Drug Repositioning
Pharmaceutical treatment of bone loss: From animal models and drug development to future treatment strategies
Pharmacol Ther. 2023 Mar 16:108383. doi: 10.1016/j.pharmthera.2023.108383. Online ahead of print.
ABSTRACT
Animal models are fundamental to advance our knowledge of the underlying pathophysiology of bone loss and to study pharmaceutical countermeasures against it. The animal model of post-menopausal osteoporosis from ovariectomy is the most widely used preclinical approach to study skeletal deterioration. However, several other animal models exist, each with unique characteristics such as bone loss from disuse, lactation, glucocorticoid excess, or exposure to hypobaric hypoxia. The present review aimed to provide a comprehensive overview of these animal models to emphasize the importance and significance of investigating bone loss and pharmaceutical countermeasures from perspectives other than post-menopausal osteoporosis only. Hence, the pathophysiology and underlying cellular mechanisms involved in the various types of bone loss are different, and this might influence which prevention and treatment strategies are the most effective. In addition, the review sought to map the current landscape of pharmaceutical countermeasures against osteoporosis with an emphasis on how drug development has changed from being driven by clinical observations and enhancement or repurposing of existing drugs to today's use of targeted anti-bodies that are the result of advanced insights into the underlying molecular mechanisms of bone formation and resorption. Moreover, new treatment combinations or repurposing opportunities of already approved drugs with a focus on dabigatran, parathyroid hormone and abaloparatide, growth hormone, inhibitors of the activin signaling pathway, acetazolamide, zoledronate, and romosozumab are discussed. Despite the considerable progress in drug development, there is still a clear need to improve treatment strategies and develop new pharmaceuticals against various types of osteoporosis. The review also highlights that new treatment indications should be explored using multiple animal models of bone loss in order to ensure a broad representation of different types of skeletal deterioration instead of mainly focusing on primary osteoporosis from post-menopausal estrogen deficiency.
PMID:36933702 | DOI:10.1016/j.pharmthera.2023.108383
Attenuation of renal injury by depleting cDC1 and by repurposing Flt3 inhibitor in anti-GBM disease
Clin Immunol. 2023 Mar 16:109295. doi: 10.1016/j.clim.2023.109295. Online ahead of print.
ABSTRACT
Previous studies found cDC1s to be protective in early stage anti-GBM disease through Tregs, but pathogenic in late stage Adriamycin nephropathy through CD8+ T cells. Flt3 ligand is a growth factor essential for cDC1 development and Flt3 inhibitors are currently used for cancer treatment. We conducted this study to clarify the role and mechanisms of effects of cDC1s at different time points in anti-GBM disease. In addition, we aimed to utilize drug repurposing of Flt3 inhibitors to target cDC1s as a treatment of anti-GBM disease. We found that in human anti-GBM disease, the number of cDC1s increased significantly, proportionally more than cDC2s. The number of CD8+ T cells also increased significantly and their number correlated with cDC1 number. In XCR1-DTR mice, late (day 12-21) but not early (day 3-12) depletion of cDC1s attenuated kidney injury in mice with anti-GBM disease. cDC1s separated from kidneys of anti-GBM disease mice were found to have a pro-inflammatory phenotype (i.e. express high level of IL-6 and IL-12) in late but not early stage. In the late depletion model, the number of CD8+ T cells was also reduced, but not Tregs. CD8+ T cells separated from kidneys of anti-GBM disease mice expressed high levels of cytotoxic molecules (granzyme B and perforin) and inflammatory cytokines (TNF-α and IFN-γ), and their expression reduced significantly after cDC1 depletion with diphtheria toxin. These findings were reproduced using a Flt3 inhibitor in wild type mice. Therefore, cDC1s are pathogenic in anti-GBM disease through activation of CD8+ T cells. Flt3 inhibition successfully attenuated kidney injury through depletion of cDC1s. Repurposing Flt3 inhibitors has potential as a novel therapeutic strategy for anti-GBM disease.
PMID:36933629 | DOI:10.1016/j.clim.2023.109295
Honokiol acts as an AMPK complex agonist therapeutic in non-alcoholic fatty liver disease and metabolic syndrome
Chin Med. 2023 Mar 17;18(1):30. doi: 10.1186/s13020-023-00729-5.
ABSTRACT
BACKGROUND: Non-alcoholic fatty liver (NAFLD) and its related metabolic syndrome have become major threats to human health, but there is still a need for effective and safe drugs to treat these conditions. Here we aimed to identify potential drug candidates for NAFLD and the underlying molecular mechanisms.
METHODS: A drug repositioning strategy was used to screen an FDA-approved drug library with approximately 3000 compounds in an in vitro hepatocyte model of lipid accumulation, with honokiol identified as an effective anti-NAFLD candidate. We systematically examined the therapeutic effect of honokiol in NAFLD and metabolic syndrome in multiple in vitro and in vivo models. Transcriptomic examination and biotin-streptavidin binding assays were used to explore the underlying molecular mechanisms, confirmed by rescue experiments.
RESULTS: Honokiol significantly inhibited metabolic syndrome and NAFLD progression as evidenced by improved hepatic steatosis, liver fibrosis, adipose inflammation, and insulin resistance. Mechanistically, the beneficial effects of honokiol were largely through AMPK activation. Rather than acting on the classical upstream regulators of AMPK, honokiol directly bound to the AMPKγ1 subunit to robustly activate AMPK signaling. Mutation of honokiol-binding sites of AMPKγ1 largely abolished the protective capacity of honokiol against NAFLD.
CONCLUSION: These findings clearly demonstrate the beneficial effects of honokiol in multiple models and reveal a previously unappreciated signaling mechanism of honokiol in NAFLD and metabolic syndrome. This study also provides new insights into metabolic disease treatment by targeting AMPKγ1 subunit-mediated signaling activation.
PMID:36932412 | DOI:10.1186/s13020-023-00729-5
A drug repurposing approach for individualized cancer therapy based on transcriptome sequencing and virtual drug screening
Comput Biol Med. 2023 Mar 11;157:106781. doi: 10.1016/j.compbiomed.2023.106781. Online ahead of print.
ABSTRACT
RNA-sequencing has been proposed as a valuable technique to develop individualized therapy concepts for cancer patients based on their tumor-specific mutational profiles. Here, we aimed to identify drugs and inhibitors in an individualized therapy-based drug repurposing approach focusing on missense mutations for 35 biopsies of cancer patients. The missense mutations belonged to 9 categories (ABC transporter, apoptosis, angiogenesis, cell cycle, DNA damage, kinase, protease, transcription factor, tumor suppressor). The highest percentages of missense mutations were observed in transcription factor genes. The mutational profiles of all 35 tumors were subjected to hierarchical heatmap clustering. All 7 leukemia biopsies clustered together and were separated from solid tumors. Based on these individual mutation profiles, two strategies for the identification of possible drug candidates were applied: Firstly, virtual screening of FDA-approved drugs based on the protein structures carrying particular missense mutations. Secondly, we mined the Drug Gene Interaction (DGI) database (https://www.dgidb.org/) to identify approved or experimental inhibitors for missense mutated proteins in our dataset of 35 tumors. In conclusion, our approach based on virtual drug screening of FDA-approved drugs and DGI-based inhibitor selection may provide new, individual treatment options for patients with otherwise refractory tumors that do not respond anymore to standard chemotherapy.
PMID:36931205 | DOI:10.1016/j.compbiomed.2023.106781
Improved and optimized drug repurposing for the SARS-CoV-2 pandemic
PLoS One. 2023 Mar 16;18(3):e0266572. doi: 10.1371/journal.pone.0266572. eCollection 2023.
ABSTRACT
The active global SARS-CoV-2 pandemic caused more than 426 million cases and 5.8 million deaths worldwide. The development of completely new drugs for such a novel disease is a challenging, time intensive process. Despite researchers around the world working on this task, no effective treatments have been developed yet. This emphasizes the importance of drug repurposing, where treatments are found among existing drugs that are meant for different diseases. A common approach to this is based on knowledge graphs, that condense relationships between entities like drugs, diseases and genes. Graph neural networks (GNNs) can then be used for the task at hand by predicting links in such knowledge graphs. Expanding on state-of-the-art GNN research, Doshi et al. recently developed the Dr-COVID model. We further extend their work using additional output interpretation strategies. The best aggregation strategy derives a top-100 ranking of 8,070 candidate drugs, 32 of which are currently being tested in COVID-19-related clinical trials. Moreover, we present an alternative application for the model, the generation of additional candidates based on a given pre-selection of drug candidates using collaborative filtering. In addition, we improved the implementation of the Dr-COVID model by significantly shortening the inference and pre-processing time by exploiting data-parallelism. As drug repurposing is a task that requires high computation and memory resources, we further accelerate the post-processing phase using a new emerging hardware-we propose a new approach to leverage the use of high-capacity Non-Volatile Memory for aggregate drug ranking.
PMID:36928101 | DOI:10.1371/journal.pone.0266572
Integration of Human and Viral miRNAs in Epstein-Barr Virus-Associated Tumors and Implications for Drug Repurposing
OMICS. 2023 Mar;27(3):93-108. doi: 10.1089/omi.2023.0005.
ABSTRACT
Epstein-Barr virus (EBV) is associated with several tumors, and has substantial relevance for public health. Therapeutics innovation for EBV-related disorders is much needed. In this context, miRNAs are noncoding RNA molecules that play vital roles in EBV infection. miRNA-Seq and RNA-Seq data for EBV-associated clinical samples and cell lines have been generated, but their detailed integrative analyses, and exploitation for drug repurposing against EBV are lacking. Hence, we identified and analyzed the differentially expressed miRNAs (DEmiRs) in EBV-infected cell lines (28) and infected (28) and uninfected human tissue (20) samples using an in-house pipeline. We found significantly enriched host miRNAs like hsa-mir-3651, hsa-mir-1248, and hsa-mir-29c-3p in EBV-infected samples from EBV-associated nasopharyngeal carcinoma and Hodgkin's lymphoma, among others. Furthermore, we also identified significantly enriched novel miRNAs such as hsa-mir-29c-3p, hsa-mir-3651, and hsa-mir-98-3p, which were not previously reported in EBV-related tumors. Differentially expressed mRNAs (DEMs) were identified in EBV-infected cell lines (21) and uninfected human tissue (14) samples. We predicted and selected 1572 DEMs (upregulated) that are targeted by 547 DEmiRs (downregulated). These were further classified into essential (870) and nonessential (702) genes. Moreover, a miRNA-mRNA network was developed for the hub miRNAs. Importantly, we used the DEMs during EBV latent infection types I, II, and III to identify the candidate drugs for repurposing: Glyburide, Levodopa, Nateglinide, and Stiripentol, among others. To the best of our knowledge, this is the first integrative analyses that identified DEmiRs and DEMs as potential therapeutic targets and predicted drugs as potential candidates for repurposing against EBV-related tumors.
PMID:36927073 | DOI:10.1089/omi.2023.0005
Repurposing Azacitidine and Carboplatin to Prime Immune Checkpoint Blockade-resistant Melanoma for Anti-PD-L1 Rechallenge
Cancer Res Commun. 2022 Aug 17;2(8):814-826. doi: 10.1158/2767-9764.CRC-22-0128. eCollection 2022 Aug.
ABSTRACT
PURPOSE: Drug repurposing offers the opportunity for chemotherapy to be used to reestablish sensitivity to immune checkpoint blockade (ICB) therapy. Here we investigated the clinical and translational aspects of an early phase II study of azacitidine and carboplatin priming for anti-PDL1 immunotherapy (avelumab) in patients with advanced ICB-resistant melanoma.
EXPERIMENTAL DESIGN: A total of 20 participants with ICB-resistant metastatic melanoma received 2 × 4-week cycles of azacitidine and carboplatin followed by ICB rechallenge with anti-PD-L1 avelumab. The primary objective was overall response rate after priming and ICB rechallenge. Secondary objectives were clinical benefit rate (CBR), progression-free survival (PFS), and overall survival (OS). Translational correlation analysis of HLA-A and PD-L1 expression, RNA sequencing, and reduced representation bisulfite sequencing of biopsies at baseline, after priming and after six cycles of avelmuab was performed.
RESULTS: The overall response rate (ORR) determined after azacitidine and carboplatin priming was 10% (2/20) with two partial responses (PR). The ORR determined after priming followed by six cycles of avelumab (week 22) was 10%, with 2 of 20 participants achieving immune partial response (iPR). The CBR for azacitidine and carboplatin priming was 65% (13/20) and after priming followed by six cycles of avelumab CBR was 35% (n = 7/20). The median PFS was 18.0 weeks [95% confidence interval (CI): 14.87-21.13 weeks] and the median OS was 47.86 weeks (95% CI: 9.67-86.06 weeks). Translational correlation analysis confirmed HLA-A generally increased after priming with azacitidine and carboplatin, particularly if it was absent at the start of treatment. Average methylation of CpGs across the HLA-A locus was decreased after priming and T cells, in particular CD8+, showed the greatest increase in infiltration.
CONCLUSIONS: Priming with azacitidine and carboplatin can induce disease stabilization and resensitization to ICB for metastatic melanoma.
SIGNIFICANCE: There are limited treatments for melanoma once resistance to ICB occurs. Chemotherapy induces immune-related responses and may be repurposed to reinstate the response to ICB. This study provides the first evidence that chemotherapy can provide clinical benefit and increase OS for ICB-resistant melanoma.
PMID:36923309 | PMC:PMC10010343 | DOI:10.1158/2767-9764.CRC-22-0128
Clinical, pharmacological and formulation evaluation of disulfiram in the treatment of glioblastoma - a systematic literature review
Expert Opin Drug Deliv. 2023 Mar 15. doi: 10.1080/17425247.2023.2190581. Online ahead of print.
ABSTRACT
INTRODUCTION: Glioblastoma (GB) is one of the most challenging central nervous system (CNS) tumors in treatment options and response, urging the development of novel management strategies. The anti-alcoholism drug, disulfiram (DS), has a potential anticancer activity, and its complex mechanism of action is assumed to be well exploited against the heterogeneous GB.
AREA COVERED: Through a systematic literature review about repositioning DS to GB treatment, an evaluation of the clinical, pharmacological, and formulation strategies is provided to specify the challenges of drug delivery and thus to advance its clinical translation. From 6 databases, 35 articles were selected, including case report (1); clinical trials (3); original articles mainly representing in vitro and preclinical pharmacological data, and 10 dealing with technological approaches.
EXPERT OPINION: The repositioning of DS in GB treatment is facing drug and tumor-associated limitations due to the oral drug's low bioavailability, unwanted metabolism, and inefficient delivery to brain-tumor tissue. Development strategies using molecular encapsulation of DS and the parenteral dosage forms improve the anticancer pharmacology of the drug. The development of optimized drug delivery systems (DDS) shows promise for the clinical translation of DS into GB adjuvant therapy.
PMID:36922013 | DOI:10.1080/17425247.2023.2190581
Inclusion of Nitrofurantoin into the Realm of Cancer Chemotherapy via Biology-Oriented Synthesis and Drug Repurposing
J Med Chem. 2023 Mar 15. doi: 10.1021/acs.jmedchem.2c01408. Online ahead of print.
ABSTRACT
Structural modifications of the antibacterial drug nitrofurantoin were envisioned, employing drug repurposing and biology-oriented drug synthesis, to serve as possible anticancer agents. Eleven compounds showed superior safety in non-cancerous human cells. Their antitumor efficacy was assessed on colorectal, breast, cervical, and liver cancer cells. Three compounds induced oxidative DNA damage in cancer cells with subsequent cellular apoptosis. They also upregulated the expression of Bax while downregulated that of Bcl-2 along with activating caspase 3/7. The DNA damage induced by these compounds, demonstrated by pATM nuclear shuttling, was comparable in both MCF7 and MDA-MB-231 (p53 mutant) cell lines. Mechanistic studies confirmed the dependence of these compounds on p53-mediated pathways as they suppressed the p53-MDM2 interaction. Indeed, exposure of radiosensitive prostatic cancer cells to low non-cytotoxic concentrations of compound 1 enhanced the cytotoxic response to radiation indicating a possible synergistic effect. In vivo antitumor activity was verified in an MCF7-xenograft animal model.
PMID:36921275 | DOI:10.1021/acs.jmedchem.2c01408
Andrographolide exerts anti-respiratory syncytial virus activity by up-regulating heme oxygenase-1 independent of interferon responses in human airway epithelial cells
Mol Biol Rep. 2023 Mar 14. doi: 10.1007/s11033-023-08346-z. Online ahead of print.
ABSTRACT
BACKGROUND: Respiratory syncytial virus (RSV) is the leading cause of mortality and morbidity in children under the age of five. Despite this, there is still a lack of safe and effective vaccines and antiviral agents for clinical use. Andrographolide exerts antiviral functions against a variety of viruses, but whether (and how) it exerts antiviral effects on RSV remains unclear.
METHODS AND RESULTS: In vitro RSV infection models using A549 and 16HBE cell lines were established, and the effects of andrographolide on RSV were analyzed via RSV N gene load and proinflammatory cytokine levels. The RNA transcriptome was sequenced, and data were analyzed by R software. Andrographolide-related target genes were extracted via network pharmacology using online databases. Lentiviral transfection was applied to knockdown the heme oxygenase-1 gene (Hmox1, HO-1). Results showed that andrographolide suppressed RSV replication and attenuated subsequent inflammation. Network pharmacology and RNA sequencing analysis indicated that the hub gene HO-1 may play a pivotal role in the anti-RSV effects of andrographolide. Furthermore, andrographolide exerted antiviral effects against RSV partially by inducing HO-1 but did not activate the antiviral interferon response.
CONCLUSION: Our findings demonstrated that andrographolide exerted anti-RSV activity by up-regulating HO-1 expression in human airway epithelial cells, providing novel insights into potential therapeutic targets and drug repurposing in RSV infection.
PMID:36918433 | DOI:10.1007/s11033-023-08346-z
Applications of promiscuity of FDA-approved kinase inhibitors in drug repositioning and toxicity
Toxicol Appl Pharmacol. 2023 Mar 12:116469. doi: 10.1016/j.taap.2023.116469. Online ahead of print.
ABSTRACT
Promiscuity of therapeutics has important implications in treatment and toxicity. So far, a comprehensive understanding of promiscuity related to kinase inhibitors is lacking and such an analysis may offer potential opportunities for drug repurposing. In the present study, profiling of inhibitor-specific kinases based on the available biochemical IC50s was performed, fold-change of IC50 values for additional targets were calculated by taking the primary target as the reference kinase, and finally the promiscuity degree (PD) for FDA-approved kinase inhibitors was calculated. Surprisingly, class II inhibitors showed more PD than that of the class I inhibitors. We further identified cancer types and sub-types in which additional kinase targets or off-targets of inhibitors were overexpressed for potential drug repurposing. In addition, the expression of these kinases in normal human tissues were also profiled to predict toxicity following drug repositioning. Taken together, the study offers opportunities for cancer treatment in a kinase-specific manner.
PMID:36918129 | DOI:10.1016/j.taap.2023.116469
Valproate and lithium: Old drugs for new pharmacological approaches in brain tumors?
Cancer Lett. 2023 Mar 11:216125. doi: 10.1016/j.canlet.2023.216125. Online ahead of print.
ABSTRACT
Beyond its use as an antiepileptic drug, over time valproate has been increasingly used for several other therapeutic applications. Among these, the antineoplastic effects of valproate have been assessed in several in vitro and in vivo preclinical studies, suggesting that this agent significantly inhibits cancer cell proliferation by modulating multiple signaling pathways. During the last years various clinical trials have tried to find out if valproate co-administration could enhance the antineoplastic activity of chemotherapy in glioblastoma patients and in patients suffering from brain metastases, demonstrating that the inclusion of valproate in the therapeutic schedule causes an improved median overall survival in some studies, but not in others. Thus, the effects of the use of concomitant valproate in brain cancer patients are still controversial. Similarly, lithium has been tested as an anticancer drug in several preclinical studies mainly using the unregistered formulation of lithium chloride salts. Although, there are no data showing that the anticancer effects of lithium chloride are superimposable to the registered lithium carbonate, this formulation has shown preclinical activity in glioblastoma and hepatocellular cancers. However, few but interesting clinical trials have been performed with lithium carbonate on a very small number of cancer patients. Based on published data, valproate could represent a potential complementary therapeutic approach to enhance the anticancer activity of brain cancer standard chemotherapy. Same advantageous characteristics are less convincing for lithium carbonate. Therefore, the planning of specific phase III studies is necessary to validate the repositioning of these drugs in present and future oncological research.
PMID:36914086 | DOI:10.1016/j.canlet.2023.216125
Anticancer effect of zanubrutinib in HER2-positive breast cancer cell lines
Invest New Drugs. 2023 Mar 13. doi: 10.1007/s10637-023-01346-7. Online ahead of print.
ABSTRACT
Small molecule Bruton's tyrosine kinase (BTK) inhibitors have been developed for the treatment of various haemato-oncological diseases, and ibrutinib was approved as the first BTK inhibitor for anticancer therapy in 2013. Previous reports proved the receptor kinase human epidermal growth factor receptor 2 (HER2) to be a valid off-target kinase of ibrutinib and potentially other irreversible BTK inhibitors, as it possesses a druggable cysteine residue in the active site of the enzyme. These findings suggest ibrutinib as a candidate drug for repositioning in HER2-positive breast cancer (BCa). This subtype of breast cancer belongs to one of the most common classes of breast tumours, and its prognosis is characterized by a high rate of recurrence and tumour invasiveness. Based on their similar kinase selectivity profiles, we investigated the anticancer effect of zanubrutinib, evobrutinib, tirabrutinib and acalabrutinib in different BCa cell lines and sought to determine whether it is linked with targeting the epidermal growth factor receptor family (ERBB) pathway. We found that zanubrutinib is a potential inhibitor of the HER2 signalling pathway, displaying an antiproliferative effect in HER2-positive BCa cell lines. Zanubrutinib effectively inhibits the phosphorylation of proteins in the ERBB signalling cascade, including the downstream kinases Akt and ERK, which mediate key signals ensuring the survival and proliferation of cancer cells. We thus propose zanubrutinib as another suitable candidate for repurposing in HER2-amplified solid tumours.
PMID:36913160 | DOI:10.1007/s10637-023-01346-7
Application of the PHENotype SIMulator for rapid identification of potential candidates in effective COVID-19 drug repurposing
Heliyon. 2023 Mar;9(3):e14115. doi: 10.1016/j.heliyon.2023.e14115. Epub 2023 Mar 6.
ABSTRACT
The current, rapidly diversifying pandemic has accelerated the need for efficient and effective identification of potential drug candidates for COVID-19. Knowledge on host-immune response to SARS-CoV-2 infection, however, remains limited with few drugs approved to date. Viable strategies and tools are rapidly arising to address this, especially with repurposing of existing drugs offering significant promise. Here we introduce a systems biology tool, the PHENotype SIMulator, which -by leveraging available transcriptomic and proteomic databases-allows modeling of SARS-CoV-2 infection in host cells in silico to i) determine with high sensitivity and specificity (both>96%) the viral effects on cellular host-immune response, resulting in specific cellular SARS-CoV-2 signatures and ii) utilize these cell-specific signatures to identify promising repurposable therapeutics. Powered by this tool, coupled with domain expertise, we identify several potential COVID-19 drugs including methylprednisolone and metformin, and further discern key cellular SARS-CoV-2-affected pathways as potential druggable targets in COVID-19 pathogenesis.
PMID:36911878 | PMC:PMC9986505 | DOI:10.1016/j.heliyon.2023.e14115
Interactions between PCSK9 and NLRP3 inflammasome signaling in atherosclerosis
Front Immunol. 2023 Feb 22;14:1126823. doi: 10.3389/fimmu.2023.1126823. eCollection 2023.
ABSTRACT
Atherosclerosis is an early pathological basis of numerous cardiovascular events that result in death or disability. Recent studies have described PCSK9 as a novel target for the treatment of atherosclerosis; PCSK9 is capable of degrading LDLR on the surface of hepatocytes through the regulation of lipid metabolism, and it can function as a novel inflammatory modulator in atherosclerosis. Inflammasomes are important intracellular multiprotein complexes that promote the inflammatory response in atherosclerosis. Among inflammasomes, the NLRP3 inflammasome is particularly notable because of its important role in the development of atherosclerotic disease. After activation, NLRP3 forms a complex with ASC and pro-caspase-1, converting pro-caspase-1 into activated caspase-1, which may trigger the release of IL-1β and IL-18 and contribute to the inflammatory response. Several recent studies have indicated that there may be interactions between PCSK9 and the NLRP3 inflammasome, which may contribute to the inflammatory response that drives atherosclerosis development and progression. On the one hand, the NLRP3 inflammasome plays an important role via IL-1β in regulating PCSK9 secretion. On the other hand, PCSK9 regulates caspase-1-dependent pyroptosis by initiating mtDNA damage and activating NLRP3 inflammasome signaling. This paper reviews the mechanisms underlying PCSK9 and NLRP3 inflammasome activation in the context of atherosclerosis. Furthermore, we describe the current understanding of the specific molecular mechanism underlying the interactions between PCSK9 and NLRP3 inflammasome signaling as well as the drug repositioning events that influence vascular cells and exert beneficial antiatherosclerotic effects. This review may provide a new therapeutic direction for the effective prevention and treatment of atherosclerosis in the clinic.
PMID:36911736 | PMC:PMC9992811 | DOI:10.3389/fimmu.2023.1126823
Machine-learning Repurposing of DrugBank Compounds for Opioid Use Disorder
ArXiv. 2023 Mar 1:arXiv:2303.00240v1. Preprint.
ABSTRACT
Opioid use disorder (OUD) is a chronic and relapsing condition that involves the continued and compulsive use of opioids despite harmful consequences. The development of medications with improved efficacy and safety profiles for OUD treatment is urgently needed. Drug repurposing is a promising option for drug discovery due to its reduced cost and expedited approval procedures. Computational approaches based on machine learning enable the rapid screening of DrugBank compounds, identifying those with the potential to be repurposed for OUD treatment. We collected inhibitor data for four major opioid receptors and used advanced machine learning predictors of binding affinity that fuse the gradient boosting decision tree algorithm with two natural language processing (NLP)-based molecular fingerprints and one traditional 2D fingerprint. Using these predictors, we systematically analyzed the binding affinities of DrugBank compounds on four opioid receptors. Based on our machine learning predictions, we were able to discriminate DrugBank compounds with various binding affinity thresholds and selectivities for different receptors. The prediction results were further analyzed for ADMET (absorption, distribution, metabolism, excretion, and toxicity), which provided guidance on repurposing DrugBank compounds for the inhibition of selected opioid receptors. The pharmacological effects of these compounds for OUD treatment need to be tested in further experimental studies and clinical trials. Our machine learning studies provide a valuable platform for drug discovery in the context of OUD treatment.
PMID:36911277 | PMC:PMC10002810
Establishment and application of a high-throughput screening model for cell adhesion inhibitors
Front Pharmacol. 2023 Feb 23;14:1140163. doi: 10.3389/fphar.2023.1140163. eCollection 2023.
ABSTRACT
The cell adhesion between leukocytes and endothelial cells plays an important balanced role in the pathophysiological function, while excessive adhesion caused by etiological agents is associated with the occurrence and development of many acute and chronic diseases. Cell adhesion inhibitors have been shown to have a potential therapeutic effect on these diseases, therefore, efficient and specific inhibitors against cell adhesion are highly desirable. Here, using lipopolysaccharide-induced human umbilical vein endothelial cells (HUVECs) and calcein-AM-labeled human monocytic cell THP-1, we established a high-throughput screening model for cell adhesion inhibitors with excellent model evaluation parameters. Using the drug repurposing strategy, we screened out lifitegrast, a potent cell adhesion inhibitor, which inhibited cell adhesion between HUVEC and THP-1 cells by directly interrupting the adhesion interaction between HUVEC and THP-1 cells and showed a strong therapeutic effect on the mouse acute liver injury induced by poly (I:C)/D-GalN. Therefore, the screening model is suitable for screening and validating cell adhesion inhibitors, which will promote the research and development of inhibitors for the treatment of diseases caused by excessive cell adhesion.
PMID:36909195 | PMC:PMC9995855 | DOI:10.3389/fphar.2023.1140163
Editorial: Cancer neuroscience: Drug repurposing targeting the innervated niche
Front Pharmacol. 2023 Feb 22;14:1148706. doi: 10.3389/fphar.2023.1148706. eCollection 2023.
NO ABSTRACT
PMID:36909193 | PMC:PMC9992969 | DOI:10.3389/fphar.2023.1148706
Discovery of drug targets and therapeutic agents based on drug repositioning to treat lung adenocarcinoma
Biomed Pharmacother. 2023 Mar 10;161:114486. doi: 10.1016/j.biopha.2023.114486. Online ahead of print.
ABSTRACT
BACKGROUND: Lung adenocarcinoma (LUAD) is the one of the most common subtypes in lung cancer. Although various targeted therapies have been used in the clinical practice, the 5-year overall survival rate of patients is still low. Thus, it is urgent to identify new therapeutic targets and develop new drugs for the treatment of the LUAD patients.
METHODS: Survival analysis was used to identify the prognostic genes. Gene co-expression network analysis was used to identify the hub genes driving the tumor development. A profile-based drug repositioning approach was used to repurpose the potentially useful drugs for targeting the hub genes. MTT and LDH assay were used to measure the cell viability and drug cytotoxicity, respectively. Western blot was used to detect the expression of the proteins.
FINDINGS: We identified 341 consistent prognostic genes from two independent LUAD cohorts, whose high expression was associated with poor survival outcomes of patients. Among them, eight genes were identified as hub genes due to their high centrality in the key functional modules in the gene-co-expression network analysis and these genes were associated with the various hallmarks of cancer (e.g., DNA replication and cell cycle). We performed drug repositioning analysis for three of the eight genes (CDCA8, MCM6, and TTK) based on our drug repositioning approach. Finally, we repurposed five drugs for inhibiting the protein expression level of each target gene and validated the drug efficacy by performing in vitro experiments.
INTERPRETATION: We found the consensus targetable genes for the treatment of LUAD patients with different races and geographic characteristics. We also proved the feasibility of our drug repositioning approach for the development of new drugs for disease treatment.
PMID:36906970 | DOI:10.1016/j.biopha.2023.114486
Repurposing of triamterene as a histone deacetylase inhibitor to overcome cisplatin resistance in lung cancer treatment
J Cancer Res Clin Oncol. 2023 Mar 11. doi: 10.1007/s00432-023-04641-1. Online ahead of print.
ABSTRACT
PURPOSE: Cisplatin is the core chemotherapeutic drug used for first-line treatment of advanced non-small cell lung cancer (NSCLC). However, drug resistance is severely hindering its clinical efficacy. This study investigated the circumvention of cisplatin resistance by repurposing non-oncology drugs with putative histone deacetylase (HDAC) inhibitory effect.
METHODS: A few clinically approved drugs were identified by a computational drug repurposing tool called "DRUGSURV" and evaluated for HDAC inhibition. Triamterene, originally indicated as a diuretic, was chosen for further investigation in pairs of parental and cisplatin-resistant NSCLC cell lines. Sulforhodamine B assay was used to evaluate cell proliferation. Western blot analysis was performed to examine histone acetylation. Flow cytometry was used to examine apoptosis and cell cycle effects. Chromatin immunoprecipitation was conducted to investigate the interaction of transcription factors to the promoter of genes regulating cisplatin uptake and cell cycle progression. The circumvention of cisplatin resistance by triamterene was further verified in a patient-derived tumor xenograft (PDX) from a cisplatin-refractory NSCLC patient.
RESULTS: Triamterene was found to inhibit HDACs. It was shown to enhance cellular cisplatin accumulation and potentiate cisplatin-induced cell cycle arrest, DNA damage, and apoptosis. Mechanistically, triamterene was found to induce histone acetylation in chromatin, thereby reducing the association of HDAC1 but promoting the interaction of Sp1 with the gene promoter of hCTR1 and p21. Triamterene was further shown to potentiate the anti-cancer effect of cisplatin in cisplatin-resistant PDX in vivo.
CONCLUSION: The findings advocate further clinical evaluation of the repurposing use of triamterene to overcome cisplatin resistance.
PMID:36905422 | DOI:10.1007/s00432-023-04641-1