Drug Repositioning
Vitamin D analog calcitriol for breast cancer therapy; an integrated drug discovery approach
J Biomol Struct Dyn. 2023 Apr 13:1-27. doi: 10.1080/07391102.2023.2199866. Online ahead of print.
ABSTRACT
As breast cancer remains leading cause of cancer death globally, it is essential to develop an affordable breast cancer therapy in underdeveloped countries. Drug repurposing offers potential to address gaps in breast cancer treatment. Molecular networking studies were performed for drug repurposing approach by using heterogeneous data. The PPI networks were built to select the target genes from the EGFR overexpression signaling pathway and its associated family members. The selected genes EGFR, ErbB2, ErbB4 and ErbB3 were allowed to interact with 2637 drugs, leads to PDI network construction of 78, 61, 15 and 19 drugs, respectively. As drugs approved for treating non cancer-related diseases or disorders are clinically safe, effective, and affordable, these drugs were given considerable attention. Calcitriol had shown significant binding affinities with all four receptors than standard neratinib. The RMSD, RMSF, and H-bond analysis of protein-ligand complexes from molecular dynamics simulation (100 ns), confirmed the stable binding of calcitriol with ErbB2 and EGFR receptors. In addition, MMGBSA and MMP BSA also affirmed the docking results. These in-silico results were validated with in-vitro cytotoxicity studies in SK-BR-3 and Vero cells. The IC50 value of calcitriol (43.07 mg/ml) was found to be lower than neratinib (61.50 mg/ml) in SK-BR-3 cells. In Vero cells the IC50 value of calcitriol (431.05 mg/ml) was higher than neratinib (404.95 mg/ml). It demonstrates that calcitriol suggestively downregulated the SK-BR-3 cell viability in a dose-dependent manner. These implications revealed calcitriol has shown better cytotoxicity and decreased the proliferation rate of breast cancer cells than neratinib.Communicated by Ramaswamy H. Sarma.
PMID:37054526 | DOI:10.1080/07391102.2023.2199866
<em>In silico</em> drug repurposing by combining machine learning classification model and molecular dynamics to identify a potential OGT inhibitor
J Biomol Struct Dyn. 2023 Apr 13:1-12. doi: 10.1080/07391102.2023.2199868. Online ahead of print.
ABSTRACT
O-linked N-acetylglucosamine (O-GlcNAc) is a unique intracellular post-translational glycosylation at the hydroxyl group of serine or threonine residues in nuclear, cytoplasmic and mitochondrial proteins. The enzyme O-GlcNAc transferase (OGT) is responsible for adding GlcNAc, and anomalies in this process can lead to the development of diseases associated with metabolic imbalance, such as diabetes and cancer. Repurposing approved drugs can be an attractive tool to discover new targets reducing time and costs in the drug design. This work focuses on drug repurposing to OGT targets by virtual screening of FDA-approved drugs through consensus machine learning (ML) models from an imbalanced dataset. We developed a classification model using docking scores and ligand descriptors. The SMOTE approach to resampling the dataset showed excellent statistical values in five of the seven ML algorithms to create models from the training set, with sensitivity, specificity and accuracy over 90% and Matthew's correlation coefficient greater than 0.8. The pose analysis obtained by molecular docking showed only H-bond interaction with the OGT C-Cat domain. The molecular dynamics simulation showed the lack of H-bond interactions with the C- and N-catalytic domains allowed the drug to exit the binding site. Our results showed that the non-steroidal anti-inflammatory celecoxib could be a potentially OGT inhibitor.
PMID:37054524 | DOI:10.1080/07391102.2023.2199868
Repurposing antidiabetic drugs for rheumatoid arthritis: results from a two-sample Mendelian randomization study
Eur J Epidemiol. 2023 Apr 13. doi: 10.1007/s10654-023-01000-9. Online ahead of print.
ABSTRACT
Despite increasing therapeutic options to treat rheumatoid arthritis (RA), many patients fail to reach treatment targets. The use of antidiabetic drugs like thiazolidinediones has been associated with lower RA risk. We aimed to explore the repurposing potential of antidiabetic drugs in RA prevention by assessing associations between genetic variation in antidiabetic drug target genes and RA using Mendelian randomization (MR). A two-sample MR design was used to estimate the association between the antidiabetic drug and RA risk using summary statistics from genome-wide association studies (GWAS). We selected independent genetic variants from the gene(s) that encode the target protein(s) of the investigated antidiabetic drug as instruments. We extracted the associations of instruments with blood glucose concentration and RA from the UK Biobank and a GWAS meta-analysis of clinically diagnosed RA, respectively. The effect of genetic variation in the drug target(s) on RA risk was estimated by the Wald ratio test or inverse-variance weighted method. Insulin and its analogues, thiazolidinediones, and sulfonylureas had valid genetic instruments (n = 1, 1, and 2, respectively). Genetic variation in thiazolidinedione target (gene: PPARG) was inversely associated with RA risk (odds ratio [OR] 0.38 per 0.1mmol/L glucose lowering, 95% confidence interval [CI] 0.20-0.73). Corresponding ORs (95%CIs) were 0.83 (0.44-1.55) for genetic variation in the targets of insulin and its analogues (gene: INSR), and 1.12 (0.83, 1.49) 1.25 (0.78-2.00) for genetic variation in the sulfonylurea targets (gene: ABCC8 and KCNJ11). In conclusion, genetic variation in the thiazolidinedione target is associated with a lower RA risk. The underlying mechanisms warrant further exploration.
PMID:37052755 | DOI:10.1007/s10654-023-01000-9
Carotenoids Composition of Green Algae <em>Caulerpa racemosa</em> and Their Antidiabetic, Anti-Obesity, Antioxidant, and Anti-Inflammatory Properties
Molecules. 2023 Apr 6;28(7):3267. doi: 10.3390/molecules28073267.
ABSTRACT
Green alga Caulerpa racemosa is an underexploited species of macroalgae, even though it is characterized by a green color that indicates an abundance of bioactive pigments, such as chlorophyll and possibly xanthophyll. Unlike chlorophyll, which has been well explored, the composition of the carotenoids of C. racemosa and its biological activities have not been reported. Therefore, this study aims to look at the carotenoid profile and composition of C. racemose and determine their biological activities, which include antidiabetic, anti-obesity, anti-oxidative, anti-inflammatory, and cytotoxicity in vitro. The detected carotenoids were all xanthophylls, which included fucoxanthin, lutein, astaxanthin, canthaxanthin, zeaxanthin, β-carotene, and β-cryptoxanthin based on orbitrap-mass spectrometry (MS) and a rapid ultra-high performance liquid chromatography (UHPLC) diode array detector. Of the seven carotenoids observed, it should be highlighted that β-carotene and canthaxanthin were the two most dominant carotenoids present in C. racemosa. Interestingly, the carotenoid extract of C. racemosa has good biological activity in inhibiting α-glucosidase, α-amylase, DPPH and ABTS, and the TNF-α and mTOR, as well as upregulating the AMPK, which makes it a drug candidate or functional antidiabetic food, a very promising anti-obesity and anti-inflammatory. More interestingly, the cytotoxicity value of the carotenoid extract of C. racemosa shows a level of safety in normal cells, which makes it a potential for the further development of nutraceuticals and pharmaceuticals.
PMID:37050034 | DOI:10.3390/molecules28073267
Cracking the Code of Neuronal Cell Fate
Cells. 2023 Mar 30;12(7):1057. doi: 10.3390/cells12071057.
ABSTRACT
Transcriptional regulation is fundamental to most biological processes and reverse-engineering programs can be used to decipher the underlying programs. In this review, we describe how genomics is offering a systems biology-based perspective of the intricate and temporally coordinated transcriptional programs that control neuronal apoptosis and survival. In addition to providing a new standpoint in human pathology focused on the regulatory program, cracking the code of neuronal cell fate may offer innovative therapeutic approaches focused on downstream targets and regulatory networks. Similar to computers, where faults often arise from a software bug, neuronal fate may critically depend on its transcription program. Thus, cracking the code of neuronal life or death may help finding a patch for neurodegeneration and cancer.
PMID:37048129 | DOI:10.3390/cells12071057
Ethacrynic Acid: A Promising Candidate for Drug Repurposing as an Anticancer Agent
Int J Mol Sci. 2023 Apr 4;24(7):6712. doi: 10.3390/ijms24076712.
ABSTRACT
Ethacrynic acid (ECA) is a diuretic that inhibits Na-K-2Cl cotransporter (NKCC2) present in the thick ascending loop of Henle and muculo dens and is clinically used for the treatment of edema caused by excessive body fluid. However, its clinical use is limited due to its low bioavailability and side effects, such as liver damage and hearing loss at high doses. Despite this, ECA has recently emerged as a potential anticancer agent through the approach of drug repositioning, with a novel mechanism of action. ECA has been shown to regulate cancer hallmark processes such as proliferation, apoptosis, migration and invasion, angiogenesis, inflammation, energy metabolism, and the increase of inhibitory growth factors through various mechanisms. Additionally, ECA has been used as a scaffold for synthesizing a new material, and various derivatives have been synthesized. This review explores the potential of ECA and its derivatives as anticancer agents, both alone and in combination with adjuvants, by examining their effects on ten hallmarks of cancer and neuronal contribution to cancer. Furthermore, we investigated the trend of synthesis research of a series of ECA derivatives to improve the bioavailability of ECA. This review highlights the importance of ECA research and its potential to provide a cost-effective alternative to new drug discovery and development for cancer treatment.
PMID:37047688 | DOI:10.3390/ijms24076712
Signatures of Co-Deregulated Genes and Their Transcriptional Regulators in Kidney Cancers
Int J Mol Sci. 2023 Mar 31;24(7):6577. doi: 10.3390/ijms24076577.
ABSTRACT
There are several studies on the deregulated gene expression profiles in kidney cancer, with varying results depending on the tumor histology and other parameters. None of these, however, have identified the networks that the co-deregulated genes (co-DEGs), across different studies, create. Here, we reanalyzed 10 Gene Expression Omnibus (GEO) studies to detect and annotate co-deregulated signatures across different subtypes of kidney cancer or in single-gene perturbation experiments in kidney cancer cells and/or tissue. Using a systems biology approach, we aimed to decipher the networks they form along with their upstream regulators. Differential expression and upstream regulators, including transcription factors [MYC proto-oncogene (MYC), CCAAT enhancer binding protein delta (CEBPD), RELA proto-oncogene, NF-kB subunit (RELA), zinc finger MIZ-type containing 1 (ZMIZ1), negative elongation factor complex member E (NELFE) and Kruppel-like factor 4 (KLF4)] and protein kinases [Casein kinase 2 alpha 1 (CSNK2A1), mitogen-activated protein kinases 1 (MAPK1) and 14 (MAPK14), Sirtuin 1 (SIRT1), Cyclin dependent kinases 1 (CDK1) and 4 (CDK4), Homeodomain interacting protein kinase 2 (HIPK2) and Extracellular signal-regulated kinases 1 and 2 (ERK1/2)], were computed using the Characteristic Direction, as well as GEO2Enrichr and X2K, respectively, and further subjected to GO and KEGG pathways enrichment analyses. Furthermore, using CMap, DrugMatrix and the LINCS L1000 chemical perturbation databases, we highlight putative repurposing drugs, including Etoposide, Haloperidol, BW-B70C, Triamterene, Chlorphenesin, BRD-K79459005 and β-Estradiol 3-benzoate, among others, that may reverse the expression of the identified co-DEGs in kidney cancers. Of these, the cytotoxic effects of Etoposide, Catecholamine, Cyclosporin A, BW-B70C and Lasalocid sodium were validated in vitro. Overall, we identified critical co-DEGs across different subtypes in kidney cancer, and our results provide an innovative framework for their potential use in the future.
PMID:37047552 | DOI:10.3390/ijms24076577
Anthelmintic Drugs as Emerging Immune Modulators in Cancer
Int J Mol Sci. 2023 Mar 29;24(7):6446. doi: 10.3390/ijms24076446.
ABSTRACT
Despite recent advances in treatment approaches, cancer is still one of the leading causes of death worldwide. Restoration of tumor immune surveillance represents a valid strategy to overcome the acquired resistance and cytotoxicity of conventional therapies in oncology and immunotherapeutic drugs, such as immune checkpoint inhibitors and immunogenic cell death inducers, and has substantially progressed the treatment of several malignancies and improved the clinical management of advanced disease. Unfortunately, because of tumor-intrinsic and/or -extrinsic mechanisms for escaping immune surveillance, only a fraction of patients clinically respond to and benefit from cancer immunotherapy. Accumulating evidence derived from studies of drug repositioning, that is, the strategy to identify new uses for approved or investigational drugs that are outside the scope of the original medical indication, has suggested that some anthelmintic drugs, in addition to their antineoplastic effects, exert important immunomodulatory actions on specific subsets of immune cell and related pathways. In this review, we report and discuss current knowledge on the impact of anthelmintic drugs on host immunity and their potential implication in cancer immunotherapy.
PMID:37047419 | DOI:10.3390/ijms24076446
Phase I Study of a Combination of Fluvastatin and Celecoxib in Children with Relapsing/Refractory Low-Grade or High-Grade Glioma (FLUVABREX)
Cancers (Basel). 2023 Mar 28;15(7):2020. doi: 10.3390/cancers15072020.
ABSTRACT
Preclinical data support the activity of celecoxib and fluvastatin in high-grade (HGG) and low-grade gliomas (LGG). A phase I trial (NCT02115074) was designed to evaluate the safety of this combination in children with refractory/relapsed HGG and LGG using four dose levels of fluvastatin with a fixed daily dose of celecoxib. A Continual Reassessment Method was used for fluvastatin dose escalation. Dose-limiting toxicities (DLT) were determined on the first treatment cycle. Twenty patients were included. Ten LGG and ten HGG patients received a median of 3.5 treatment cycles. Two DLTs were reported: one grade 3 maculopapular rash (4 mg/kg dose level) and one grade 4 increase of Creatine Phospho-Kinase (6 mg/kg dose level). We identified the dose of 6 mg/kg/day as the recommended phase II dose (RP2D) of fluvastatin with celecoxib. Four patients with LGG continued treatment beyond 12 cycles because of stable disease, including one patient who received 23 treatment cycles. In children with refractory/relapsed glioma, the RP2D of fluvastatin with celecoxib is 6 mg/kg/day. The long-term stable diseases observed in LGG suggest a possible role of the combination in a maintenance setting, given its good tolerance and low cost for children living in low- and middle-income countries.
PMID:37046681 | DOI:10.3390/cancers15072020
Targeting thiol isomerase activity with zafirlukast to treat ovarian cancer from the bench to clinic
FASEB J. 2023 May;37(5):e22914. doi: 10.1096/fj.202201952R.
ABSTRACT
Thiol isomerases, including PDI, ERp57, ERp5, and ERp72, play important and distinct roles in cancer progression, cancer cell signaling, and metastasis. We recently discovered that zafirlukast, an FDA-approved medication for asthma, is a pan-thiol isomerase inhibitor. Zafirlukast inhibited the growth of multiple cancer cell lines with an IC50 in the low micromolar range, while also inhibiting cellular thiol isomerase activity, EGFR activation, and downstream phosphorylation of Gab1. Zafirlukast also blocked the procoagulant activity of OVCAR8 cells by inhibiting tissue factor-dependent Factor Xa generation. In an ovarian cancer xenograft model, statistically significant differences in tumor size between control vs treated groups were observed by Day 18. Zafirlukast also significantly reduced the number and size of metastatic tumors found within the lungs of the mock-treated controls. When added to a chemotherapeutic regimen, zafirlukast significantly reduced growth, by 38% compared with the mice receiving only the chemotherapeutic treatment, and by 83% over untreated controls. Finally, we conducted a pilot clinical trial in women with tumor marker-only (CA-125) relapsed ovarian cancer, where the rate of rise of CA-125 was significantly reduced following treatment with zafirlukast, while no severe adverse events were reported. Thiol isomerase inhibition with zafirlukast represents a novel, well-tolerated therapeutic in the treatment of ovarian cancer.
PMID:37043381 | DOI:10.1096/fj.202201952R
Clinical side-effects based drug repositioning for anti-epileptic activity
J Biomol Struct Dyn. 2023 Apr 12:1-12. doi: 10.1080/07391102.2023.2199874. Online ahead of print.
ABSTRACT
Several generations of anti-epileptic drugs (AEDs) are available but have several associated side effects apart from a limited success rate. Drug repositioning strategies have gained importance in the last two decades owing to lower failure rates and economic burden. Drugs with similar side effect profiles may share a common mechanism of action and thus can be linked to other disease treatments. The present study was carried out to identify the newly approved drug candidate(s) as AEDs using clinical side-effects drug repositioning strategy. The clinical side effect similarity of drugs available in the SIDER v4.1 database was estimated against common side effects of 5 major marketed AEDs, using the 'dplyr' package library in the R. Further drugs were filtered based on Blood Brain Barrier permeability prediction and FDA-approval status. Molecular docking studies were performed for selected 26 hits (drugs) against previously identified epilepsy target receptors: Voltage-gated sodium channel α2 (Nav1.2), GABA receptor α1-β1 (GABAr α1-β1), and Voltage-gated calcium channel α-1 G (Cav3.1). Only 2 drugs (Ziprasidone and Paroxetine) showed better binding affinities against studied epilepsy receptors Nav1.2, GABAr α1-β1, and Cav3.1, than their corresponding standard AEDs, i.e. Carbamazepine, Clonazepam, and Pregabalin, respectively. Ziprasidone reportedly showed seizure-like symptoms in ∼3% of patients and was hence omitted from further study. The MDS study of docked complexes of Paroxetine with selected epilepsy target receptors showed stable RMSD values and better interaction energies. The study reveals Paroxetine as a potential candidate to be repurposed for 1st line epileptic seizure medication.Communicated by Ramaswamy H. Sarma.
PMID:37042987 | DOI:10.1080/07391102.2023.2199874
Novel potential drugs for the treatment of primary open-angle glaucoma using protein-protein interaction network analysis
Genomics Inform. 2023 Mar;21(1):e6. doi: 10.5808/gi.22070. Epub 2023 Mar 31.
ABSTRACT
Glaucoma is the second leading cause of irreversible blindness, and primary open-angle glaucoma (POAG) is the most common type. Due to inadequate diagnosis, treatment is often not administered until symptoms occur. Hence, approaches enabling earlier prediction or diagnosis of POAG are necessary. We aimed to identify novel drugs for glaucoma through bioinformatics and network analysis. Data from 36 samples, obtained from the trabecular meshwork of healthy individuals and patients with POAG, were acquired from a dataset. Next, differentially expressed genes (DEGs) were identified to construct a protein-protein interaction (PPI) network. In both stages, the genes were enriched by studying the critical biological processes and pathways related to POAG. Finally, a drug-gene network was constructed, and novel drugs for POAG treatment were proposed. Genes with p < 0.01 and |log fold change| > 0.3 (1,350 genes) were considered DEGs and utilized to construct a PPI network. Enrichment analysis yielded several key pathways that were upregulated or downregulated. For example, extracellular matrix organization, the immune system, neutrophil degranulation, and cytokine signaling were upregulated among immune pathways, while signal transduction, the immune system, extracellular matrix organization, and receptor tyrosine kinase signaling were downregulated. Finally, novel drugs including metformin hydrochloride, ixazomib citrate, and cisplatin warrant further analysis of their potential roles in POAG treatment. The candidate drugs identified in this computational analysis require in vitro and in vivo validation to confirm their effectiveness in POAG treatment. This may pave the way for understanding life-threatening disorders such as cancer.
PMID:37037464 | DOI:10.5808/gi.22070
Repurposing sarecycline for osteoinductive therapies: an in vitro and ex vivo assessment
J Bone Miner Metab. 2023 Apr 10. doi: 10.1007/s00774-023-01428-9. Online ahead of print.
ABSTRACT
INTRODUCTION: Tetracyclines (TCs) embrace a class of broad-spectrum antibiotics with unrelated effects at sub-antimicrobial levels, including an effective anti-inflammatory activity and stimulation of osteogenesis, allowing their repurposing for different clinical applications. Recently, sarecycline (SA)-a new-generation molecule with a narrower antimicrobial spectrum-was clinically approved due to its anti-inflammatory profile and reduced adverse effects verified with prolonged use. Notwithstanding, little is known about its osteogenic potential, previously verified for early generation TCs.
MATERIALS AND METHODS: Accordingly, the present study is focused on the assessment of the response of human bone marrow-derived mesenchymal stromal cells (hBMSCs) to a concentration range of SA, addressing the metabolic activity, morphology and osteoblastic differentiation capability, further detailing the modulation of Wnt, Hedgehog, and Notch signaling pathways. In addition, an ex vivo organotypic bone development system was established in the presence of SA and characterized by microtomographic and histochemical analysis.
RESULTS: hBMSCs cultured with SA presented a significantly increased metabolic activity compared to control, with an indistinguishable cell morphology. Moreover, RUNX2 expression was upregulated 2.5-fold, and ALP expression was increased around sevenfold in the presence of SA. Further, GLI2 expression was significantly upregulated, while HEY1 and HNF1A were downregulated, substantiating Hedgehog and Notch signaling pathways' modulation. The ex vivo model developed in the presence of SA presented a significantly enhanced collagen deposition, extended migration areas of osteogenesis, and an increased bone mineral content, substantiating an increased osteogenic development.
CONCLUSION: Summarizing, SA is a promising candidate for drug repurposing within therapies envisaging the enhancement of bone healing/regeneration.
PMID:37036531 | DOI:10.1007/s00774-023-01428-9
Repurposing 9-Aminoacridine as an Adjuvant Enhances the Antimicrobial Effects of Rifampin against Multidrug-Resistant Klebsiella pneumoniae
Microbiol Spectr. 2023 Apr 10:e0447422. doi: 10.1128/spectrum.04474-22. Online ahead of print.
ABSTRACT
The increasing occurrence of extensively drug-resistant and pan-drug-resistant K. pneumoniae has posed a serious threat to global public health. Therefore, new antimicrobial strategies are urgently needed to combat these resistant K. pneumoniae-related infections. Drug repurposing and combination are two effective strategies to solve this problem. By a high-throughput screening assay of FDA-approved drugs, we found that the potential small molecule 9-aminoacridine (9-AA) could be used as an antimicrobial alone or synergistically with rifampin (RIF) against extensively/pan-drug-resistant K. pneumoniae. In addition, 9-AA could overcome the shortcomings of RIF by reducing the occurrence of resistance. Mechanistic studies revealed that 9-AA interacted with bacterial DNA and disrupted the proton motive force in K. pneumoniae. Through liposomeization and combination with RIF, the cytotoxicity of 9-AA was significantly reduced without affecting its antimicrobial activity. In addition, we demonstrated the in vivo antimicrobial activity of 9-AA combined with RIF without detectable toxicity. In summary, 9-AA has the potential to be an antimicrobial agent or a RIF adjuvant for the treatment of multidrug-resistant K. pneumoniae infections. IMPORTANCE Klebsiella pneumoniae is a leading cause of clinically acquired infections. The increasing occurrence of drug-resistant K. pneumoniae has posed a serious threat to global public health. We found that the potential small molecule 9-AA could be used as an antimicrobial alone or synergistically with RIF against drug-resistant K. pneumoniae in vitro and with low resistance occurrence. The combination of 9-AA or 9-AA liposomes with RIF possesses effective antimicrobial activity in vivo without detected toxicity. 9-AA exerted its antimicrobial activity by interacting with specific bacterial DNA and disrupting the proton motive force in K. pneumoniae. In summary, we found that 9-AA has the potential to be developed as a new antibacterial agent and adjuvant for RIF. Therefore, our study can reduce the risk of antimicrobial resistance and provide an option for the exploitation of new clinical drugs and a theoretical basis for the research on a new antimicrobial agent.
PMID:37036368 | DOI:10.1128/spectrum.04474-22
Drug repositioning prediction for psoriasis using the adverse event reporting database
Front Med (Lausanne). 2023 Mar 23;10:1159453. doi: 10.3389/fmed.2023.1159453. eCollection 2023.
ABSTRACT
INTRODUCTION: Inverse signals produced from disproportional analyses using spontaneous drug adverse event reports can be used for drug repositioning purposes. The purpose of this study is to predict drug candidates using a computational method that integrates reported drug adverse event data, disease-specific gene expression profiles, and drug-induced gene expression profiles.
METHODS: Drug and adverse events from 2015 through 2020 were downloaded from the United States Food and Drug Administration Adverse Event Reporting System (FAERS). The reporting odds ratio (ROR), information component (IC) and empirical Bayes geometric mean (EBGM) were used to calculate the inverse signals. Psoriasis was selected as the target disease. Disease specific gene expression profiles were obtained by the meta-analysis of the Gene Expression Omnibus (GEO). The reverse gene expression scores were calculated using the Library of Integrated Network-based Cellular Signatures (LINCS) and their correlations with the inverse signals were obtained.
RESULTS: Reversal genes and the candidate compounds were identified. Additionally, these correlations were validated using the relationship between the reverse gene expression scores and the half-maximal inhibitory concentration (IC50) values from the Chemical European Molecular Biology Laboratory (ChEMBL).
CONCLUSION: Inverse signals produced from a disproportional analysis can be used for drug repositioning and to predict drug candidates against psoriasis.
PMID:37035327 | PMC:PMC10076533 | DOI:10.3389/fmed.2023.1159453
Toward novel treatment against filariasis: Insight into genome-wide co-evolutionary analysis of filarial nematodes and <em>Wolbachia</em>
Front Microbiol. 2023 Mar 22;14:1052352. doi: 10.3389/fmicb.2023.1052352. eCollection 2023.
ABSTRACT
Infectious diseases caused by filarial nematodes are major health problems for humans and animals globally. Current treatment using anti-helminthic drugs requires a long treatment period and is only effective against the microfilarial stage. Most species of filarial nematodes harbor a specific strain of Wolbachia bacteria, which are essential for the survival, development, and reproduction of the nematodes. This parasite-bacteria obligate symbiosis offers a new angle for the cure of filariasis. In this study, we utilized publicly available genome data and putative protein sequences from seven filarial nematode species and their symbiotic Wolbachia to screen for protein-protein interactions that could be a novel target against multiple filarial nematode species. Genome-wide in silico screening was performed to predict molecular interactions based on co-evolutionary signals. We identified over 8,000 pairs of gene families that show evidence of co-evolution based on high correlation score and low false discovery rate (FDR) between gene families and obtained a candidate list that may be keys in filarial nematode-Wolbachia interactions. Functional analysis was conducted on these top-scoring pairs, revealing biological processes related to various signaling processes, adult lifespan, developmental control, lipid and nucleotide metabolism, and RNA modification. Furthermore, network analysis of the top-scoring genes with multiple co-evolving pairs suggests candidate genes in both Wolbachia and the nematode that may play crucial roles at the center of multi-gene networks. A number of the top-scoring genes matched well to known drug targets, suggesting a promising drug-repurposing strategy that could be applicable against multiple filarial nematode species.
PMID:37032902 | PMC:PMC10073474 | DOI:10.3389/fmicb.2023.1052352
The discovery of novel antivirals for the treatment of mpox: is drug repurposing the answer?
Expert Opin Drug Discov. 2023 Apr 9:1-11. doi: 10.1080/17460441.2023.2199980. Online ahead of print.
ABSTRACT
INTRODUCTION: Drugs that have demonstrated good activity against any member of the Orthopoxvirus genus are good candidates for repurposing studies against the mpox virus (MPXV). The conserved biology of poxviruses has proven beneficial from a clinical virology perspective. Evolutionarily conserved proteins tend to function in a highly similar way. Indeed, the smallpox vaccine was found to be 85% effective in protecting humans from mpox virus infection. Similarly, tecovirimat, the drug of choice for smallpox infections, was recently repurposed as a treatment option for mpox cases in Europe.
AREA COVERED: This review article focuses on drug repurposing strategies to combat the newly emerged MPXV outbreak. The viral and host cell protein targets are challenged with a bunch of drugs and drug-like molecules in silico, in vitro, and in vivo. Some drugs show promising results and can be repurposed to eradicate MPXV infection. The authors also highlight potential limitations and provide their expert perspectives.
EXPERT OPINION: Overall, it is clear that we cannot solely rely on the conventional drug discovery pipeline to find new treatments, despite advances in computational and experimental advances in the last few decades. Drug repurposing has successfully identified good candidate drugs against MPXV as it is one of the Orthopoxvirus genus family. Tecovirimat, brincidofovir, and cidofovir have shown promising results in preventing virus propagation. Consequently, drug repurposing represents an important strategy for the fast identification of new therapeutic options.
PMID:37032577 | DOI:10.1080/17460441.2023.2199980
Antimalarials and amphotericin B interact synergistically and are new options to treat cryptococcosis
Int J Antimicrob Agents. 2023 Apr 6:106807. doi: 10.1016/j.ijantimicag.2023.106807. Online ahead of print.
ABSTRACT
Cryptococcus gattii and C. neoformans are the main etiological agents of cryptococcosis, an invasive mycosis treated with amphotericin B, 5-fluorocytosine, and fluconazole. However, this limited arsenal is toxic and associated with antifungal resistance. Cryptococcosis and malaria pathogens are eukaryotic organisms and have a high incidence in Sub-Saharan Africa. The antimalarials (ATMs) halofantrine (HAL) and amodiaquine (AQ) block Plasmodium heme polymerase, while artesunate (ART) induces oxidative stresses. Considering that Cryptococcus spp. is susceptible to reactive oxygen species and that iron is essential for metabolism, we tested the repurposing of ATMs to treat cryptococcosis. ATMs reduced fungal growth, induced oxidative and nitrosative stresses, and altered ergosterol content, melanin production, and polysaccharide capsule size in C. neoformans and C. gattii, revealing a dynamic effect on fungal physiology. A comprehensive chemical-genetic analysis using two mutant libraries demonstrated that the deletion of genes involved in synthesizing components of the plasma membrane and cell wall, and oxidative stress responses are essential for fungal susceptibility to ATMs. Interestingly, the amphotericin B (AMB) fungicidal concentrations were ∼ 10 times lower when combined with ATMs, demonstrating a synergistic interaction. Further, the combinations showed reduced toxicity to murine macrophages. Finally, HAL+AMB and AQ+AMB efficiently reduced lethality and fungal burden in the lungs and brain, in murine cryptococcosis. These findings provide perspectives for further studies with ATMs against cryptococcosis and other fungal infections.
PMID:37030471 | DOI:10.1016/j.ijantimicag.2023.106807
Antiprotozoal drugs: challenges and opportunities
Expert Opin Ther Pat. 2023 Apr 7. doi: 10.1080/13543776.2023.2201432. Online ahead of print.
NO ABSTRACT
PMID:37029480 | DOI:10.1080/13543776.2023.2201432
Glucocorticoid activation by HSD11B1 limits T cell-driven interferon signaling and response to PD-1 blockade in melanoma
J Immunother Cancer. 2023 Apr;11(4):e004150. doi: 10.1136/jitc-2021-004150.
ABSTRACT
BACKGROUND: Immune responses against tumors are subject to negative feedback regulation. Immune checkpoint inhibitors (ICIs) blocking Programmed cell death protein 1 (PD-1), a receptor expressed on T cells, or its ligand PD-L1 have significantly improved the treatment of cancer, in particular malignant melanoma. Nevertheless, responses and durability are variables, suggesting that additional critical negative feedback mechanisms exist and need to be targeted to improve therapeutic efficacy.
METHODS: We used different syngeneic melanoma mouse models and performed PD-1 blockade to identify novel mechanisms of negative immune regulation. Genetic gain-of-function and loss-of-function approaches as well as small molecule inhibitor applications were used for target validation in our melanoma models. We analyzed mouse melanoma tissues from treated and untreated mice by RNA-seq, immunofluorescence and flow cytometry to detect changes in pathway activities and immune cell composition of the tumor microenvironment. We analyzed tissue sections of patients with melanoma by immunohistochemistry as well as publicly available single-cell RNA-seq data and correlated target expression with clinical responses to ICIs.
RESULTS: Here, we identified 11-beta-hydroxysteroid dehydrogenase-1 (HSD11B1), an enzyme that converts inert glucocorticoids into active forms in tissues, as negative feedback mechanism in response to T cell immunotherapies. Glucocorticoids are potent suppressors of immune responses. HSD11B1 was expressed in different cellular compartments of melanomas, most notably myeloid cells but also T cells and melanoma cells. Enforced expression of HSD11B1 in mouse melanomas limited the efficacy of PD-1 blockade, whereas small molecule HSD11B1 inhibitors improved responses in a CD8+ T cell-dependent manner. Mechanistically, HSD11B1 inhibition in combination with PD-1 blockade augmented the production of interferon-γ by T cells. Interferon pathway activation correlated with sensitivity to PD-1 blockade linked to anti-proliferative effects on melanoma cells. Furthermore, high levels of HSD11B1, predominantly expressed by tumor-associated macrophages, were associated with poor responses to ICI therapy in two independent cohorts of patients with advanced melanomas analyzed by different methods (scRNA-seq, immunohistochemistry).
CONCLUSION: As HSD11B1 inhibitors are in the focus of drug development for metabolic diseases, our data suggest a drug repurposing strategy combining HSD11B1 inhibitors with ICIs to improve melanoma immunotherapy. Furthermore, our work also delineated potential caveats emphasizing the need for careful patient stratification.
PMID:37028818 | DOI:10.1136/jitc-2021-004150