking and molecular dynamics simulations were most promising for two compounds, suggesting their potent inhibitory effect against CDK6. We propose that these candidate compounds can undergo in vitro validation and in vivo testing for their further use against cancer.
PMID:37061342 | DOI:10.1016/bs.apcsb.2023.01.003
Repurposing of FDA-approved drugs as dual-acting MAO-B and AChE inhibitors against Alzheimer's disease: An in silico and in vitro study
J Mol Graph Model. 2023 Apr 14;122:108471. doi: 10.1016/j.jmgm.2023.108471. Online ahead of print.
ABSTRACT
An in silico consensus molecular docking approach and in vitro evaluations were adopted in the present study to explore a dataset of FDA-approved drugs as novel multitarget MAO-B/AChE agents in the treatment of Alzheimer's disease (AD). GOLD 5.3 and Glide were employed in the virtual assessments and consensus superimpositions of the obtained poses were applied to increase the reliability of the docking protocols. Furthermore, the top ranked molecules were subjected to binding free energy calculations using MM/GBSA, Induced fit docking (IFD) simulations, and a literature review. Consequently, the top four multitarget drugs were examined for their in vitro MAO-B and AChE inhibition effects. The consensus molecular docking identified Dolutegravir, Rebamipide, Loracarbef and Diflunisal as potential multitarget drugs. The biological data demonstrated that most of the docking scores were in good correlation with the in vitro experiments, however the theoretical simulations in the active site of MAO-B identified two false-positives - Rebamipide and Diflunisal. Dolutegravir and Loracarbef were accessed as active MAO-B inhibitors, while Dolutegravir, Rebamapide and Diflunisal as potential AChE inhibitors. The antiretroviral agent Dolutegravir exhibited the most potent multitarget activity - 41% inhibition of MAO-B (1 μM) and 68% inhibition of AChE (10 μM). Visualizations of the intermolecular interactions of Dolutegravir in the active sites of MAO-B and AChE revealed the formation of several stable hydrogen bonds. Overall, Dolutegravir was identified as a potential anti-AD drug, however further in vivo evaluations should be considered.
PMID:37087882 | DOI:10.1016/j.jmgm.2023.108471
Selamectin increases cisplatin sensitivity by inhibiting cisplatin-resistant genes expression and autophagy in uveal melanoma
Biochem Biophys Res Commun. 2023 Apr 14;661:75-81. doi: 10.1016/j.bbrc.2023.04.008. Online ahead of print.
ABSTRACT
Cisplatin resistance is the main reason for uveal melanoma (UM) treatment failure. Thus, developing strategy that increasing cisplatin sensitivity is needed. In this study, we performed drug repositioning analysis with the Connectivity Map database using a panel of previously identified cisplatin sensitivity-associated genes and cisplatin resistance-associated genes as the signature and obtained the antiparasitic drug selamectin. We demonstrated that the selamectin and cisplatin combination showed a synergistic effect on inhibiting UM cell growth. Experiments in tumor-bearing nude mice further showed that selamectin and cisplatin have synergistic effects in reducing tumor growth. Previous studies have linked increased autophagy with tumor resistance to chemotherapy. We found that selamectin inhibited the expression of the autophagy-related gene ATG9B, thus reducing autophagy. The cisplatin resistance-associated genes PDGFRB, DUSP1, MAST1 and IL11 were significantly downregulated in UM cells treated with selamectin. In summary, our study shows that selamectin enhanced the sensitivity of UM to cisplatin, through the mechanism of inhibiting cisplatin resistance-associated gene expression and autophagy. These findings may provide a new strategy for the treatment of UM.
PMID:37087801 | DOI:10.1016/j.bbrc.2023.04.008
Potential treatments of COVID-19: Drug repurposing and therapeutic interventions
J Pharmacol Sci. 2023 May;152(1):1-21. doi: 10.1016/j.jphs.2023.02.004. Epub 2023 Feb 15.
ABSTRACT
The coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The infection is caused when Spike-protein (S-protein) present on the surface of SARS-CoV-2 interacts with human cell surface receptor, Angiotensin-converting enzyme 2 (ACE2). This binding facilitates SARS-CoV-2 genome entry into the human cells, which in turn causes infection. Since the beginning of the pandemic, many different therapies have been developed to combat COVID-19, including treatment and prevention. This review is focused on the currently adapted and certain other potential therapies for COVID-19 treatment, which include drug repurposing, vaccines and drug-free therapies. The efficacy of various treatment options is constantly being tested through clinical trials and in vivo studies before they are made medically available to the public.
PMID:37059487 | DOI:10.1016/j.jphs.2023.02.004
Computational drug repositioning of clopidogrel as a novel therapeutic option for focal segmental glomerulosclerosis
Transl Res. 2023 Apr 12:S1931-5244(23)00057-9. doi: 10.1016/j.trsl.2023.04.001. Online ahead of print.
ABSTRACT
Focal segmental glomerulosclerosis (FSGS) is a glomerular lesion often associated with nephrotic syndrome. It is also associated with a high risk of progression to end-stage kidney disease. Current treatment of FSGS is limited to systemic corticosteroids or calcineurin inhibition, along with inhibitors of the renin-angiotensin-aldosterone system. FSGS is heterogeneous in etiology, and novel therapies targeting specific, dysregulated molecular pathways represent a major unmet medical need. We have generated a network-based molecular model of FSGS pathophysiology using previously established systems biology workflows to allow computational evaluation of compounds for their predicted interference with molecular processes contributing to FSGS. We identified the anti-platelet drug clopidogrel as a therapeutic option to counterbalance dysregulated FSGS pathways. This prediction of our computational screen was validated by testing clopidogrel in the adriamycin FSGS mouse model. Clopidogrel improved key FSGS outcome parameters and significantly reduced urinary albumin to creatinine ratio (p<0.01) and weight loss (p<0.01), and ameliorated histopathological damage (p<0.05). Clopidogrel is used to treat several cardiovascular diseases linked to chronic kidney disease. Clopidogrel's favorable safety profile and its efficacy in the adriamycin mouse FSGS model thus recommend it as an attractive drug repositioning candidate for clinical trial in FSGS.
PMID:37059330 | DOI:10.1016/j.trsl.2023.04.001
QcrB inhibition as a potential approach for the treatment of tuberculosis: A review of recent developments, patents, and future directions
J Infect Public Health. 2023 Apr 13;16(6):928-937. doi: 10.1016/j.jiph.2023.04.011. Online ahead of print.
ABSTRACT
The unmet medical need for drug-resistant tuberculosis (DRTB) is a significant concern. Accordingly, identifying new drug targets for tuberculosis (TB) treatment and developing new therapies based on these drug targets is one of the strategies to tackle DRTB. QcrB is an innovative drug target to create treatments for DRTB. This article highlights QcrB inhibitors and their therapeutic compositions for treating TB. The literature for this article was gathered from PubMed and free patent databases utilizing different keywords related to QcrB inhibitor-based inventions. The data was collected from the conceptualization of telacebec (2010) QcrB to December 2022. A little interesting and encouraging research has been performed on QcrB inhibitors. Telacebec and TB47 are established QcrB inhibitors in the clinical trial. The inventive QcrB inhibitor-based drug combinations can potentially handle DRTB and reduce the TB therapy duration. The authors anticipate great opportunities in fostering QcrB inhibitor-based patentable pharmaceutical inventions against TB. Drug repurposing can be a promising strategy to get safe and effective QcrB inhibitors. However, developing drug resistance, drug tolerance, and selectivity of QcrB inhibitors for Mtb will be the main challenges in developing effective QcrB inhibitors. In conclusion, QcrB is a promising drug target for developing effective treatments for active, latent, and drug-resistant TB. Many inventive and patentable combinations and compositions of QcrB inhibitors with other anti-TB drugs are anticipated as future treatments for TB.
PMID:37086552 | DOI:10.1016/j.jiph.2023.04.011
Repurposing FIASMAs against Acid Sphingomyelinase for COVID-19: A Computational Molecular Docking and Dynamic Simulation Approach
Molecules. 2023 Mar 27;28(7):2989. doi: 10.3390/molecules28072989.
ABSTRACT
Over the past few years, COVID-19 has caused widespread suffering worldwide. There is great research potential in this domain and it is also necessary. The main objective of this study was to identify potential inhibitors against acid sphingomyelinase (ASM) in order to prevent coronavirus infection. Experimental studies revealed that SARS-CoV-2 causes activation of the acid sphingomyelinase/ceramide pathway, which in turn facilitates the viral entry into the cells. The objective was to inhibit acid sphingomyelinase activity in order to prevent the cells from SARS-CoV-2 infection. Previous studies have reported functional inhibitors against ASM (FIASMAs). These inhibitors can be exploited to block the entry of SARS-CoV-2 into the cells. To achieve our objective, a drug library containing 257 functional inhibitors of ASM was constructed. Computational molecular docking was applied to dock the library against the target protein (PDB: 5I81). The potential binding site of the target protein was identified through structural alignment with the known binding pocket of a protein with a similar function. AutoDock Vina was used to carry out the docking steps. The docking results were analyzed and the inhibitors were screened based on their binding affinity scores and ADME properties. Among the 257 functional inhibitors, Dutasteride, Cepharanthine, and Zafirlukast presented the lowest binding affinity scores of -9.7, -9.6, and -9.5 kcal/mol, respectively. Furthermore, computational ADME analysis of these results revealed Cepharanthine and Zafirlukast to have non-toxic properties. To further validate these findings, the top two inhibitors in complex with the target protein were subjected to molecular dynamic simulations at 100 ns. The molecular interactions and stability of these compounds revealed that these inhibitors could be a promising tool for inhibiting SARS-CoV-2 infection.
PMID:37049752 | DOI:10.3390/molecules28072989
Beta-adrenergic receptor blocker propranolol triggers anti-tumor immunity and enhances irinotecan therapy in mice colorectal cancer
Eur J Pharmacol. 2023 Apr 11:175718. doi: 10.1016/j.ejphar.2023.175718. Online ahead of print.
ABSTRACT
Colorectal cancer (CRC) stands as the second leading cause of cancer-related deaths worldwide with limited available medicines. While drug repurposing comes as a promising strategy for cancer treatment, we discovered that propranolol (Prop), a non-selective β1 and β2 adrenergic receptor blocker, significantly inhibited the development of subcutaneous CT26 CRC and AOM/DSS-induced CRC models. The RNA-seq analysis highlighted the activated immune pathways after Prop treatment, with GO analysis enriched in T-cell differentiation, leukocyte-mediated immunity, regulation of leukocyte-mediated cytotoxicity, and interferon-gamma production. Routine analyses of blood revealed a decrease in neutrophil to lymphocyte ratio, a biomarker of systemic inflammation, and a prognostic indicator in the Prop-treated groups in both CRC models. Analysis of the tumor-infiltrating immune cells exhibited that Prop regressed the exhaustion of CD4+ and CD8+ T cells in the CT26-derived graft models, which was further corroborated in the AOM/DSS-induced models. Furthermore, bioinformatic analysis fitted well with the experimental data, showing that β2 adrenergic receptor (ADRB2) was positively correlated with T-cell exhaustion signature in various tumors. The in vitro experiment showed no direct effect of Prop on CT26 cell viability, while T cells were activated with significantly-upregulated production of IFN-γ and Granzyme B. Consistently, Prop was unable to restrain CT26 tumor growth in nude mice. At last, the combination of Prop and the chemotherapeutic drug Irinotecan acted out the strongest inhibition in CT26 tumor progress. Collectively, we repurpose Prop as a promising and economical therapeutic drug for CRC treatment and highlight T-cell as its target.
PMID:37054937 | DOI:10.1016/j.ejphar.2023.175718