Drug Repositioning
Exploring the repurposing potential of telmisartan drug in breast cancer: an in-silico and in-vitro approach
Anticancer Drugs. 2023 Feb 24:e001509. doi: 10.1097/CAD.0000000000001509. Online ahead of print.
ABSTRACT
Anticancer drug resistance is one of the biggest hurdles in the treatment of breast cancer. Drug repurposing is a viable option fordeveloping novel medical treatment strategies since this method is more cost-efficient and rapid. Antihypertensive medicines have recently been found to have pharmacological features that could be used to treat cancer, making them effective candidates for therapeutic repurposing. The goal of our research is to find a potent antihypertensive drug that can be repurposed as adjuvant therapy for breast cancer. In this study, virtual screening was performed using a set of Food and Drug Administration (FDA)-approved antihypertensive drugs as ligands with selected receptor proteins (EGFR, KRAS, P53, AGTR1, AGTR2, and ACE) assuming these proteins are regarded to have a significant role in hypertension as well as breast cancer. Further, our in-silico results were further confirmed by an in-vitro experiment (cytotoxicity assay). All the compounds (enalapril, atenolol, acebutolol, propranolol, amlodipine, verapamil, doxazosin, prazosin, hydralazine, irbesartan, telmisartan, candesartan, and aliskiren) showed remarkable affinity towards the target receptor proteins. However, maximum affinity was displayed by telmisartan. Cell-based cytotoxicity study of telmisartan in MCF7 (breast cancer cell line) confirmed the anticancer effect of telmisartan. IC50 of the drug was calculated to be 7.75 µM and at this concentration, remarkable morphological alterations were observed in the MCF7 cells confirming its cytotoxicity in breast cancer cells. Based on both in-silico and in-vitro studies, we can conclude that telmisartan appears to be a promising drug repurposing candidate for the therapeutic treatment of breast cancer.
PMID:36847075 | DOI:10.1097/CAD.0000000000001509
Linagliptin and Empagliflozin Inhibit Microtubule Affinity Regulatory Kinase 4: Repurposing Anti-Diabetic Drugs in Neurodegenerative Disorders Using In Silico and In Vitro Approaches
ACS Omega. 2023 Feb 7;8(7):6423-6430. doi: 10.1021/acsomega.2c06634. eCollection 2023 Feb 21.
ABSTRACT
Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) are significant public health burdens. Many studies have revealed the possibility of common pathophysiology between T2DM and AD. Thus, in recent years, studies deciphering the action mechanism of anti-diabetic drugs with their future use in AD and related pathologies are on high demand. Drug repurposing is a safe and effective approach owing to its low cost and time-saving attributes. Microtubule affinity regulating kinase 4 (MARK4) is a druggable target for various diseases and is found to be linked with AD and diabetes mellitus. MARK4 plays a vital role in energy metabolism and regulation and thus serves as an irrefutable target to treat T2DM. The present study was intended to identify the potent MARK4 inhibitors among FDA-approved anti-diabetic drugs. We performed structure-based virtual screening of FDA-approved drugs to identify the top hits against MARK4. We identified five FDA-approved drugs having an appreciable affinity and specificity toward the binding pocket of MARK4. Among these identified hits, two drugs, linagliptin, and empagliflozin, favorably bind to the MARK4 binding pocket, interacting with its critical residues and thus subjected to detailed analysis. All-atom detailed molecular dynamics (MD) simulations revealed the dynamics of binding of linagliptin and empagliflozin with MARK4. Kinase assay showed significant inhibition of MARK4 kinase activity in the presence of these drugs, implying them as potent MARK4 inhibitors. In conclusion, linagliptin and empagliflozin may be promising MARK4 inhibitors, which can further be exploited as potential lead molecules against MARK4-directed neurodegenerative diseases.
PMID:36844587 | PMC:PMC9948186 | DOI:10.1021/acsomega.2c06634
Doxycycline inhibits dopaminergic neurodegeneration through upregulation of axonal and synaptic proteins
Naunyn Schmiedebergs Arch Pharmacol. 2023 Feb 27. doi: 10.1007/s00210-023-02435-3. Online ahead of print.
ABSTRACT
Doxycycline (DOX) is a widely used antibiotic that is able to cross the blood-brain barrier. Several studies have shown its neuroprotective effect against neurodegeneration and have associated it with antioxidant, anti-apoptotic, and anti-inflammatory mechanisms. We have recently demonstrated that DOX mimics nerve growth factor (NGF) signaling in PC12 cells. However, the involvement of this mechanism in the neuroprotective effect of DOX is unknown. Axonal degeneration and synaptic loss are key events at the early stages of neurodegeneration, and precede the neuronal death in neurodegenerative diseases, including Parkinson's disease (PD). Therefore, the regeneration of the axonal and synaptic network might be beneficial in PD. The effect of DOX in PC12 cells treated with the Parkinsonian neurotoxin 1-methyl-4-phenylpyridinium (MPP+) was addressed. Doxycycline reduced the inhibition of neuritogenesis induced by MPP+, even in cells deprived of NGF. The mechanism involved the upregulation of GAP-43, synapsin I, β-III-tubulin, F-actin, and neurofilament-200, proteins that are associated with axonal and synaptic plasticity. Considering the role of axonal degeneration and synaptic loss at the initial stages of PD, the recent advances in early diagnosis of neurodegeneration, and the advantages of drug repurposing, doxycycline is a promising candidate to treat PD.
PMID:36843128 | DOI:10.1007/s00210-023-02435-3
Drug repurposing and molecular mechanisms of the antihypertensive drug candesartan as a TMEM16A channel inhibitor
Int J Biol Macromol. 2023 Feb 24:123839. doi: 10.1016/j.ijbiomac.2023.123839. Online ahead of print.
ABSTRACT
TMEM16A, a Ca2+-activated chloride channel (CaCC), and its pharmacological inhibitors can inhibit the growth of lung adenocarcinoma cells. However,the poor efficacy, safety, and stability of TMEM16A inhibitors limit the development of these agents. Therefore, finding new therapeutic directions from already marketed drugs is a feasible strategy to obtain safe and effective therapeutic drugs. Here, we screened a library contain more than 2400 FDA, EMA, and NMPA-approved drugs through virtual screening. We identified a drug candidate, candesartan (CDST), which showed strong inhibitory effect on the TMEM16A in a concentration-dependent manner with an IC50 of 24.40 ± 3.21 μM. In addition, CDST inhibited proliferation, migration and induced apoptosis of LA795 cells targeting TMEM16A, and significantly inhibited lung adenocarcinoma tumor growth in vivo. The molecular mechanism of CDST inhibiting TMEM16A channel indicated it bound to R515/R535/E623/E624 in the drug pocket, thereby blocked the pore. In conclusion, we identified a novel TMEM16A channel inhibitor, CDST, which exhibited excellent inhibitory activity against lung adenocarcinoma. Considering that CDST has been used in clinical treatment of hypertension, it may play an important role in the combined treatment of hypertension and lung adenocarcinoma as a multi-target drug in the future.
PMID:36842737 | DOI:10.1016/j.ijbiomac.2023.123839
In silico-chemogenomic repurposing of new chemical scaffolds for histoplasmosis treatment
J Mycol Med. 2023 Feb 11;33(2):101363. doi: 10.1016/j.mycmed.2023.101363. Online ahead of print.
ABSTRACT
BACKGROUND: Histoplasmosis is a systemic form of endemic mycosis to the American continent and may be lethal to people living with HIV/AIDS. The drugs available for treating histoplasmosis are limited, costly, and highly toxic. New drug development is time-consuming and costly; hence, drug repositioning is an advantageous strategy for discovering new therapeutic options.
OBJECTIVE: This study was conducted to identify drugs that can be repositioned for treating histoplasmosis in immunocompromised patients.
METHODS: Homologous proteins among Histoplasma capsulatum strains were selected and used to search for homologous targets in the DrugBank and Therapeutic Target Database. Essential genes were selected using Saccharomyces cerevisiae as a model, and functional regions of the therapeutic targets were analyzed. The antifungal activity of the selected drugs was verified, and homology modeling and molecular docking were performed to verify the interactions between the drugs with low inhibitory concentration values and their corresponding targets.
RESULTS: We selected 149 approved drugs with potential activity against histoplasmosis, among which eight were selected for evaluating their in vitro activity. For drugs with low minimum inhibitory concentration values, such as mebendazole, everolimus, butenafine, and bifonazole, molecular docking studies were performed. A chemogenomic framework revealed lanosterol 14-α-demethylase, squalene monooxygenase, serine/threonine-protein kinase mTOR, and the β-4B tubulin chain of H. capsulatum, respectively, as the protein targets of the drugs.
CONCLUSIONS: Our strategy can be used to identify promising antifungal targets, and drugs with repositioning potential for treating H. capsulatum.
PMID:36842411 | DOI:10.1016/j.mycmed.2023.101363
Epilepsy and brain tumors: Two sides of the same coin
J Neurol Sci. 2023 Feb 13;446:120584. doi: 10.1016/j.jns.2023.120584. Online ahead of print.
ABSTRACT
Epilepsy is the most common symptom in patients with brain tumors. The shared genetic, molecular, and cellular mechanisms between tumorigenesis and epileptogenesis represent 'two sides of the same coin'. These include augmented neuronal excitatory transmission, impaired inhibitory transmission, genetic mutations in the BRAF, IDH, and PIK3CA genes, inflammation, hemodynamic impairments, and astrocyte dysfunction, which are still largely unknown. Low-grade developmental brain tumors are those most commonly associated with epilepsy. Given this strict relationship, drugs able to target both seizures and tumors would be of extreme clinical usefulness. In this regard, anti-seizure medications (ASMs) are optimal candidates as they have well-characterized effects and safety profiles, do not increase the risk of developing cancer, and already offer well-defined seizure control. The most important ASMs showing preclinical and clinical efficacy are brivaracetam, lacosamide, perampanel, and especially valproic acid and levetiracetam. However, the data quality is low or limited to preclinical studies, and results are sometimes conflicting. Future trials with a prospective, randomized, and controlled design accounting for different prognostic factors will help clarify the role of these ASMs and the clinical setting in which they might be used. In conclusion, brain tumor-related epilepsies are clear examples of how close, multidisciplinary collaborations among investigators with different expertise are warranted for pursuing scientific knowledge and, more importantly, for the well-being of patients needing targeted and effective therapies.
PMID:36842341 | DOI:10.1016/j.jns.2023.120584
Neuroprotective effects of bornyl acetate on experimental autoimmune encephalomyelitis via anti-inflammatory effects and maintaining blood-brain-barrier integrity
Phytomedicine. 2022 Nov 28;112:154569. doi: 10.1016/j.phymed.2022.154569. Online ahead of print.
ABSTRACT
BACKGROUND: Bornyl acetate (BA), a chemical component of essential oil in the Pinus family, has yet to be actively studies in terms of its therapeutic effect on numerous diseases, including autoimmune diseases.
PURPOSE: This study aimed to investigate the pharmacological effects and molecular mechanisms of BA on myelin oligodendrocyte glycoprotein (MOG35-55)-induced experimental autoimmune encephalomyelitis (EAE) mice in an animal model of multiple sclerosis (MS), a representative autoimmune disease in central nervous system.
METHODS: BA (100, 200, or 400 mg/kg) was orally treated to EAE mice once daily for 30 days after immunization for the behavioral test and for the 16th-18th days for the histopathological and molecular analyses, from the onset stage (8th day) of EAE symptoms.
RESULTS: BA mitigated behavioral dysfunction (motor disability) and demyelination in the spinal cord that were associated with the down-regulation of representative pro-inflammatory cytokines (interleukin (IL)-1 beta, IL-6, and tumor necrosis factor-alpha), enzymes (cyclooxygenase-2 and inducible nitric oxide synthase), and chemokines (monocyte chemotactic protein-1, macrophage inflammatory protein-1 alpha, and regulated on activation), and decreased infiltration of microglia (CD11b+/CD45+(low)) and macrophages (CD11b+/CD45+(high)). The anti-inflammatory effect of BA was related to the inhibition of mitogen-activated protein kinases and nuclear factor-kappa B pathways. BA also reduced the recruitment/infiltration rates of CD4+ T, Th1, and Th17 cells into the spinal cords of EAE mice, which was related to reduced blood-spinal cord barrier (BSCB) disruption.
CONCLUSION: These findings strongly suggest that BA may alleviate EAE due to its anti-inflammatory and BSCB protective activities. This indicates that BA is a potential therapeutic agent for treating autoimmune demyelinating diseases including MS.
PMID:36842217 | DOI:10.1016/j.phymed.2022.154569
<em>In silico</em> discovery of potent inhibitors against monkeypox's major structural proteins
J Biomol Struct Dyn. 2023 Feb 25:1-16. doi: 10.1080/07391102.2023.2183342. Online ahead of print.
ABSTRACT
Monkeypox virus (MPXV) outbreak in non-endemic countries is a worldwide public health emergency. An enveloped double-stranded DNA virus belongs to the genus Orth poxvirus. A viral zoonotic infection known as monkeypox has been a serious risk to public health, especially in Africa. However, it has recently spread to other continents, so it might soon become a worldwide problem. There is an increased risk of transmission of the virus because there is a lack of effective treatment that cures the disease. To stop the multi-country outbreak from spreading, it is important to discover effective medications urgently. The objective of the current study is to swiftly find new treatments for the monkeypox virus using advanced computational approaches. By investigating five potential MPXV targets (DNA ligase, Palmytilated Extracellular Enveloped Virus (EEV) membrane protein, Scaffold protein D13, Thymidylate Kinase, and Viral core cysteine proteinase), this research was carried out using cutting-edge computational techniques against human monkeypox virus infection. Here we present the accurate 3D structures and their binding cavities of the selected targets with higher confidence using AlphaFold 2 and SiteMap analysis. Molecular docking and MD simulation analysis revealed the top five potential lead compounds with higher binding affinity and stability toward selected targets. Binding free energy calculations and other essential dynamics analysis supports the finding. The selected lead compounds utilizing virtual screening and drug repurposing approach reported in this study are beneficial for medical scientists and experimental biologists in drug development for the treatment of human MPXV.Communicated by Ramaswamy H. Sarma.
PMID:36841550 | DOI:10.1080/07391102.2023.2183342
PLGA Particles in Immunotherapy
Pharmaceutics. 2023 Feb 11;15(2):615. doi: 10.3390/pharmaceutics15020615.
ABSTRACT
Poly(lactic-co-glycolic acid) (PLGA) particles are a widely used and extensively studied drug delivery system. The favorable properties of PLGA such as good bioavailability, controlled release, and an excellent safety profile due to the biodegradable polymer backbone qualified PLGA particles for approval by the authorities for the application as a drug delivery platform in humas. In recent years, immunotherapy has been established as a potent treatment option for a variety of diseases. However, immunomodulating drugs rely on targeted delivery to specific immune cell subsets and are often rapidly eliminated from the system. Loading of PLGA particles with drugs for immunotherapy can protect the therapeutic compounds from premature degradation, direct the drug delivery to specific tissues or cells, and ensure sustained and controlled drug release. These properties present PLGA particles as an ideal platform for immunotherapy. Here, we review recent advances of particulate PLGA delivery systems in the application for immunotherapy in the fields of allergy, autoimmunity, infectious diseases, and cancer.
PMID:36839937 | DOI:10.3390/pharmaceutics15020615
The Antidepressant Sertraline Affects Cell Signaling and Metabolism in <em>Trichophyton rubrum</em>
J Fungi (Basel). 2023 Feb 20;9(2):275. doi: 10.3390/jof9020275.
ABSTRACT
The dermatophyte Trichophyton rubrum is responsible for most human cutaneous infections. Its treatment is complex, mainly because there are only a few structural classes of fungal inhibitors. Therefore, new strategies addressing these problems are essential. The development of new drugs is time-consuming and expensive. The repositioning of drugs already used in medical practice has emerged as an alternative to discovering new drugs. The antidepressant sertraline (SRT) kills several important fungal pathogens. Accordingly, we investigated the inhibitory mechanism of SRT in T. rubrum to broaden the knowledge of its impact on eukaryotic microorganisms and to assess its potential for future use in dermatophytosis treatments. We performed next-generation sequencing (RNA-seq) to identify the genes responding to SRT at the transcript level. We identified that a major effect of SRT was to alter expression for genes involved in maintaining fungal cell wall and plasma membrane stability, including ergosterol biosynthetic genes. SRT also altered the expression of genes encoding enzymes related to fungal energy metabolism, cellular detoxification, and defense against oxidative stress. Our findings provide insights into a specific molecular network interaction that maintains metabolic stability and is perturbed by SRT, showing potential targets for its strategic use in dermatophytosis.
PMID:36836389 | DOI:10.3390/jof9020275
Identifying SARS-CoV-2 Drugs Binding to the Spike Fatty Acid Binding Pocket Using In Silico Docking and Molecular Dynamics
Int J Mol Sci. 2023 Feb 20;24(4):4192. doi: 10.3390/ijms24044192.
ABSTRACT
Drugs against novel targets are needed to treat COVID-19 patients, especially as SARS-CoV-2 is capable of rapid mutation. Structure-based de novo drug design and repurposing of drugs and natural products is a rational approach to discovering potentially effective therapies. These in silico simulations can quickly identify existing drugs with known safety profiles that can be repurposed for COVID-19 treatment. Here, we employ the newly identified spike protein free fatty acid binding pocket structure to identify repurposing candidates as potential SARS-CoV-2 therapies. Using a validated docking and molecular dynamics protocol effective at identifying repurposing candidates inhibiting other SARS-CoV-2 molecular targets, this study provides novel insights into the SARS-CoV-2 spike protein and its potential regulation by endogenous hormones and drugs. Some of the predicted repurposing candidates have already been demonstrated experimentally to inhibit SARS-CoV-2 activity, but most of the candidate drugs have yet to be tested for activity against the virus. We also elucidated a rationale for the effects of steroid and sex hormones and some vitamins on SARS-CoV-2 infection and COVID-19 recovery.
PMID:36835602 | DOI:10.3390/ijms24044192
Pharmacological Efficacy of Repurposing Drugs in the Treatment of Prostate Cancer
Int J Mol Sci. 2023 Feb 19;24(4):4154. doi: 10.3390/ijms24044154.
ABSTRACT
Worldwide, prostate cancer (PC) is the second most frequent cancer among men and the fifth leading cause of death; moreover, standard treatments for PC have several issues, such as side effects and mechanisms of resistance. Thus, it is urgent to find drugs that can fill these gaps, and instead of developing new molecules requiring high financial and time investments, it would be useful to select non-cancer approved drugs that have mechanisms of action that could help in PC treatment, a process known as repurposing drugs. In this review article, drugs that have potential pharmacological efficacy are compiled to be repurposed for PC treatment. Thus, these drugs will be presented in the form of pharmacotherapeutic groups, such as antidyslipidemic drugs, antidiabetic drugs, antiparasitic drugs, antiarrhythmic drugs, anti-inflammatory drugs, antibacterial drugs, antiviral drugs, antidepressant drugs, antihypertensive drugs, antifungal drugs, immunosuppressant drugs, antipsychotic drugs, antiepileptic and anticonvulsant drugs, bisphosphonates and drugs for alcoholism, among others, and we will discuss their mechanisms of action in PC treatment.
PMID:36835564 | DOI:10.3390/ijms24044154
Identification of Promising Drug Candidates against Prostate Cancer through Computationally-Driven Drug Repurposing
Int J Mol Sci. 2023 Feb 5;24(4):3135. doi: 10.3390/ijms24043135.
ABSTRACT
Prostate cancer (PC) is one of the most common types of cancer in males. Although early stages of PC are generally associated with favorable outcomes, advanced phases of the disease present a significantly poorer prognosis. Moreover, currently available therapeutic options for the treatment of PC are still limited, being mainly focused on androgen deprivation therapies and being characterized by low efficacy in patients. As a consequence, there is a pressing need to identify alternative and more effective therapeutics. In this study, we performed large-scale 2D and 3D similarity analyses between compounds reported in the DrugBank database and ChEMBL molecules with reported anti-proliferative activity on various PC cell lines. The analyses included also the identification of biological targets of ligands with potent activity on PC cells, as well as investigations on the activity annotations and clinical data associated with the more relevant compounds emerging from the ligand-based similarity results. The results led to the prioritization of a set of drugs and/or clinically tested candidates potentially useful in drug repurposing against PC.
PMID:36834548 | DOI:10.3390/ijms24043135
Anti-Leukaemic Activity of Rilpivirine Is Mediated by Aurora A Kinase Inhibition
Cancers (Basel). 2023 Feb 7;15(4):1044. doi: 10.3390/cancers15041044.
ABSTRACT
Acute myeloid leukaemia (AML) affects predominantly elderly people and has an incidence of 1% of all cancers and 2% of all cancer deaths. Despite using intensive chemotherapy and allogeneic stem cell transplantation, the treatment options for AML remain open for innovation. Thus, there is a need to explore alternative therapies such as less toxic targeted therapies in AML. Aurora A kinase is a well-established target for the treatment of various cancers, including AML. This kinase plays a pivotal role in the cell-division cycle, particularly in different stages of mitosis, and is also involved in many other cellular regulatory processes. In a previous study, we demonstrated that the anti-viral drug rilpivirine is an Aurora A kinase inhibitor. In the current study, we have further explored the selectivity of rilpivirine for Aurora A kinase inhibition by testing this drug against a panel of 429 kinases. Concurrently, we demonstrated that rilpivirine significantly inhibited the proliferation of AML cells in a time- and concentration-dependent manner that was preceded by G2/M cell-cycle arrest leading to the induction of apoptosis. Consistent with its kinase inhibitory role, rilpivirine modulated the expression of critical proteins in the Aurora A kinase-signalling pathway. Importantly, orally administered rilpivirine significantly inhibited tumour growth in an HL-60 xenograft model without showing body weight changes or other clinical signs of toxicity. Furthermore, rilpivirine enhanced the anti-proliferative efficacy of the conventional anti-leukaemic chemotherapeutic agent cytarabine. Collectively, these findings provide the stimulus to explore further the anti-leukaemic activity of the anti-viral drug rilpivirine.
PMID:36831387 | DOI:10.3390/cancers15041044
In Vitro Drug Repurposing: Focus on Vasodilators
Cells. 2023 Feb 20;12(4):671. doi: 10.3390/cells12040671.
ABSTRACT
Drug repurposing aims to identify new therapeutic uses for drugs that have already been approved for other conditions. This approach can save time and resources compared to traditional drug development, as the safety and efficacy of the repurposed drug have already been established. In the context of cancer, drug repurposing can lead to the discovery of new treatments that can target specific cancer cell lines and improve patient outcomes. Vasodilators are a class of drugs that have been shown to have the potential to influence various types of cancer. These medications work by relaxing the smooth muscle of blood vessels, increasing blood flow to tumors, and improving the delivery of chemotherapy drugs. Additionally, vasodilators have been found to have antiproliferative and proapoptotic effects on cancer cells, making them a promising target for drug repurposing. Research on vasodilators for cancer treatment has already shown promising results in preclinical and clinical studies. However, additionally research is needed to fully understand the mechanisms of action of vasodilators in cancer and determine the optimal dosing and combination therapy for patients. In this review, we aim to explore the molecular mechanisms of action of vasodilators in cancer cell lines and the current state of research on their repurposing as a treatment option. With the goal of minimizing the effort and resources required for traditional drug development, we hope to shed light on the potential of vasodilators as a viable therapeutic strategy for cancer patients.
PMID:36831338 | DOI:10.3390/cells12040671
Small Molecule GSK-3 Inhibitors Safely Promote the Proliferation and Viability of Human Dental Pulp Stem Cells-In Vitro
Biomedicines. 2023 Feb 13;11(2):542. doi: 10.3390/biomedicines11020542.
ABSTRACT
Small molecules have demonstrated promising results as successful alternatives to growth factors. In this study, focus was drawn to CHIR99021 and tideglusib as GSK-3 inhibitors known for their anti-inflammatory and regenerative potential. The effect of both tideglusib and CHIR99021 on the proliferation, viability, and stemness of human dental pulp stem cells (hDPSCs) was investigated to assess their possible role in regenerative dentistry. Briefly, hDPSCs were isolated from sound premolars extracted for orthodontic purposes. Cytotoxicity and proliferation assessment were performed via cell counting kit-8 followed by flow cytometric analysis of apoptotic marker ANNEXIN V. The effect of both small molecules on the stemness of hDPSCs was analyzed by qRT-PCR. Both tideglusib and CHIR99021 were proven to be safe on hDPSCs. The tideglusib concentration that resulted in higher viable cells was 100 nM, while the concentration for CHIR99021 was 5 nM. Both small molecules successfully induced cellular proliferation and demonstrated minimal expression of ANNEXIN V, indicative of the absence of cellular apoptosis and further confirming their positive effect on proliferation. Finally, both small molecules enhanced stemness markers expression as evidenced by qRT-PCR, which, again, highlighted the positive effect of both tideglusib and CHIR99021 on safely promoting the proliferation of hDPSCs while maintaining their stemness.
PMID:36831078 | DOI:10.3390/biomedicines11020542
Red Ginger Extract Prevents the Development of Oxaliplatin-Induced Neuropathic Pain by Inhibiting the Spinal Noradrenergic System in Mice
Biomedicines. 2023 Feb 2;11(2):432. doi: 10.3390/biomedicines11020432.
ABSTRACT
Oxaliplatin is a well-known chemotherapeutic drug that is widely used to treat colorectal cancer. However, it can induce acute side effects in up to 90% of patients. Serotonin and norepinephrine reuptake inhibitors (SNRIs) are used as first-choice drugs; however, even SNRIs are known to be effective only in treatment and not for prevention. Therefore, finding a drug that can prevent the development of cold and mechanical forms of allodynia induced by oxaliplatin is needed. This study demonstrated that multiple oral administrations of 100 mg/kg and 300 mg/kg of red ginger extract could significantly prevent pain development in mice. The role of the noradrenergic system was investigated as an underlying mechanism of action. Both the spinal α1- and α2-adrenergic receptors were significantly downregulated after treatment. Furthermore, the noradrenaline levels in the serum and spinal cord were upregulated and downregulated after treatment with paclitaxel and red ginger, respectively. As the active sub-component of red ginger, ginsenoside Rg3 (Rg3) was identified and quantified using HPLC. Moreover, multiple intraperitoneal injections of Rg3 prevented the development of pain in paclitaxel-treated mice, suggesting that RG3 may induce the effect of red ginger extract.
PMID:36830967 | DOI:10.3390/biomedicines11020432
Oral Brincidofovir Therapy for Monkeypox Outbreak: A Focused Review on the Therapeutic Potential, Clinical Studies, Patent Literature, and Prospects
Biomedicines. 2023 Jan 19;11(2):278. doi: 10.3390/biomedicines11020278.
ABSTRACT
The monkeypox disease (MPX) outbreak of 2022 has been reported in more than one hundred countries and is becoming a global concern. Unfortunately, only a few treatments, such as tecovirimat (TCV), are available against MPX. Brincidofovir (BCV) is a United States Food and Drug Administration (USFDA)-approved antiviral against smallpox. This article reviews the potential of BCV for treating MPX and other Orthopoxvirus (OPXVs) diseases. The literature for this review was collected from PubMed, authentic websites (USFDA, Chimerix), and freely available patent databases (USPTO, Espacenet, and Patentscope). BCV (a lipophilic derivative of cidofovir) has been discovered and developed by Chimerix Incorporation, USA. Besides smallpox, BCV has also been tested clinically for various viral infections (adenovirus, cytomegalovirus, ebola virus, herpes simplex virus, and double-stranded DNA virus). Many health agencies and reports have recommended using BCV for MPX. However, no health agency has yet approved BCV for MPX. Accordingly, the off-label use of BCV is anticipated for MPX and various viral diseases. The patent literature revealed some important antiviral compositions of BCV. The authors believe there is a huge opportunity to create novel, inventive, and patentable BCV-based antiviral therapies (new combinations with existing antivirals) for OPXVs illnesses (MPX, smallpox, cowpox, camelpox, and vaccinia). It is also advised to conduct drug interaction (food, drug, and disease interaction) and drug resistance investigations on BCV while developing its combinations with other medications. The BCV-based drug repurposing options are also open for further exploration. BCV offers a promising opportunity for biosecurity against OPXV-based bioterrorism attacks and to control the MPX outbreak of 2022.
PMID:36830816 | DOI:10.3390/biomedicines11020278
Ligand-based virtual screening, molecular dynamics, and biological evaluation of repurposed drugs as inhibitors of <em>Trypanosoma cruzi</em> proteasome
J Biomol Struct Dyn. 2023 Feb 24:1-13. doi: 10.1080/07391102.2023.2182129. Online ahead of print.
ABSTRACT
Chagas disease is a well-known Neglected Tropical Disease, mostly endemic in continental Latin America, but that has spread to North America and Europe. Unfortunately, current treatments against such disease are ineffective and produce known and undesirable side effects. To find novel effective drug candidates to treat Chagas disease, we uniquely explore the Trypanosoma cruzi proteasome as a recent biological target and, also, apply drug repurposing through different computational methodologies. For this, we initially applied protein homology modeling to build a robust model of proteasome β4/β5 subunits, since there is no crystallographic structure of this target. Then, we used it on a drug repurposing via a virtual screening campaign starting with more than 8,000 drugs and including the methodologies: ligand-based similarity, toxicity predictions, and molecular docking. Three drugs were selected concerning their favorable interactions at the protein binding site and subsequently submitted to molecular dynamics simulations, which allowed us to elucidate their behavior and compare such theoretical results with experimental ones, obtained in biological assays also described in this paper.Communicated by Ramaswamy H. Sarma.
PMID:36826433 | DOI:10.1080/07391102.2023.2182129
Clustering rare diseases within an ontology-enriched knowledge graph
bioRxiv. 2023 Feb 16:2023.02.15.528673. doi: 10.1101/2023.02.15.528673. Preprint.
ABSTRACT
OBJECTIVE: Identifying sets of rare diseases with shared aspects of etiology and pathophysiology may enable drug repurposing and/or platform based therapeutic development. Toward that aim, we utilized an integrative knowledge graph-based approach to constructing clusters of rare diseases.
MATERIALS AND METHODS: Data on 3,242 rare diseases were extracted from the National Center for Advancing Translational Science (NCATS) Genetic and Rare Diseases Information center (GARD) internal data resources. The rare disease data was enriched with additional biomedical data, including gene and phenotype ontologies, biological pathway data and small molecule-target activity data, to create a knowledge graph (KG). Node embeddings were used to convert nodes into vectors upon which k-means clustering was applied. We validated the disease clusters through semantic similarity and feature enrichment analysis.
RESULTS: A node embedding model was trained on the ontology enriched rare disease KG and k-means clustering was applied to the embedding vectors resulting in 37 disease clusters with a mean size of 87 diseases. We validate the disease clusters quantitatively by looking at semantic similarity of clustered diseases, using the Orphanet Rare Disease Ontology. In addition, the clusters were analyzed for enrichment of associated genes, revealing that the enriched genes within clusters were shown to be highly related.
DISCUSSION: We demonstrate that node embeddings are an effective method for clustering diseases within a heterogenous KG. Semantically similar diseases and relevant enriched genes have been uncovered within the clusters. Connections between disease clusters and approved or investigational drugs are enumerated for follow-up efforts.
CONCLUSION: Our study lays out a method for clustering rare diseases using the graph node embeddings. We develop an easy to maintain pipeline that can be updated when new data on rare diseases emerges. The embeddings themselves can be paired with other representation learning methods for other data types, such as drugs, to address other predictive modeling problems. Detailed subnetwork analysis and in-depth review of individual clusters may lead to translatable findings. Future work will focus on incorporation of additional data sources, with a particular focus on common disease data.
PMID:36824742 | PMC:PMC9949046 | DOI:10.1101/2023.02.15.528673