Drug Repositioning
The involvement of the noradrenergic system in the antinociceptive effect of cucurbitacin D on mice with paclitaxel-induced neuropathic pain
Front Pharmacol. 2023 Jan 4;13:1055264. doi: 10.3389/fphar.2022.1055264. eCollection 2022.
ABSTRACT
Paclitaxel (sold under the brand name Taxol) is a chemotherapeutic drug that is widely used to treat cancer. However, it can also induce peripheral neuropathy, which limits its use. Although several drugs are used to attenuate neuropathy, no optimal treatment is available to date. In this study, the effect of cucurbitacins B and D on paclitaxel-induced neuropathic pain was assessed. Multiple paclitaxel injections (a cumulative dose of 8 mg/kg, i. p.) induced cold and mechanical allodynia from days 10 to 21 in mice, and the i. p. administration of 0.025 mg/kg of cucurbitacins B and D attenuated both allodynia types. However, as cucurbitacin B showed a more toxic effect on non-cancerous (RAW 264.7) cells, further experiments were conducted with cucurbitacin D. The cucurbitacin D dose-dependently (0.025, 0.1, and 0.5 mg/kg) attenuated both allodynia types. In the spinal cord, paclitaxel injection increased the gene expression of noradrenergic (α 1-and α 2-adrenergic) receptors but not serotonergic (5-HT1A and 3) receptors. Cucurbitacin D treatment significantly decreased the spinal α 1- but not α 2-adrenergic receptors, and the amount of spinal noradrenaline was also downregulated. However, the tyrosine hydroxylase expression measured via liquid chromatography in the locus coeruleus did not decrease significantly. Finally, cucurbitacin D treatment did not lower the anticancer effect of chemotherapeutic drugs when co-administered with paclitaxel in CT-26 cell-implanted mice. Altogether, these results suggest that cucurbitacin D could be considered a treatment option against paclitaxel-induced neuropathic pain.
PMID:36686685 | PMC:PMC9846532 | DOI:10.3389/fphar.2022.1055264
Venlafaxine, an anti-depressant drug, induces apoptosis in MV3 human melanoma cells through JNK1/2-Nur77 signaling pathway
Front Pharmacol. 2023 Jan 4;13:1080412. doi: 10.3389/fphar.2022.1080412. eCollection 2022.
ABSTRACT
Introduction: Venlafaxine is one of the most commonly used anti-depressant and antineoplastic drug. Previous studies have predicted venlafaxine as an anti-cancer compound, but the therapeutic effects of venlafaxine in melanoma have not yet been demonstrated. Nur77 is an orphan nuclear receptor that highly expressed in melanoma cells and can interact with Bcl-2 to convert Bcl-2 from an antiapoptotic to a pro-apoptotic protein. Method: We examined the effects of venlafaxine in MV3 cells in vitro and MV3 xenograft tumor in nude mice. Western-blot, PCR, TUNEL assay and immunofluorescence were used to reveal the growth of melanoma cells. Results: Here, our data revealed that venlafaxine could reduce the growth, and induce apoptosis of melanoma cells through a Nur77-dependent way. Our results also showed that treatment with venlafaxine (20 mg/kg, i.p.) potently inhibited the growth of melanoma cells in nude mice. Mechanistically, venlafaxine activated JNK1/2 signaling, induced Nur77 expressions and mitochondrial localization, thereby promoting apoptosis of melanoma cells. Knockdown of Nur77 and JNK1/2, or inhibition of JNK1/2 signaling with its inhibitor SP600125 attenuated the anti-cancer effects of venlafaxine. Conclusion: In summary, our results suggested venlafaxine as a potential therapy for melanoma.
PMID:36686679 | PMC:PMC9846499 | DOI:10.3389/fphar.2022.1080412
Multi-Targeting Approach in Selection of Potential Molecule for COVID-19 Treatment
Viruses. 2023 Jan 12;15(1):213. doi: 10.3390/v15010213.
ABSTRACT
The coronavirus disease (COVID-19) is a pandemic that started in the City of Wuhan, Hubei Province, China, caused by the spread of coronavirus (SARS-CoV-2). Drug discovery teams around the globe are in a race to develop a medicine for its management. It takes time for a novel molecule to enter the market, and the ideal way is to exploit the already approved drugs and repurpose them therapeutically. We have attempted to screen selected molecules with an affinity towards multiple protein targets in COVID-19 using the Schrödinger suit for in silico predictions. The proteins selected were angiotensin-converting enzyme-2 (ACE2), main protease (MPro), and spike protein. The molecular docking, prime MM-GBSA, induced-fit docking (IFD), and molecular dynamics (MD) simulations were used to identify the most suitable molecule that forms a stable interaction with the selected viral proteins. The ligand-binding stability for the proteins PDB-IDs 1ZV8 (spike protein), 5R82 (Mpro), and 6M1D (ACE2), was in the order of nintedanib > quercetin, nintedanib > darunavir, nintedanib > baricitinib, respectively. The MM-GBSA, IFD, and MD simulation studies imply that the drug nintedanib has the highest binding stability among the shortlisted. Nintedanib, primarily used for idiopathic pulmonary fibrosis, can be considered for repurposing for us against COVID-19.
PMID:36680253 | PMC:PMC9861341 | DOI:10.3390/v15010213
Drug Repositioning for Hand, Foot, and Mouth Disease
Viruses. 2022 Dec 27;15(1):75. doi: 10.3390/v15010075.
ABSTRACT
Hand, foot, and mouth disease (HFMD) is a highly contagious disease in children caused by a group of enteroviruses. HFMD currently presents a major threat to infants and young children because of a lack of antiviral drugs in clinical practice. Drug repositioning is an attractive drug discovery strategy aimed at identifying and developing new drugs for diseases. Notably, repositioning of well-characterized therapeutics, including either approved or investigational drugs, is becoming a potential strategy to identify new treatments for virus infections. Various types of drugs, including antibacterial, cardiovascular, and anticancer agents, have been studied in relation to their therapeutic potential to treat HFMD. In this review, we summarize the major outbreaks of HFMD and the progress in drug repositioning to treat this disease. We also discuss the structural features and mode of action of these repositioned drugs and highlight the opportunities and challenges of drug repositioning for HFMD.
PMID:36680115 | DOI:10.3390/v15010075
Drug Repurposing at the Interface of Melanoma Immunotherapy and Autoimmune Disease
Pharmaceutics. 2022 Dec 27;15(1):83. doi: 10.3390/pharmaceutics15010083.
ABSTRACT
Cancer cells have a remarkable ability to evade recognition and destruction by the immune system. At the same time, cancer has been associated with chronic inflammation, while certain autoimmune diseases predispose to the development of neoplasia. Although cancer immunotherapy has revolutionized antitumor treatment, immune-related toxicities and adverse events detract from the clinical utility of even the most advanced drugs, especially in patients with both, metastatic cancer and pre-existing autoimmune diseases. Here, the combination of multi-omics, data-driven computational approaches with the application of network concepts enables in-depth analyses of the dynamic links between cancer, autoimmune diseases, and drugs. In this review, we focus on molecular and epigenetic metastasis-related processes within cancer cells and the immune microenvironment. With melanoma as a model, we uncover vulnerabilities for drug development to control cancer progression and immune responses. Thereby, drug repurposing allows taking advantage of existing safety profiles and established pharmacokinetic properties of approved agents. These procedures promise faster access and optimal management for cancer treatment. Together, these approaches provide new disease-based and data-driven opportunities for the prediction and application of targeted and clinically used drugs at the interface of immune-mediated diseases and cancer towards next-generation immunotherapies.
PMID:36678712 | DOI:10.3390/pharmaceutics15010083
Identifying Potential Molecular Targets in Fungi Based on (Dis)Similarities in Binding Site Architecture with Proteins of the Human Pharmacolome
Molecules. 2023 Jan 10;28(2):692. doi: 10.3390/molecules28020692.
ABSTRACT
Invasive fungal infections represent a public health problem that worsens over the years with the increasing resistance to current antimycotic agents. Therefore, there is a compelling medical need of widening the antifungal drug repertoire, following different methods such as drug repositioning, identification and validation of new molecular targets and developing new inhibitors against these targets. In this work we developed a structure-based strategy for drug repositioning and new drug design, which can be applied to infectious fungi and other pathogens. Instead of applying the commonly accepted off-target criterion to discard fungal proteins with close homologues in humans, the core of our approach consists in identifying fungal proteins with active sites that are structurally similar, but preferably not identical to binding sites of proteins from the so-called "human pharmacolome". Using structural information from thousands of human protein target-inhibitor complexes, we identified dozens of proteins in fungal species of the genera Histoplasma, Candida, Cryptococcus, Aspergillus and Fusarium, which might be exploited for drug repositioning and, more importantly, also for the design of new fungus-specific inhibitors. As a case study, we present the in vitro experiments performed with a set of selected inhibitors of the human mitogen-activated protein kinases 1/2 (MEK1/2), several of which showed a marked cytotoxic activity in different fungal species.
PMID:36677748 | DOI:10.3390/molecules28020692
Drug Repurposing to Inhibit Histamine <em>N</em>-Methyl Transferase
Molecules. 2023 Jan 6;28(2):576. doi: 10.3390/molecules28020576.
ABSTRACT
Lower activity of the histaminergic system is associated with neurological disorders, including Alzheimer's disease (AD). Thus, the enhancement of histaminergic neurotransmission by inhibition of histamine N-methyl transferase (HNMT), which degrades histamine, appears as an important approach. For this purpose, rigid and flexible molecular docking studies of 185 FDA-approved drugs with the HNMT enzyme were carried out to select two compounds to perform molecular dynamics (MD) simulations to evaluate the binding free energies and stability of the enzyme-drug complexes. Finally, an HNMT inhibition assay was performed to corroborate their effect towards HNMT. Molecular docking studies with HNMT allowed the selection of dihydroergotamine and vilazodone since these molecules showed the lowest Gibbs free energy values. Analysis of the binding mode of vilazodone showed interactions with the binding pocket of HNMT with Glu28, Gln143, and Asn283. In contrast, dihydroergotamine binds to the HNMT active site in a different location, apparently because it is overall the more rigid ligand compared to flexible vilazodone. HNMT inhibitory activity for dihydroergotamine and vilazodone was corroborated (IC50 = 72.89 μM and 45.01 μM, respectively) by in vitro assays. Drug repurposing of HNMT was achieved by employing computational studies.
PMID:36677633 | DOI:10.3390/molecules28020576
Salicylanilides and Their Anticancer Properties
Int J Mol Sci. 2023 Jan 15;24(2):1728. doi: 10.3390/ijms24021728.
ABSTRACT
Salicylanilides are pharmacologically active compounds with a wide spectrum of biological effects. Halogenated salicylanilides, which have been used for decades in human and veterinary medicine as anthelmintics, have recently emerged as candidates for drug repurposing in oncology. The most prominent example of salicylanilide anthelmintic, that is intensively studied for its potential anticancer properties, is niclosamide. Nevertheless, recent studies have discovered extensive anticancer potential in a number of other salicylanilides. This potential of their anticancer action is mediated most likely by diverse mechanisms of action such as uncoupling of oxidative phosphorylation, inhibition of protein tyrosine kinase epidermal growth factor receptor, modulation of different signaling pathways as Wnt/β-catenin, mTORC1, STAT3, NF-κB and Notch signaling pathways or induction of B-Raf V600E inhibition. Here we provide a comprehensive overview of the current knowledge about the proposed mechanisms of action of anticancer activity of salicylanilides based on preclinical in vitro and in vivo studies, or structural requirements for such an activity.
PMID:36675241 | DOI:10.3390/ijms24021728
Miltefosine and Nifuratel Combination: A Promising Therapy for the Treatment of <em>Leishmania donovani</em> Visceral Leishmaniasis
Int J Mol Sci. 2023 Jan 13;24(2):1635. doi: 10.3390/ijms24021635.
ABSTRACT
Visceral leishmaniasis is a neglected vector-borne tropical disease caused by Leishmania donovani and Leishmania infantum that is endemic not only in East African countries, but also in Asia, regions of South America and the Mediterranean Basin. For the pharmacological control of this disease, there is a limited number of old and, in general, poorly adherent drugs, with a multitude of adverse effects and low oral bioavailability, which favor the emergence of resistant pathogens. Pentavalent antimonials are the first-line drugs, but due to their misuse, resistant Leishmania strains have emerged worldwide. Although these drugs have saved many lives, it is recommended to reduce their use as much as possible and replace them with novel and more friendly drugs. From a commercial collection of anti-infective drugs, we have recently identified nifuratel-a nitrofurantoin used against vaginal infections-as a promising repurposing drug against a mouse model of visceral leishmaniasis. In the present work, we have tested combinations of miltefosine-the only oral drug currently used against leishmaniasis-with nifuratel in different proportions, both in axenic amastigotes from bone marrow and in intracellular amastigotes from infected Balb/c mouse spleen macrophages, finding a potent synergy in both cases. In vivo evaluation of oral miltefosine/nifuratel combinations using a bioimaging platform has revealed the potential of these combinations for the treatment of this disease.
PMID:36675150 | DOI:10.3390/ijms24021635
Emerging Perspectives on the Antiparasitic Mebendazole as a Repurposed Drug for the Treatment of Brain Cancers
Int J Mol Sci. 2023 Jan 10;24(2):1334. doi: 10.3390/ijms24021334.
ABSTRACT
Repurposing approved non-antitumor drugs is a promising and affordable strategy in drug discovery to identify new therapeutic uses different from the original medical indication that may help increase the number of possible, effective anticancer drugs. The use of drugs in ways other than their original FDA-approved indications could offer novel avenues such as bypassing the chemoresistance and recurrence seen with conventional therapy and treatment; moreover, it can offer a safe and economic strategy for combination therapy. Recent works have demonstrated the anticancer properties of the FDA-approved drug Mebendazole. This synthetic benzimidazole proved effective against a broad spectrum of intestinal Helminthiasis. Mebendazole can penetrate the blood-brain barrier and has been shown to inhibit the malignant progression of glioma by targeting signaling pathways related to cell proliferation, apoptosis, or invasion/migration, or by increasing the sensitivity of glioma cells to conventional chemotherapy or radiotherapy. Moreover, several preclinical models and ongoing clinical trials explore the efficacy of Mebendazole in multiple cancers, including acute myeloid leukemia, brain cancer, oropharyngeal squamous cell carcinoma, breast cancer, gastrointestinal cancer, lung carcinoma, adrenocortical carcinoma, prostate cancer, and head and neck cancer. The present review summarizes central literature regarding the anticancer effects of MBZ in cancer cell lines, animal tumor models, and clinical trials to suggest possible strategies for safe and economical combinations of anticancer therapies in brain cancer. Mebendazole might be an excellent candidate for the treatment of brain tumors because of its efficacy both when used as monotherapy and in combination as an enhancement to standard chemotherapeutics and radiotherapy, due to its effectiveness on tumor angiogenesis inhibition, cell cycle arrest, apoptosis induction, and targeting of critical pathways involved in cancer such as Hedgehog signaling. Therefore, attention to MBZ repurposing has recently increased because of its potential therapeutic versatility and significant clinical implications, such as reducing medical care costs and optimizing existing therapies. Using new treatments is essential, particularly when current therapeutics for patients with brain cancer fail.
PMID:36674870 | DOI:10.3390/ijms24021334
In Silico Investigation of the Human GTP Cyclohydrolase 1 Enzyme Reveals the Potential of Drug Repurposing Approaches towards the Discovery of Effective BH<sub>4</sub> Therapeutics
Int J Mol Sci. 2023 Jan 7;24(2):1210. doi: 10.3390/ijms24021210.
ABSTRACT
The GTP cyclohydrolase 1 enzyme (GTPCH1) is the rate-limiting enzyme of the tetrahydrobiopterin (BH4) biosynthetic pathway. Physiologically, BH4 plays a crucial role as an essential cofactor for the production of catecholamine neurotransmitters, including epinephrine, norepinephrine and dopamine, as well as the gaseous signaling molecule, nitric oxide. Pathological levels of the cofactor have been reported in a number of disease states, such as inflammatory conditions, neuropathic pain and cancer. Targeting the GTPCH1 enzyme has great potential in the management of a number of disease pathologies associated with dysregulated BH4 physiology. This study is an in silico investigation of the human GTPCH1 enzyme using virtual screening and molecular dynamic simulation to identify molecules that can be repurposed to therapeutically target the enzyme. A three-tier molecular docking protocol was employed in the virtual screening of a comprehensive library of over 7000 approved medications and nutraceuticals in order to identify hit compounds capable of binding to the GTPCH1 binding pocket with the highest affinity. Hit compounds were further verified by molecular dynamic simulation studies to provide a detailed insight regarding the stability and nature of the binding interaction. In this study, we identify a number of drugs and natural compounds with recognized anti-inflammatory, analgesic and cytotoxic effects, including the aminosalicylate olsalazine, the antiepileptic phenytoin catechol, and the phlorotannins phlorofucofuroeckol and eckol. Our results suggest that the therapeutic and clinical effects of hit compounds may be partially attributed to the inhibition of the GTPCH1 enzyme. Notably, this study offers an understanding of the off-target effects of a number of compounds and advocates the potential role of aminosalicylates in the regulation of BH4 production in inflammatory disease states. It highlights an in silico drug repurposing approach to identify a potential means of safely targeting the BH4 biosynthetic pathway using established therapeutic agents.
PMID:36674724 | DOI:10.3390/ijms24021210
Curcumin Has Beneficial Effects on Lysosomal Alpha-Galactosidase: Potential Implications for the Cure of Fabry Disease
Int J Mol Sci. 2023 Jan 6;24(2):1095. doi: 10.3390/ijms24021095.
ABSTRACT
Fabry disease is a lysosomal storage disease caused by mutations in the GLA gene that encodes alpha-galactosidase (AGAL). The disease causes abnormal globotriaosylceramide (Gb3) storage in the lysosomes. Variants responsible for the genotypic spectrum of Fabry disease include mutations that abolish enzymatic activity and those that cause protein instability. The latter can be successfully treated with small molecules that either bind and stabilize AGAL or indirectly improve its cellular activity. This paper describes the first attempt to reposition curcumin, a nutraceutical, to treat Fabry disease. We tested the efficacy of curcumin in a cell model and found an improvement in AGAL activity for 80% of the tested mutant genotypes (four out of five tested). The fold-increase was dependent on the mutant and ranged from 1.4 to 2.2. We produced evidence that supports a co-chaperone role for curcumin when administered with AGAL pharmacological chaperones (1-deoxygalactonojirimycin and galactose). The combined treatment with curcumin and either pharmacological chaperone was beneficial for four out of five tested mutants and showed fold-increases ranging from 1.1 to 2.3 for DGJ and from 1.1 to 2.8 for galactose. Finally, we tested a long-term treatment on one mutant (L300F) and detected an improvement in Gb3 clearance and lysosomal markers (LAMP-1 and GAA). Altogether, our findings confirmed the necessity of personalized therapies for Fabry patients and paved the way to further studies and trials of treatments for Fabry disease.
PMID:36674610 | DOI:10.3390/ijms24021095
In Silico Drug Repurposing in Multiple Sclerosis Using scRNA-Seq Data
Int J Mol Sci. 2023 Jan 4;24(2):985. doi: 10.3390/ijms24020985.
ABSTRACT
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system still lacking a cure. Treatment typically focuses on slowing the progression and managing MS symptoms. Single-cell transcriptomics allows the investigation of the immune system-the key player in MS onset and development-in great detail increasing our understanding of MS mechanisms and stimulating the discovery of the targets for potential therapies. Still, de novo drug development takes decades; however, this can be reduced by drug repositioning. A promising approach is to select potential drugs based on activated or inhibited genes and pathways. In this study, we explored the public single-cell RNA data from an experiment with six patients on single-cell RNA peripheral blood mononuclear cells (PBMC) and cerebrospinal fluid cells (CSF) of patients with MS and idiopathic intracranial hypertension. We demonstrate that AIM2 inflammasome, SMAD2/3 signaling, and complement activation pathways are activated in MS in different CSF and PBMC immune cells. Using genes from top-activated pathways, we detected several promising small molecules to reverse MS immune cells' transcriptomic signatures, including AG14361, FGIN-1-27, CA-074, ARP 101, Flunisolide, and JAK3 Inhibitor VI. Among these molecules, we also detected an FDA-approved MS drug Mitoxantrone, supporting the reliability of our approach.
PMID:36674506 | DOI:10.3390/ijms24020985
The Sphingosine 1-Phosphate Axis: an Emerging Therapeutic Opportunity for Endometriosis
Reprod Sci. 2023 Jan 20. doi: 10.1007/s43032-023-01167-2. Online ahead of print.
ABSTRACT
Endometriosis is a common condition in women of reproductive age, but its current interventions are unsatisfactory. Recent research discovered a dysregulation of the sphingosine 1-phosphate (S1P) signaling pathway in endometriosis and showed a positive outcome by targeting it. The S1P axis participates in a series of fundamental pathophysiological processes. This narrative review is trying to expound the reported and putative (due to limited reports in this area for now) interactions between the S1P axis and endometriosis in those pathophysiological processes, to provide some perspectives for future research. In short, S1P signaling pathway is highly activated in the endometriotic lesion. The S1P concentration has a surge in the endometriotic cyst fluid and the peritoneal fluid, with the downstream dysregulation of its receptors. The S1P axis plays an essential role in the migration and activation of the immune cells, fibrosis, angiogenesis, pain-related hyperalgesia, and innervation. S1P receptor (S1PR) modulators showed an impressive therapeutic effect by targeting the different S1P receptors in the endometriosis model, and many other conditions resemble endometriosis. And several of them already got approval for clinical application in many diseases, which means a drug repurposing direction and a rapid clinical translation for endometriosis treatments.
PMID:36662421 | DOI:10.1007/s43032-023-01167-2
Drug Repurposing in Non-Small Cell Lung Carcinoma: Old Solutions for New Problems
Curr Oncol. 2023 Jan 5;30(1):704-719. doi: 10.3390/curroncol30010055.
ABSTRACT
Lung cancer is the second most common cancer and the leading cause of cancer-related deaths in 2022. The majority (80%) of lung cancer cases belong to the non-small cell lung carcinoma (NSCLC) subtype. Despite the increased screening efforts, the median five-year survival of metastatic NSCLC remains low at approximately 3%. Common treatment approaches for NSCLC include surgery, multimodal chemotherapy, and concurrent radio and chemotherapy. NSCLC exhibits high rates of resistance to treatment, driven by its heterogeneity and the plasticity of cancer stem cells (CSCs). Drug repurposing offers a faster and cheaper way to develop new antineoplastic purposes for existing drugs, to help overcome therapy resistance. The decrease in time and funds needed stems from the availability of the pharmacokinetic and pharmacodynamic profiles of the Food and Drug Administration (FDA)-approved drugs to be repurposed. This review provides a synopsis of the drug-repurposing approaches and mechanisms of action of potential candidate drugs used in treating NSCLC, including but not limited to antihypertensives, anti-hyperlipidemics, anti-inflammatory drugs, anti-diabetics, and anti-microbials.
PMID:36661704 | DOI:10.3390/curroncol30010055
Discovery and Mechanistic Analysis of Structurally Diverse Inhibitors of Acetyltransferase Eis among FDA-Approved Drugs
Biochemistry. 2023 Jan 19. doi: 10.1021/acs.biochem.2c00658. Online ahead of print.
ABSTRACT
Over one and a half million people die of tuberculosis (TB) each year. Multidrug-resistant TB infections are especially dangerous, and new drugs are needed to combat them. The high cost and complexity of drug development make repositioning of drugs that are already in clinical use for other indications a potentially time- and money-saving avenue. In this study, we identified among existing drugs five compounds: azelastine, venlafaxine, chloroquine, mefloquine, and proguanil as inhibitors of acetyltransferase Eis from Mycobacterium tuberculosis, a causative agent of TB. Eis upregulation is a cause of clinically relevant resistance of TB to kanamycin, which is inactivated by Eis-catalyzed acetylation. Crystal structures of these drugs as well as chlorhexidine in complexes with Eis showed that these inhibitors were bound in the aminoglycoside binding cavity, consistent with their established modes of inhibition with respect to kanamycin. Among three additionally synthesized compounds, a proguanil analogue, designed based on the crystal structure of the Eis-proguanil complex, was 3-fold more potent than proguanil. The crystal structures of these compounds in complexes with Eis explained their inhibitory potencies. These initial efforts in rational drug repositioning can serve as a starting point in further development of Eis inhibitors.
PMID:36657084 | DOI:10.1021/acs.biochem.2c00658
Repurposing HDAC inhibitors to enhance ribonuclease 4 and 7 expression and reduce urinary tract infection
Proc Natl Acad Sci U S A. 2023 Jan 24;120(4):e2213363120. doi: 10.1073/pnas.2213363120. Epub 2023 Jan 18.
ABSTRACT
With the emergence of antibiotic-resistant bacteria, innovative approaches are needed for the treatment of urinary tract infections. Boosting antimicrobial peptide expression may provide an alternative to antibiotics. Here, we developed reporter cell lines and performed a high-throughput screen of clinically used drugs to identify compounds that boost ribonuclease 4 and 7 expression (RNase 4 and 7), peptides that have antimicrobial activity against antibiotic-resistant uropathogens. This screen identified histone deacetylase (HDAC) inhibitors as effective RNase 4 and RNase 7 inducers. Validation studies in primary human kidney and bladder cells confirmed pan-HDAC inhibitors as well as the HDAC class I inhibitor, MS-275, induce RNase 4 and RNase 7 to protect human kidney and bladder cells from uropathogenic Escherichia coli. When we administered MS-275 to mice, RNase 4 and 7 expression increased and mice were protected from acute transurethral E. coli challenge. In support of this mechanism, MS-275 treatment increased acetylated histone H3 binding to the RNASE4 and RNASE7 promoters. Overexpression and knockdown of HDAC class I proteins identified HDAC3 as a primary regulator of RNase 4 and 7. These results demonstrate the protective effects of enhancing RNase 4 and RNase 7, opening the door to repurposing medications as antibiotic conserving therapeutics for urinary tract infection.
PMID:36652479 | DOI:10.1073/pnas.2213363120
Potential of plant extracts in targeting SARS-CoV-2 main protease: an <em>in vitro</em> and <em>in silico</em> study
J Biomol Struct Dyn. 2023 Jan 18:1-10. doi: 10.1080/07391102.2023.2166589. Online ahead of print.
ABSTRACT
The deaths caused by the covid-19 pandemic have recently decreased due to a worldwide effort in vaccination campaigns. However, even vaccinated people can develop a severe form of the disease that requires ICU admission. As a result, the search for antiviral drugs to treat these severe cases has become a necessity. In this context, natural products are an interesting alternative to synthetic medicines used in drug repositioning, as they have been consumed for a long time through traditional medicine. Many natural compounds found in plant extracts have already been shown to be effective in treating viral and bacterial diseases, making them possible hits to exploit against covid-19. The objective of this work was to evaluate the antiviral activity of different plant extracts available in the library of natural products of the Universidade Estadual de Maringá, by inhibiting the SARS-CoV-2 main protease (Mpro), and by preventing viral infection in a cellular model. As a result, the extract of Cytinus hypocistis, obtained by ultrasound, showed a Mpro inhibition capacity greater than 90%. In the infection model assays using Vero cells, an inhibition of 99.6% was observed, with a selectivity index of 42.7. The in silico molecular docking simulations using the extract compounds against Mpro, suggested Tellimagrandin II as the component of C. hypocistis extract most likely to inhibit the viral enzyme. These results demonstrate the potential of C. hypocistis extract as a promising source of natural compounds with antiviral activity against covid-19.Communicated by Ramaswamy H. Sarma.
PMID:36651196 | DOI:10.1080/07391102.2023.2166589
Identification of LRRK2 Inhibitors through Computational Drug Repurposing
ACS Chem Neurosci. 2023 Jan 17. doi: 10.1021/acschemneuro.2c00672. Online ahead of print.
ABSTRACT
Parkinson's disease (PD) is the second most common neurodegenerative disorder that affects more than ten million people worldwide. However, the current PD treatments are still limited and alternative treatment strategies are urgently required. Leucine-rich repeat kinase 2 (LRRK2) has been recognized as a promising target for PD treatment. However, there are no approved LRRK2 inhibitors on the market. To rapidly identify potential drug repurposing candidates that inhibit LRRK2 kinase, we report a structure-based drug repurposing workflow that combines molecular docking, recursive partitioning model, molecular dynamics (MD) simulation, and molecular mechanics-generalized Born surface area (MM-GBSA) calculation. Thirteen compounds screened from our drug repurposing workflow were further evaluated through the experiment. The experimental results showed six drugs (Abivertinib, Aumolertinib, Encorafenib, Bosutinib, Rilzabrutinib, and Mobocertinib) with IC50 less than 5 μM that were identified as potential LRRK2 kinase inhibitors. The most potent compound Abivertinib showed potent inhibitions with IC50 toward G2019S mutation and wild-type LRRK2 of 410.3 nM and 177.0 nM, respectively. Our combination screening strategy had a 53% hit rate in this repurposing task. MD simulations and MM-GBSA free energy analysis further revealed the atomic binding mechanism between the identified drugs and G2019S LRRK2. In summary, the results showed that our drug repurposing workflow could be used to identify potent compounds for LRRK2. The potent inhibitors discovered in our work can be a starting point to develop more effective LRRK2 inhibitors.
PMID:36649061 | DOI:10.1021/acschemneuro.2c00672
Melatonin as a Repurposed Drug for Melanoma Treatment
Med Sci (Basel). 2023 Jan 14;11(1):9. doi: 10.3390/medsci11010009.
ABSTRACT
Melanoma is the most aggressive type of skin cancer, with a greater risk of metastasis and a higher prevalence and mortality rate. This cancer type has been demonstrated to develop resistance to the known treatment options such as conventional therapeutic agents and targeted therapy that are currently being used as the standard of care. Drug repurposing has been explored as a potential alternative treatment strategy against disease pathophysiologies, including melanoma. To that end, multiple studies have suggested that melatonin produced by the pineal gland possesses anti-proliferative and oncostatic effects in experimental melanoma models. The anticarcinogenic activity of melatonin is attributed to its ability to target a variety of oncogenic signaling pathways, including the MAPK pathways which are involved in regulating the behavior of cancer cells, including cell survival and proliferation. Additionally, preclinical studies have demonstrated that melatonin in combination with chemotherapeutic agents exerts synergistic effects against melanoma. The goal of this review is to highlight the mechanistic insights of melatonin as a monotherapy or combinational therapy for melanoma treatment.
PMID:36649046 | DOI:10.3390/medsci11010009