Drug Repositioning
Homology Modeling, Screening, and Identification of Potential FOXO6 Inhibitors Curtail Gastric Cancer Progression: an In Silico Drug Repurposing Approach
Appl Biochem Biotechnol. 2023 Apr 22. doi: 10.1007/s12010-023-04490-1. Online ahead of print.
ABSTRACT
Gastric cancer is the world's second leading cause of cancer-related fatalities, with the epidemiology changing over the previous several decades. FOXOs are the O subfamily of the forkhead box (FOX) transcription factor family, which consists of four members: FOXO1, FOXO3, FOXO4, and FOXO6. FOXO6 mRNA and protein levels are increased in gastric cancer tissues. FOXO6 forced overexpression enhances gastric cancer cell growth, while knockdown decreases proliferation. In our study, the GEPIA, Kaplan-Meier, KEGG, and STRING databases were used to determine FOXO6 mRNA expression, overall survival ratio, interactive pathways, and top 10 associated proteins in gastric cancer respectively. Due to the lack of a solved structure for FOXO6, homology modeling was performed to obtain a 3D structure model, and we used anti-cancer drugs and small molecules to target FOXO6 for identifying a potential selective FOXO6 inhibitor. The chemical composition of the proteins and ligands has a significant impact on docking procedure performance. With this in mind, a critical evaluation of the performance of three regularly used docking routines was carried out: MVD, AutoDock Vina in PyRx, and ArgusLab. The binding affinities, docking scores, and intermolecular interactions were used as assessment criteria. In the study, the porfimer sodium showed excellent binding affinity to the FOXO6 protein. The major three docking software packages were used to analyze the scoring/H-bonding energy and intermolecular interactions. Based on the results, we concluded that FOXO6 was upregulated in gastric cancer and the ligand porfimer sodium emerges as a promising potential FOXO6 inhibitor to curtail gastric cancer progression.
PMID:37086375 | DOI:10.1007/s12010-023-04490-1
Analysis of differential gene immune infiltration and clinical characteristics of skin cutaneous melanoma based on systems biology and drug repositioning methods to identify drug candidates for skin cutaneous melanoma
Naunyn Schmiedebergs Arch Pharmacol. 2023 Apr 22. doi: 10.1007/s00210-023-02461-1. Online ahead of print.
ABSTRACT
Skin cutaneous melanoma (SKCM) has a low early detection rate and a high mortality rate. There are many problems such as side effects and drug resistance in existing therapeutic drugs. Current studies have confirmed that SKCM pathogenesis-related genes promote the invasion and metastasis of cutaneous melanoma, but their roles in the tumor microenvironment (TME) remain unclear. Network pharmacology provides new opportunities for drug repurposing and repositioning, and is a fast, safe, and inexpensive drug discovery method to find new drugs for the treatment of SKCM. In this study, based on 3 databases (KEGG, OMIM, and Genotype) to obtain SKCM-related genes, and TCGA SKCM dataset, SKCM differential genes in GSE3189 and GSE46517 were intersected to identify SKCM pathogenesis-related differential genes, and the differential genes were immune infiltration and analysis, For survival analysis, a prognostic nomogram risk model was constructed based on the results of multivariate Cox regression analysis for risk stratification and prognosis prediction, then focused on the differential expression of ZC3H12A and its effect on TME. Finally, the protein interaction network method was used to quantify the similarity between 684 drug targets and skin melanoma, and to screen out drugs similar to skin melanoma. Based on 3 databases of KEGG, OMIM, and Genotype, 294 SKCM-related genes and 18 SKCM pathogenesis-related differential genes were obtained, and 18 SKCM pathogenesis-related differential genes were significantly correlated with TME. The constructed prognostic nomogram risk model predicted performance better and provided valuable information for immunotherapy. Multivariate Cox regression analysis and K-M analysis showed that ZC3H12A was a differentially expressed gene affecting the prognosis of SKCM and promoted the infiltration of anti-tumor immune cells CD8 + T cells, B cells, and DC cells. Based on the analysis of the protein interaction network method, 43 drugs were found to have high potential in the treatment of SKCM, and the literature search of these 43 drugs was carried out, and 21 drugs were found to have experimental verification for the treatment of SKCM. Taken together, the differential genes associated with the pathogenesis of SKCM have important roles in the tumor immune microenvironment, clinicopathological features, and prognosis, especially ZC3H12A has a potential role in identifying early SKCM patients. At the same time, it provides a new strategy for the drug development of SKCM and provides a basis for the reuse of SKCM drugs.
PMID:37086280 | DOI:10.1007/s00210-023-02461-1
Series introduction: drug repurposing for kidney diseases
Kidney Int. 2023 May;103(5):812. doi: 10.1016/j.kint.2023.03.006.
NO ABSTRACT
PMID:37085250 | DOI:10.1016/j.kint.2023.03.006
Drug repositioning in the COVID-19 pandemic: fundamentals, synthetic routes, and overview of clinical studies
Eur J Clin Pharmacol. 2023 Apr 20. doi: 10.1007/s00228-023-03486-4. Online ahead of print.
ABSTRACT
INTRODUCTION: Drug repositioning is a strategy to identify a new therapeutic indication for molecules that have been approved for other conditions, aiming to speed up the traditional drug development process and reduce its costs. The high prevalence and incidence of coronavirus disease 2019 (COVID-19) underline the importance of searching for a safe and effective treatment for the disease, and drug repositioning is the most rational strategy to achieve this goal in a short period of time. Another advantage of repositioning is the fact that these compounds already have established synthetic routes, which facilitates their production at the industrial level. However, the hope for treatment cannot allow the indiscriminate use of medicines without a scientific basis.
RESULTS: The main small molecules in clinical trials being studied to be potentially repositioned to treat COVID-19 are chloroquine, hydroxychloroquine, ivermectin, favipiravir, colchicine, remdesivir, dexamethasone, nitazoxanide, azithromycin, camostat, methylprednisolone, and baricitinib. In the context of clinical tests, in general, they were carried out under the supervision of large consortiums with a methodology based on and recognized in the scientific community, factors that ensure the reliability of the data collected. From the synthetic perspective, compounds with less structural complexity have more simplified synthetic routes. Stereochemical complexity still represents the major challenge in the preparation of dexamethasone, ivermectin, and azithromycin, for instance.
CONCLUSION: Remdesivir and baricitinib were approved for the treatment of hospitalized patients with severe COVID-19. Dexamethasone and methylprednisolone should be used with caution. Hydroxychloroquine, chloroquine, ivermectin, and azithromycin are ineffective for the treatment of the disease, and the other compounds presented uncertain results. Preclinical and clinical studies should not be analyzed alone, and their methodology's accuracy should also be considered. Regulatory agencies are responsible for analyzing the efficacy and safety of a treatment and must be respected as the competent authorities for this decision, avoiding the indiscriminate use of medicines.
PMID:37081137 | DOI:10.1007/s00228-023-03486-4
Identification of FDA-approved drugs with triple targeting mode of action for the treatment of monkeypox: a high throughput virtual screening study
Mol Divers. 2023 Apr 20. doi: 10.1007/s11030-023-10636-4. Online ahead of print.
ABSTRACT
According to the Center for Disease Control and Prevention, as of August 23, 94 countries had confirmed 42,954 Monkeypox Virus cases. As specific monkeypox drugs are not yet developed, the treatment depends on repurposed FDA-approved drugs. According to a recent study, the Monkeypox outbreak is caused by a strain with a unique mutation, raising the likelihood that the virus will develop resistance to current drugs by acquiring mutations in the targets of currently used drugs. The probability of multiple mutations in two or more drug targets at a time is always low than mutation in a single drug target. Therefore, we identified 15 triple-targeting FDA-approved drugs that can inhibit three viral targets, including topoisomerase1, p37, and thymidylate kinase, using high throughput virtual screening approach. Further, the molecular dynamics simulation analysis of the top hits such as Naldemedine and Saquinavir with their respective targets reveals the formation of stable conformational changes of the ligand-protein complexes inside the dynamic biological environment. We suggest further research on these triple-targeting molecules to develop an effective therapy for the currently spreading Monkeypox.
PMID:37079243 | DOI:10.1007/s11030-023-10636-4
Drug repositioning: doxazosin attenuates the virulence factors and biofilm formation in Gram-negative bacteria
Appl Microbiol Biotechnol. 2023 Apr 20. doi: 10.1007/s00253-023-12522-3. Online ahead of print.
ABSTRACT
The resistance development is an increasing global health risk that needs innovative solutions. Repurposing drugs to serve as anti-virulence agents is suggested as an advantageous strategy to diminish bacterial resistance development. Bacterial virulence is controlled by quorum sensing (QS) system that orchestrates the expression of biofilm formation, motility, and virulence factors production as enzymes and virulent pigments. Interfering with QS could lead to bacterial virulence mitigation without affecting bacterial growth that does not result in bacterial resistance development. This study investigated the probable anti-virulence and anti-QS activities of α-adrenoreceptor blocker doxazosin against Proteus mirabilis and Pseudomonas aeruginosa. Besides in silico study, in vitro and in vivo investigations were conducted to assess the doxazosin anti-virulence actions. Doxazosin significantly diminished the biofilm formation and release of QS-controlled Chromobacterium violaceum pigment and virulence factors in P. aeruginosa and P. mirabilis, and downregulated the QS encoding genes in P. aeruginosa. Virtually, doxazosin interfered with QS proteins, and in vivo protected mice against P. mirabilis and P. aeruginosa. The role of the membranal sensors as QseC and PmrA was recognized in enhancing the Gram-negative virulence. Doxazosin downregulated the membranal sensors PmR and QseC encoding genes and could in silico interfere with them. In conclusion, this study preliminary documents the probable anti-QS and anti-virulence activities of doxazosin, which indicate its possible application as an alternative or in addition to antibiotics. However, extended toxicological and pharmacological investigations are essential to approve the feasible clinical application of doxazosin as novel efficient anti-virulence agent. KEY POINTS: • Anti-hypertensive doxazosin acquires anti-quorum sensing activities • Doxazosin diminishes the virulence of Proteus mirabilis and Pseudomonas aeruginosa • Doxazosin could dimmish the bacterial espionage.
PMID:37079062 | DOI:10.1007/s00253-023-12522-3
The management of babesia, amoeba and other zoonotic diseases provoked by protozoa
Expert Opin Ther Pat. 2023 Apr 20. doi: 10.1080/13543776.2023.2205586. Online ahead of print.
ABSTRACT
INTRODUCTION: There are 12 protozoan genera that provoke zoonotic disease in humans and animals. We discuss the most common ones with a highlight on Babesia spp and Entamoeba histolytica, also mentioning Toxoplasma gondii, Trypanosoma cruzi, and Leishmania spp.
AREAS COVERED: The complex life cycle of pathogenic protozoans is deeply understood but this did not contribute to the discovery of new drugs. The clinical armamentarium is poor and includes antiinfectives originally proposed as antibacterial (azithromycin, clindamycin, paromomycin, sulfadrugs), antifungals (amphotericin B), or they outdated compounds with poor efficacy and many side effects (nitroazoles, antimonials, etc.). Few patents and innovative ideas are available.
EXPERT OPINION: Protozoan diseases are not restricted to tropical countries and are difficult or impossible to treat with currently available drugs, which are limited and restricted to a low number of clinical classes. The antiprotozoal drug targets are also limited, and this had deleterious effects on translational studies for designing efficient antiprotozoal drugs. There is a stringent need for innovative approaches to tackle these problems.
PMID:37078205 | DOI:10.1080/13543776.2023.2205586
Therapeutic strategies for COVID-19: progress and lessons learned
Nat Rev Drug Discov. 2023 Apr 19. doi: 10.1038/s41573-023-00672-y. Online ahead of print.
ABSTRACT
The coronavirus disease 2019 (COVID-19) pandemic has stimulated tremendous efforts to develop therapeutic strategies that target severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and/or human proteins to control viral infection, encompassing hundreds of potential drugs and thousands of patients in clinical trials. So far, a few small-molecule antiviral drugs (nirmatrelvir-ritonavir, remdesivir and molnupiravir) and 11 monoclonal antibodies have been marketed for the treatment of COVID-19, mostly requiring administration within 10 days of symptom onset. In addition, hospitalized patients with severe or critical COVID-19 may benefit from treatment with previously approved immunomodulatory drugs, including glucocorticoids such as dexamethasone, cytokine antagonists such as tocilizumab and Janus kinase inhibitors such as baricitinib. Here, we summarize progress with COVID-19 drug discovery, based on accumulated findings since the pandemic began and a comprehensive list of clinical and preclinical inhibitors with anti-coronavirus activities. We also discuss the lessons learned from COVID-19 and other infectious diseases with regard to drug repurposing strategies, pan-coronavirus drug targets, in vitro assays and animal models, and platform trial design for the development of therapeutics to tackle COVID-19, long COVID and pathogenic coronaviruses in future outbreaks.
PMID:37076602 | DOI:10.1038/s41573-023-00672-y
Binding kinetics study of SARS-CoV-2 main protease and potential inhibitors <em>via</em> molecular dynamics simulations
Phys Chem Chem Phys. 2023 Apr 19. doi: 10.1039/d2cp05911h. Online ahead of print.
ABSTRACT
The pandemic COVID-19 was induced by the novel coronavirus SARS-CoV-2. The virus main protease (Mpro) cleaves the coronavirus polyprotein translated from the viral RNA in the host cells. Because of its crucial role in virus replication, Mpro is a potential drug target for COVID-19 treatment. Herein, we study the interactions between Mpro and three HIV-1 protease (HIV-1 PR) inhibitors, Lopinavir (LPV), Saquinavir (SQV), Ritonavir (RIT), and an inhibitor PF-07321332, by conventional and replica exchange molecular dynamics (MD) simulations. The association/dissociation rates and the affinities of the inhibitors were estimated. The three HIV-1 PR inhibitors exhibit low affinities, while PF-07321332 has the highest affinity among these four simulated inhibitors. Based on cluster analysis, the HIV-1 PR inhibitors bind to Mpro at multiple sites, while PF-07321332 specifically binds to the catalytically activated site of Mpro. The stable and specific binding is because PF-07321332 forms multiple H-bonds to His163 and Glu166 simultaneously. The simulations suggested PF-07321332 could serve as an effective inhibitor with high affinity and shed light on the strategy of drug design and drug repositioning.
PMID:37074087 | DOI:10.1039/d2cp05911h
Knowledge Mapping of Drug Repositioning's Theme and Development
Drug Des Devel Ther. 2023 Apr 18;17:1157-1174. doi: 10.2147/DDDT.S405906. eCollection 2023.
ABSTRACT
BACKGROUND: In recent years, the emergence of new diseases and resistance to known diseases have led to increasing demand for new drugs. By means of bibliometric analysis, this paper studied the relevant articles on drug repositioning in recent years and analyzed the current research foci and trends.
METHODOLOGY: The Web of Science database was searched to collect all relevant literature on drug repositioning from 2001 to 2022. These data were imported into CiteSpace and bibliometric online analysis platforms for bibliometric analysis. The processed data and visualized images predict the development trends in the research field.
RESULTS: The quality and quantity of articles published after 2011 have improved significantly, with 45 of them cited more than 100 times. Articles posted by journals from different countries have high citation values. Authors from other institutions have also collaborated to analyze drug rediscovery. Keywords found in the literature include molecular docking (N=223), virtual screening (N=170), drug discovery (N=126), machine learning (N=125), and drug-target interaction (N=68); these words represent the core content of drug repositioning.
CONCLUSION: The key focus of drug research and development is related to the discovery of new indications for drugs. Researchers are starting to retarget drugs after analyzing online databases and clinical trials. More and more drugs are being targeted at other diseases to treat more patients, based on saving money and time. It is worth noting that researchers need more financial and technical support to complete drug development.
PMID:37096060 | PMC:PMC10122475 | DOI:10.2147/DDDT.S405906
Advances in Drug Discovery Based on Genomics, Proteomics and Bioinformatics in Malaria
Curr Top Med Chem. 2023 Apr 18. doi: 10.2174/1568026623666230418114455. Online ahead of print.
ABSTRACT
Malaria is one of the neglected infectious diseases, and drugs are the first line of action taken against the onset of malaria as therapeutics. The drugs can be of either natural or artificial origin. Drug development has multiple impediments grouped under three categories, a. drug discovery and screening, b. the drug's action on the host and the pathogen, and c. clinical trials. Drug development takes coon's age from discovery to the market after FDA approval. At the same time, targeted organisms develop drug resistance quicker than drug approval, raising the requirement for advancement in drug development. The approach to explore drug candidates using the classical methods from natural sources, computation-based docking, mathematical and machine learning-based high throughput in silico models or drug repurposing has been investigated and developed. Also, drug development with information about the interaction between Plasmodium species and its host, humans, may facilitate obtaining an efficient drug cohort for further drug discovery or repurposing expedition. However, drugs may have side effects on the host system. Hence, machine learning and systems-based approaches may provide a holistic view of genomic, proteomic, and transcriptomic data and their interaction with the selected drug candidates. This review comprehensively describes the drug discovery workflows using drug and target screening methodologies, followed by possible ways to check the binding affinity of the drug and targets using various docking software.
PMID:37073654 | DOI:10.2174/1568026623666230418114455
Restoration of aberrant gene expression of monocytes in systemic lupus erythematosus via a combined transcriptome-reversal and network-based drug repurposing strategy
BMC Genomics. 2023 Apr 18;24(1):207. doi: 10.1186/s12864-023-09275-8.
ABSTRACT
BACKGROUND: Monocytes -key regulators of the innate immune response- are actively involved in the pathogenesis of systemic lupus erythematosus (SLE). We sought to identify novel compounds that might serve as monocyte-directed targeted therapies in SLE.
RESULTS: We performed mRNA sequencing in monocytes from 15 patients with active SLE and 10 healthy individuals. Disease activity was assessed with the Systemic Lupus Erythematosus Disease Activity Index 2000 (SLEDAI-2 K). Leveraging the drug repurposing platforms iLINCS, CLUE and L1000CDS2, we identified perturbagens capable of reversing the SLE monocyte signature. We identified transcription factors and microRNAs (miRNAs) that regulate the transcriptome of SLE monocytes, using the TRRUST and miRWalk databases, respectively. A gene regulatory network, integrating implicated transcription factors and miRNAs was constructed, and drugs targeting central components of the network were retrieved from the DGIDb database. Inhibitors of the NF-κB pathway, compounds targeting the heat shock protein 90 (HSP90), as well as a small molecule disrupting the Pim-1/NFATc1/NLRP3 signaling axis were predicted to efficiently counteract the aberrant monocyte gene signature in SLE. An additional analysis was conducted, to enhance the specificity of our drug repurposing approach on monocytes, using the iLINCS, CLUE and L1000CDS2 platforms on publicly available datasets from circulating B-lymphocytes, CD4+ and CD8+ T-cells, derived from SLE patients. Through this approach we identified, small molecule compounds, that could potentially affect more selectively the transcriptome of SLE monocytes, such as, certain NF-κB pathway inhibitors, Pim-1 and SYK kinase inhibitors. Furthermore, according to our network-based drug repurposing approach, an IL-12/23 inhibitor and an EGFR inhibitor may represent potential drug candidates in SLE.
CONCLUSIONS: Application of two independent - a transcriptome-reversal and a network-based -drug repurposing strategies uncovered novel agents that might remedy transcriptional disturbances of monocytes in SLE.
PMID:37072752 | DOI:10.1186/s12864-023-09275-8
Emerging treatment approaches for COVID-19 infection: A Critical Review
Curr Mol Med. 2023 Apr 17. doi: 10.2174/1566524023666230417112543. Online ahead of print.
ABSTRACT
In the present scenario, the SARS-CoV-2 virus has imposed enormous damage on human survival and the global financial system. It has been estimated that around 111 million people all around the world have been infected, and about 2.47 million people died due to this pandemic. The major symptoms were sneezing, coughing, cold, difficulty breathing, pneumonia, and multi-organ failure associated 1with SARS-CoV-2. Currently, two key problems, namely insufficient attempts to develop drugs against SARSCoV-2 and the lack of any biological regulating process, are mostly responsible for the havoc caused by this virus. Henceforth, developing a few novel drugs is urgently required to cure this pandemic. It has been noticed that the pathogenesis of COVID-19 is caused by two main events: infection and immune deficiency, that occur during the pathological process. Antiviral medication can treat both the virus and the host cells. Therefore, in the present review, the major approaches for the treatment have been divided into "target virus" and "target host" groups. These two mechanisms primarily rely on drug repositioning, novel approaches, and possible targets. Initially, we discussed the traditional drugs per the physicians' recommendations. Moreover, such therapeutics have no potential to fight against COVID-19. After that, detailed investigation and analysis were conducted to find some novel vaccines and monoclonal antibodies and conduct a few clinical trials to check their effectiveness against SARSCoV-2 and mutant strains. Additionally, this study presents the most successful methods for its treatment, including combinatorial therapy. Nanotechnology was studied to build efficient nanocarriers to overcome the traditional constraints of antiviral and biological therapies.
PMID:37070448 | DOI:10.2174/1566524023666230417112543
Deciphering molecular mechanisms of SARS-CoV-2 pathogenesis and drug repurposing through GRN motifs: a comprehensive systems biology study
3 Biotech. 2023 Apr;13(4):117. doi: 10.1007/s13205-023-03518-x. Epub 2023 Mar 13.
ABSTRACT
The world has recently been plagued by a new coronavirus infection called SARS-CoV-2. This virus may lead to severe acute respiratory syndrome followed by multiple organ failure. SARS-CoV-2 has approximately 80-90% genetic similarity to SARS-CoV. Given the limited omics data available for host response to the viruses (more limited data for SARS-CoV-2), we attempted to unveil the crucial molecular mechanisms underlying the SARS-CoV-2 pathogenesis by comparing its regulatory network motifs with SARS-CoV. We also attempted to identify the non-shared crucial molecules and their functions to predict the specific mechanisms for each infection and the processes responsible for their different manifestations. Deciphering the crucial shared and non-shared mechanisms at the molecular level and signaling pathways underlying both diseases may help shed light on their pathogenesis and pave the way for other new drug repurposing against COVID-19. We constructed the GRNs for host response to SARS-CoV and SARS-CoV-2 pathogens (in vitro) and identified the significant 3-node regulatory motifs by analyzing them topologically and functionally. We attempted to identify the shared and non-shared regulatory elements and signaling pathways between their host responses. Interestingly, our findings indicated that NFKB1, JUN, STAT1, FOS, KLF4, and EGR1 were the critical shared TFs between motif-related subnetworks in both SARS and COVID-1, which are considered genes with specific functions in the immune response. Enrichment analysis revealed that the NOD-like receptor signaling, TNF signaling, and influenza A pathway were among the first significant pathways shared between SARS and COVID-19 up-regulated DEGs networks, and the term "metabolic pathways" (hsa01100) among the down-regulated DEGs networks. WEE1, PMAIP1, and TSC22D2 were identified as the top three hubs specific to SARS. However, MYPN, SPRY4, and APOL6 were the tops specific to COVID-19 in vitro. The term "Complement and coagulation cascades" pathway was identified as the first top non-shared pathway for COVID-19 and the MAPK signaling pathway for SARS. We used the identified crucial DEGs to construct a drug-gene interaction network to propose some drug candidates. Zinc chloride, Fostamatinib, Copper, Tirofiban, Tretinoin, and Levocarnitine were the six drugs with higher scores in our drug-gene network analysis.
SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-023-03518-x.
PMID:37070032 | PMC:PMC10090260 | DOI:10.1007/s13205-023-03518-x
Artemisinin derivatives induce oxidative stress leading to DNA damage and caspase-mediated apoptosis in Theileria annulata-transformed cells
Cell Commun Signal. 2023 Apr 17;21(1):78. doi: 10.1186/s12964-023-01067-7.
ABSTRACT
BACKGROUND: Bovine theileriosis caused by the eukaryotic parasite Theileria annulata is an economically important tick-borne disease. If it is not treated promptly, this lymphoproliferative disease has a significant fatality rate. Buparvaquone (BPQ) is the only chemotherapy-based treatment available right now. However, with the emergence of BPQ resistance on the rise and no backup therapy available, it is critical to identify imperative drugs and new targets against Theileria parasites.
METHODS: Artemisinin and its derivatives artesunate (ARS), artemether (ARM), or dihydroartemisinin (DHART) are the primary defence line against malaria parasites. This study has analysed artemisinin and its derivatives for their anti-Theilerial activity and mechanism of action.
RESULTS: ARS and DHART showed potent activity against the Theileria-infected cells. BPQ in combination with ARS or DHART showed a synergistic effect. The compounds act specifically on the parasitised cells and have minimal cytotoxicity against the uninfected host cells. Treatment with ARS or DHART induces ROS-mediated oxidative DNA damage leading to cell death. Further blocking intracellular ROS by its scavengers antagonised the anti-parasitic activity of the compounds. Increased ROS production induces oxidative stress and DNA damage causing p53 activation followed by caspase-dependent apoptosis in the Theileria-infected cells.
CONCLUSIONS: Our findings give unique insights into the previously unknown molecular pathways underpinning the anti-Theilerial action of artemisinin derivatives, which may aid in formulating new therapies against this deadly parasite. Video abstract.
PMID:37069625 | DOI:10.1186/s12964-023-01067-7
Repurposing mucosal delivery devices for live attenuated tuberculosis vaccines
Front Immunol. 2023 Mar 30;14:1159084. doi: 10.3389/fimmu.2023.1159084. eCollection 2023.
ABSTRACT
Tuberculosis (TB) remains one of the most lethal infectious diseases globally. The only TB vaccine approved by the World Health Organization, Bacille Calmette-Guérin (BCG), protects children against severe and disseminated TB but provides limited protection against pulmonary TB in adults. Although several vaccine candidates have been developed to prevent TB and are undergoing preclinical and clinical testing, BCG remains the gold standard. Currently, BCG is administered as an intradermal injection, particularly in TB endemic countries. However, mounting evidence from experimental animal and human studies indicates that delivering BCG directly into the lungs provides enhanced immune responses and greater protection against TB. Inhalation therapy using handheld delivery devices is used for some diseases and allows the delivery of drugs or vaccines directly into the human respiratory tract. Whether this mode of delivery could also be applicable for live attenuated bacterial vaccines such as BCG or other TB vaccine candidates remains unknown. Here we discuss how two existing inhalation devices, the mucosal atomization device (MAD) syringe, used for influenza vaccines, and the Respimat® Soft Mist™ inhaler, used for chronic obstructive pulmonary disease (COPD) therapy, could be repurposed for mucosal delivery of live attenuated TB vaccines. We also outline the challenges and outstanding research questions that will require further investigations to ensure usefulness of respiratory delivery devices that are cost-effective and accessible to lower- and middle-income TB endemic countries.
PMID:37063870 | PMC:PMC10098179 | DOI:10.3389/fimmu.2023.1159084
FDA approved drugs with antiviral activity against SARS-CoV-2: From structure-based repurposing to host-specific mechanisms
Biomed Pharmacother. 2023 Mar 28;162:114614. doi: 10.1016/j.biopha.2023.114614. Online ahead of print.
ABSTRACT
The continuing heavy toll of the COVID-19 pandemic necessitates development of therapeutic options. We adopted structure-based drug repurposing to screen FDA-approved drugs for inhibitory effects against main protease enzyme (Mpro) substrate-binding pocket of SARS-CoV-2 for non-covalent and covalent binding. Top candidates were screened against infectious SARS-CoV-2 in a cell-based viral replication assay. Promising candidates included atovaquone, mebendazole, ouabain, dronedarone, and entacapone, although atovaquone and mebendazole were the only two candidates with IC50s that fall within their therapeutic plasma concentration. Additionally, we performed Mpro assays on the top hits, which demonstrated inhibition of Mpro by dronedarone (IC50 18 µM), mebendazole (IC50 19 µM) and entacapone (IC50 9 µM). Atovaquone showed only modest Mpro inhibition, and thus we explored other potential mechanisms. Although atovaquone is Dihydroorotate dehydrogenase (DHODH) inhibitor, we did not observe inhibition of DHODH at the respective SARS-CoV-2 IC50. Metabolomic profiling of atovaquone treated cells showed dysregulation of purine metabolism pathway metabolite, where ecto-5'-nucleotidase (NT5E) was downregulated by atovaquone at concentrations equivalent to its antiviral IC50. Atovaquone and mebendazole are promising candidates with SARS-CoV-2 antiviral activity. While mebendazole does appear to target Mpro, atovaquone may inhibit SARS-CoV-2 viral replication by targeting host purine metabolism.
PMID:37068330 | DOI:10.1016/j.biopha.2023.114614
Decoding Connectivity Map-based drug repurposing for oncotherapy
Brief Bioinform. 2023 Apr 17:bbad142. doi: 10.1093/bib/bbad142. Online ahead of print.
ABSTRACT
The rising global burden of cancer has driven considerable efforts into the research and development of effective anti-cancer agents. Fortunately, with impressive advances in transcriptome profiling technology, the Connectivity Map (CMap) database has emerged as a promising and powerful drug repurposing approach. It provides an important platform for systematically discovering of the associations among genes, small-molecule compounds and diseases, and elucidating the mechanism of action of drug, contributing toward efficient anti-cancer pharmacotherapy. Moreover, CMap-based computational drug repurposing is gaining attention because of its potential to overcome the bottleneck constraints faced by traditional drug discovery in terms of cost, time and risk. Herein, we provide a comprehensive review of the applications of drug repurposing for anti-cancer drug discovery and summarize approaches for computational drug repurposing. We focus on the principle of the CMap database and novel CMap-based software/algorithms as well as their progress achieved for drug repurposing in the field of oncotherapy. This article is expected to illuminate the emerging potential of CMap in discovering effective anti-cancer drugs, thereby promoting efficient healthcare for cancer patients.
PMID:37068308 | DOI:10.1093/bib/bbad142
Screening of Inhibitors Against Idiopathic Pulmonary Fibrosis: Few-Shot Machine Learning and Molecule Docking Based Drug Repurposing
Curr Comput Aided Drug Des. 2023 Apr 17. doi: 10.2174/1573409919666230417080832. Online ahead of print.
ABSTRACT
AIM: Idiopathic pulmonary fibrosis is a chronic progressive disorder and is diagnosed as post-COVID fibrosis. Idiopathic pulmonary fibrosis has no effective treatment because of the low therapeutic effects and side effects of currently available drugs.
INTRODUCTION: The aim is to screen new inhibitors against idiopathic pulmonary fibrosis from traditional Chinese medicines.
METHODS: Few-shot-based machine learning and molecule docking were used to predict the potential activities of candidates and calculate the ligand-receptor interactions. In vitro A549 cell model was taken to verify the effects of the selected leads on idiopathic pulmonary fibrosis.
RESULTS AND DISCUSSION: A logistic regression classifier model with an accuracy of 0.82 was built and, combined with molecule docking, used to predict the activities of candidates. 6 leads were finally screened out and 5 of them were in vitro experimentally verified as effective inhibitors against idiopathic pulmonary fibrosis.
CONCLUSION: Herbacetin, morusin, swertiamarin, vicenin-2, and vitexin were active inhibitors against idiopathic pulmonary fibrosis. Swertiamarin exhibited the highest anti-idiopathic pulmonary fibrosis effect and should be further in vivo investigated for its activity.
PMID:37066777 | DOI:10.2174/1573409919666230417080832
Repurposing the mucolytic agent ambroxol for treatment of sub-acute and chronic ischaemic stroke
Brain Commun. 2023 Mar 29;5(2):fcad099. doi: 10.1093/braincomms/fcad099. eCollection 2023.
ABSTRACT
Ambroxol is a well-known mucolytic expectorant, which has gained much attention in amyotrophic lateral sclerosis, Parkinson's and Gaucher's disease. A specific focus has been placed on ambroxol's glucocerebrosidase-stimulating activity, on grounds that the point mutation of the gba1 gene, which codes for this enzyme, is a risk factor for developing Parkinson's disease. However, ambroxol has been attributed other characteristics, such as the potent inhibition of sodium channels, modification of calcium homeostasis, anti-inflammatory effects and modifications of oxygen radical scavengers. We hypothesized that ambroxol could have a direct impact on neuronal rescue if administered directly after ischaemic stroke induction. We longitudinally evaluated 53 rats using magnetic resonance imaging to examine stroke volume, oedema, white matter integrity, resting state functional MRI and behaviour for 1 month after ischemic stroke onset. For closer mechanistic insights, we evaluated tissue metabolomics of different brain regions in a subgroup of animals using ex vivo nuclear magnetic resonance spectroscopy. Ambroxol-treated animals presented reduced stroke volumes, reduced cytotoxic oedema, reduced white matter degeneration, reduced necrosis, improved behavioural outcomes and complex changes in functional brain connectivity. Nuclear magnetic resonance spectroscopy tissue metabolomic data at 24 h post-stroke proposes several metabolites that are capable of minimizing post-ischaemic damage and that presented prominent shifts during ambroxol treatment in comparison to controls. Taking everything together, we propose that ambroxol catalyzes recovery in energy metabolism, cellular homeostasis, membrane repair mechanisms and redox balance. One week of ambroxol administration following stroke onset reduced ischaemic stroke severity and improved functional outcome in the subacute phase followed by reduced necrosis in the chronic stroke phase.
PMID:37065090 | PMC:PMC10090797 | DOI:10.1093/braincomms/fcad099