Drug Repositioning
Identifying Protective Drugs for Parkinson's Disease in Health-Care Databases Using Machine Learning
Mov Disord. 2022 Aug 29. doi: 10.1002/mds.29205. Online ahead of print.
ABSTRACT
BACKGROUND: Available treatments for Parkinson's disease (PD) are only partially or transiently effective. Identifying existing molecules that may present a therapeutic or preventive benefit for PD (drug repositioning) is thus of utmost interest.
OBJECTIVE: We aimed at detecting potentially protective associations between marketed drugs and PD through a large-scale automated screening strategy.
METHODS: We implemented a machine learning (ML) algorithm combining subsampling and lasso logistic regression in a case-control study nested in the French national health data system. Our study population comprised 40,760 incident PD patients identified by a validated algorithm during 2016 to 2018 and 176,395 controls of similar age, sex, and region of residence, all followed since 2006. Drug exposure was defined at the chemical subgroup level, then at the substance level of the Anatomical Therapeutic Chemical (ATC) classification considering the frequency of prescriptions over a 2-year period starting 10 years before the index date to limit reverse causation bias. Sensitivity analyses were conducted using a more specific definition of PD status.
RESULTS: Six drug subgroups were detected by our algorithm among the 374 screened. Sulfonamide diuretics (ATC-C03CA), in particular furosemide (C03CA01), showed the most robust signal. Other signals included adrenergics in combination with anticholinergics (R03AL) and insulins and analogues (A10AD).
CONCLUSIONS: We identified several signals that deserve to be confirmed in large studies with appropriate consideration of the potential for reverse causation. Our results illustrate the value of ML-based signal detection algorithms for identifying drugs inversely associated with PD risk in health-care databases. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
PMID:36054665 | DOI:10.1002/mds.29205
Lomitapide ameliorates middle cerebral artery occlusion-induced cerebral ischemia/reperfusion injury by promoting neuronal autophagy and inhibiting microglial migration
CNS Neurosci Ther. 2022 Sep 2. doi: 10.1111/cns.13961. Online ahead of print.
ABSTRACT
AIMS: Stroke has a high incidence and is a disabling condition that can lead to severe cognitive, motor, and sensory dysfunction. In this study, we employed a drug repurposing strategy to investigate the neuroprotective effect of lomitapide on focal ischemic brain injury and explore its potential mechanism of action.
METHODS: Experimental cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult male C57BL/6 mice and simulated by oxygen-glucose deprivation in N2a-BV2 cells in co-cultivation.
RESULTS: Lomitapide significantly increased the survival rate, reduced the neuronal tissue loss, and improved the neurological function after MCAO. Furthermore, lomitapide could increase the expression of LC3-II, reduce the expression of P62 and LAMP2, promote autophagic flux, and inhibit apoptosis by increasing and inhibiting the expression of the apoptosis-associated proteins Bcl-2 and Bax, respectively. In addition, lomitapide inhibited the migration of pro-inflammatory microglia.
CONCLUSION: Lomitapide is a lipid-lowering drug, and this is the first study to explore its protective effect on ischemic nerve injury in vitro and in vivo. Our results suggest that lomitapide can be repositioned as a potential therapeutic drug for the treatment of stroke.
PMID:36052650 | DOI:10.1111/cns.13961
Network pharmacology reveals multitarget mechanism of action of drugs to be repurposed for COVID-19
Front Pharmacol. 2022 Aug 17;13:952192. doi: 10.3389/fphar.2022.952192. eCollection 2022.
ABSTRACT
The coronavirus disease 2019 pandemic accelerated drug/vaccine development processes, integrating scientists all over the globe to create therapeutic alternatives against this virus. In this work, we have collected information regarding proteins from SARS-CoV-2 and humans and how these proteins interact. We have also collected information from public databases on protein-drug interactions. We represent this data as networks that allow us to gain insights into protein-protein interactions between both organisms. With the collected data, we have obtained statistical metrics of the networks. This data analysis has allowed us to find relevant information on which proteins and drugs are the most relevant from the network pharmacology perspective. This method not only allows us to focus on viral proteins as the main targets for COVID-19 but also reveals that some human proteins could be also important in drug repurposing campaigns. As a result of the analysis of the SARS-CoV-2-human interactome, we have identified some old drugs, such as disulfiram, auranofin, gefitinib, suloctidil, and bromhexine as potential therapies for the treatment of COVID-19 deciphering their potential complex mechanism of action.
PMID:36052135 | PMC:PMC9424758 | DOI:10.3389/fphar.2022.952192
Drug-repositioning indicates a way to conquest corticosteroid-insensitivity
Nihon Yakurigaku Zasshi. 2022;157(5):286-292. doi: 10.1254/fpj.22021.
ABSTRACT
Recent advance of medications and devices brings more effective treatment intervention to the patients with asthma. As far as obeying guidelines, approximately 90% of patients with asthma acquire good control. However, there are still small number of patients with asthma who resist conventional treatment. Most of them are corticosteroid-insensitive. It would be thought that there are two ways to deal with this problem. The first one is biologics. However, these are very expensive. The second way is a treatment intervention focusing on cancellation of corticosteroid-resistance. In early 2010s, a new-intracellular signaling pathway (phosphatydilinositol-3-kinese: PI3K pathway) is proven to be closely associated with corticosteroid-resistance. PI3K-inhibitor should be one of the promising candidates to attenuate corticosteroid-resistance. But PI3K-inhibitor also has a toxicity when given systemically. Drug-repositioning (DR) is a good option to deal with it. To find out PI3K-inhibitor from numerous medicines gives an answer how to inhibit PI3K pathway. The presenter has found both low-dose theophylline and long-acting beta-2 agonist have a potential to antagonize PI3K. These medicines have been prescribed for decades and their safety has already been proved. It is possible for clinicians to inhibit PI3K activation in patients with asthma associated with corticosteroid-resistance using these medicines without waiting for development of bran-new PI3K inhibitors. DR revealed that nortriptyline acts as a steroid-enhancer via its anti-PI3K activity. Calcium-channel blocker saves lung function in patients with asthma in long-term observation. DR promises us to find cheap and safe options to treat difficult asthma by inhibiting specific intracellular signaling pathways.
PMID:36047137 | DOI:10.1254/fpj.22021
Characterization of the SGLT2 Interaction Network and Its Regulation by SGLT2 Inhibitors: A Bioinformatic Analysis
Front Pharmacol. 2022 Aug 15;13:901340. doi: 10.3389/fphar.2022.901340. eCollection 2022.
ABSTRACT
Background: Sodium-glucose cotransporter 2 (SGLT2), also known as solute carrier family 5 member 2 (SLC5A2), is a promising target for a new class of drugs primarily established as kidney-targeting, effective glucose-lowering agents used in diabetes mellitus (DM) patients. Increasing evidence indicates that besides renal effects, SGLT2 inhibitors (SGLT2i) have also a systemic impact via indirectly targeting the heart and other tissues. Our hypothesis states that the pleiotropic effects of SGLT2i are associated with their binding force, location of targets in the SGLT2 networks, targets involvement in signaling pathways, and their tissue-specific expression. Methods: Thus, to investigate differences in SGLT2i impact on human organisms, we re-created the SGLT2 interaction network incorporating its inhibitors and metformin and analyzed its tissue-specific expression using publicly available datasets. We analyzed it in the context of the so-called key terms ( autophagy, oxidative stress, aging, senescence, inflammation, AMPK pathways, and mTOR pathways) which seem to be crucial to elucidating the SGLT2 role in a variety of clinical manifestations. Results: Analysis of SGLT2 and its network components' expression confidence identified selected organs in the following order: kidney, liver, adipose tissue, blood, heart, muscle, intestine, brain, and artery according to the TISSUES database. Drug repurposing analysis of known SGLT2i pointed out the influence of SGLT1 regulators on the heart and intestine tissue. Additionally, dapagliflozin seems to also have a stronger impact on brain tissue through the regulation of SGLT3 and SLC5A11. The shortest path analysis identified interaction SIRT1-SGLT2 among the top five interactions across six from seven analyzed networks associated with the key terms. Other top first-level SGLT2 interactors associated with key terms were not only ADIPOQ, INS, GLUT4, ACE, and GLUT1 but also less recognized ILK and ADCY7. Among other interactors which appeared in multiple shortest-path analyses were GPT, COG2, and MGAM. Enrichment analysis of SGLT2 network components showed the highest overrepresentation of hypertensive disease, DM-related diseases for both levels of SGLT2 interactors. Additionally, for the extended SGLT2 network, we observed enrichment in obesity (including SGLT1), cancer-related terms, neuroactive ligand-receptor interaction, and neutrophil-mediated immunity. Conclusion: This study provides comprehensive and ranked information about the SGLT2 interaction network in the context of tissue expression and can help to predict the clinical effects of the SGLT2i.
PMID:36046822 | PMC:PMC9421436 | DOI:10.3389/fphar.2022.901340
A Colon-Targeted Prodrug of Riluzole Improves Therapeutic Effectiveness and Safety upon Drug Repositioning of Riluzole to an Anti-Colitic Drug
Mol Pharm. 2022 Aug 31. doi: 10.1021/acs.molpharmaceut.2c00255. Online ahead of print.
ABSTRACT
Riluzole (RLZ) is a neuroprotective drug indicated for amyotrophic lateral sclerosis. To examine the feasibility of RLZ for repositioning as an anti-inflammatory bowel disease (IBD) drug, RLZ (2, 5, and 10 mg/kg) was administered orally to rats with colitis induced by 2,4-dinitrobenzenesulfonic acid. Oral RLZ was effective against rat colitis in a dose-dependent manner, which was statistically significant at doses over 5 mg/kg. To address safety issues upon repositioning and further improve anti-colitic effectiveness, RLZ was coupled with salicylic acid (SA) via an azo-bond to yield RLZ-azo-SA (RAS) for the targeted colonic delivery of RLZ. Upon oral gavage, RAS (oral RAS) was efficiently delivered to and activated to RLZ in the large intestine, and systemic absorption of RLZ was substantially reduced. Oral RAS ameliorated colonic damage and inflammation in rat colitis and was more effective than oral RLZ and sulfasalazine, a current anti-IBD drug. Moreover, oral RAS potently inhibited glycogen synthase kinase 3β (GSK3β) in the inflamed distal colon, leading to the suppression of NFκB activity and an increase in the level of the anti-inflammatory cytokine interleukin-10. Taken together, RAS, which enables RLZ to be delivered to and inhibit GSK3β in the inflamed colon, may facilitate repositioning of RLZ as an anti-IBD drug.
PMID:36043999 | DOI:10.1021/acs.molpharmaceut.2c00255
The inflammatory signature in monocytes of Sjögren's syndrome and systemic lupus erythematosus, revealed by the integrated Reactome and drug target analysis
Genes Genomics. 2022 Aug 30. doi: 10.1007/s13258-022-01308-y. Online ahead of print.
ABSTRACT
BACKGROUND: The innate immune regulation, especially by the type I IFN signature in the CD14+ monocytes, is known to be critical in the pathogenesis of autoimmune Sjögren's syndrome (SjS) and systemic lupus erythematosus (SLE).
OBJECTIVE: Since patients with one condition can be overlapped with another, this study is to identify shared differentially expressed genes (DEGs) in SjS and SLE compared to healthy controls (HCs) and refine transcriptomic profiles with the integrated Reactome and gene-drug network analysis for an anti-inflammation therapy.
METHODS: CD14+ monocytes were purified from whole blood of SjS and SLE patients (females, ages from 32 to 62) and subject to bulk RNA-sequencing, followed by data analyses for comparison with HC monocytes (females, ages 30 and 33). Functional categorizations, using Gene Ontology (GO) and the Reactome pathway analysis, were performed and DEGs associated with therapeutic drugs were identified from the Drug Repurposing Hub (DHUB) database.
RESULTS: The GO analysis revealed that DEGs in the inflammatory response and the cellular response to cytokine were highly enriched in both conditions. A propensity toward M1 macrophage differentiation appears to be prominent in SjS while the Response to Virus was significant in SLE monocytes. Through the Reactome pathway analysis, DEGs in the IFN signaling and the cytokine signaling in immune system were most significantly enriched in both. Upregulation of NGF-induced transcription activity in SjS and the complement cascade activity in SLE were also noted. Multiple anti-inflammatory drugs, such as prostaglandin-endoperoxide synthase and angiotensin-I-converting- enzyme were associated with the DEGs in these conditions.
CONCLUSIONS: Taken together, our analysis indicates distinct inflammatory transcriptomic profiles shared in SjS and SLE monocytes. Comprehensive characterizations of the data from these conditions will ultimately allow differential diagnosis of each condition and identification of therapeutic targets.
PMID:36040684 | DOI:10.1007/s13258-022-01308-y
Novel Antibacterial Activity of Febuxostat, an FDA-Approved Antigout Drug against Mycobacterium tuberculosis Infection
Antimicrob Agents Chemother. 2022 Aug 30:e0076222. doi: 10.1128/aac.00762-22. Online ahead of print.
ABSTRACT
Accumulating evidence suggests that drug repurposing has drawn attention as an anticipative strategy for controlling tuberculosis (TB), considering the dwindling drug discovery and development pipeline. In this study, we explored the antigout drug febuxostat and evaluated its antibacterial activity against Mycobacterium species. Based on MIC evaluation, we found that febuxostat treatment significantly inhibited mycobacterial growth, especially that of Mycobacterium tuberculosis (Mtb) and its phylogenetically close neighbors, M. bovis, M. kansasii, and M. shinjukuense, but these microorganisms were not affected by allopurinol and topiroxostat, which belong to a similar category of antigout drugs. Febuxostat concentration-dependently affected Mtb and durably mediated inhibitory functions (duration, 10 weeks maximum), as evidenced by resazurin microtiter assay, time-kill curve analysis, phenotypic susceptibility test, and the Bactec MGIT 960 system. Based on these results, we determined whether the drug shows antimycobacterial activity against Mtb inside murine bone marrow-derived macrophages (BMDMs). Notably, febuxostat markedly suppressed the intracellular growth of Mtb in a dose-dependent manner without affecting the viability of BMDMs. Moreover, orally administered febuxostat was efficacious in a murine model of TB with reduced bacterial loads in both the lung and spleen without the exacerbation of lung inflammation, which highlights the drug potency. Taken together, unexpectedly, our data demonstrated that febuxostat has the potential for treating TB.
PMID:36040172 | DOI:10.1128/aac.00762-22
α-Crystallin chaperone mimetic drugs inhibit lens γ-crystallin aggregation: potential role for cataract prevention
J Biol Chem. 2022 Aug 26:102417. doi: 10.1016/j.jbc.2022.102417. Online ahead of print.
ABSTRACT
Gamma crystallins play a major role in age-related lens transparency. Their destabilization by mutations and physical chemical insults is strongly associated with cataract formation. Therefore, drugs that increase their stability should have anti-cataract properties. To this end, here we screened 2,560 FDA-approved drugs and natural compounds for their ability to suppress or worsen H2 O2 and/or heat-mediated aggregation of bovine γ-crystallins. The top two drugs, Closantel (C), an anti-helmintic drug, and Gambogic Acid (G), a xanthonoid, attenuated thermal-induced protein unfolding as determined by fluorescence spectroscopy, aggregation as shown by turbidimetry, dynamic light scattering, and electron microscopy of human or mouse recombinant crystallins. Furthermore, binding studies using fluorescence inhibition and hydrophobic pocket-binding molecule bis-ANS revealed static binding of C and G to hydrophobic sites with medium-to-low affinity. Molecular docking to HγD and other γ-crystallins also revealed two binding sites, one in the "NC-pocket" (residues 50-150) of HγD, and one spanning the "NC-tail" (residues 56-61 to 168-174 in the C-terminal domain). Notably, several of these binding sites overlap with those of the protective mini αA-crystallin chaperone peptide, MAC. Mechanistic studies using Bis-ANS as a proxy drug showed it bound to MAC sites, improved Tm of both H2O2 oxidized and native HyD, and suppressed turbidity of oxidized HγD, most likely by trapping exposed hydrophobic sites. The extent to which these drugs act as α-crystallin mimetics and reduce cataract progression remains to be demonstrated. This study provides initial insights into binding properties of C and G to γ-crystallins.
PMID:36037967 | DOI:10.1016/j.jbc.2022.102417
Protocol for high-throughput screening of ACE2 enzymatic activators to treat COVID-19-induced metabolic complications
STAR Protoc. 2022 Aug 4;3(3):101641. doi: 10.1016/j.xpro.2022.101641. eCollection 2022 Sep 16.
ABSTRACT
Drug repositioning represents a cost- and time-efficient strategy for drug development. Here, we present a workflow of in silico screening of ACE2 enzymatic activators to treat COVID-19-induced metabolic complications. By using structure-based virtual screening and signature-based off-target effect identification via the Connectivity Map database, we provide a ranked list of the repositioning candidates as potential ACE2 enzymatic activators to ameliorate COVID-19-induced metabolic complications. The workflow can also be applied to other diseases with ACE2 as a potential target. For complete details on the use and execution of this protocol, please refer to Li et al. (2022).
PMID:36035796 | PMC:PMC9350712 | DOI:10.1016/j.xpro.2022.101641
Chaperone activity of niflumic acid on ClC-1 chloride channel mutants causing myotonia congenita
Front Pharmacol. 2022 Aug 11;13:958196. doi: 10.3389/fphar.2022.958196. eCollection 2022.
ABSTRACT
Myotonia congenita (MC) is an inherited rare disease characterized by impaired muscle relaxation after contraction, resulting in muscle stiffness. It is caused by loss-of-function mutations in the skeletal muscle chloride channel ClC-1, important for the stabilization of resting membrane potential and for the repolarization phase of action potentials. Thanks to in vitro functional studies, the molecular mechanisms by which ClC-1 mutations alter chloride ion influx into the cell have been in part clarified, classifying them in "gating-defective" or "expression-defective" mutations. To date, the treatment of MC is only palliative because no direct ClC-1 activator is available. An ideal drug should be one which is able to correct biophysical defects of ClC-1 in the case of gating-defective mutations or a drug capable to recover ClC-1 protein expression on the plasma membrane for trafficking-defective ones. In this study, we tested the ability of niflumic acid (NFA), a commercial nonsteroidal anti-inflammatory drug, to act as a pharmacological chaperone on trafficking-defective MC mutants (A531V, V947E). Wild-type (WT) or MC mutant ClC-1 channels were expressed in HEK293 cells and whole-cell chloride currents were recorded with the patch-clamp technique before and after NFA incubation. Membrane biotinylation assays and western blot were performed to support electrophysiological results. A531V and V947E mutations caused a decrease in chloride current density due to a reduction of ClC-1 total protein level and channel expression on the plasma membrane. The treatment of A531V and V947E-transfected cells with 50 µM NFA restored chloride currents, reaching levels similar to those of WT. Furthermore, no significant difference was observed in voltage dependence, suggesting that NFA increased protein membrane expression without altering the function of ClC-1. Indeed, biochemical experiments confirmed that V947E total protein expression and its plasma membrane distribution were recovered after NFA incubation, reaching protein levels similar to WT. Thus, the use of NFA as a pharmacological chaperone in trafficking defective ClC-1 channel mutations could represent a good strategy in the treatment of MC. Because of the favorable safety profile of this drug, our study may easily open the way for confirmatory human pilot studies aimed at verifying the antimyotonic activity of NFA in selected patients carrying specific ClC-1 channel mutations.
PMID:36034862 | PMC:PMC9403836 | DOI:10.3389/fphar.2022.958196
Transcriptomics and systems biology identify non-antibiotic drugs for the treatment of ocular bacterial infection
iScience. 2022 Aug 2;25(9):104862. doi: 10.1016/j.isci.2022.104862. eCollection 2022 Sep 16.
ABSTRACT
Increasing antibiotic resistance among ocular pathogens often results in treatment failure for blinding infections such as endophthalmitis. Hence, newer therapeutics is needed to combat multidrug-resistant infections. Here, we show a drug repurposing approach using a connectivity map based on temporal transcriptomics of Staphylococcus aureus (SA) infected mouse retina. The analysis predicted three non-antibiotic drugs, Dequalinium chloride (DC), Clofilium tosylate (CT), and Glybenclamide (Glb) which reversed the SA infection signatures. Predicted drugs exhibited anti-inflammatory properties in human retinal cells against sensitive and resistant strains of SA. Intravitreal administration of all drugs reduced intraocular inflammation in SA-infected mouse eyes while DC and CT also reduced bacterial burden. Drug treatment improved visual function coinciding with reduced Caspase-3 mediated retinal cell death. Importantly, all drugs exhibited synergy with vancomycin in improving disease outcomes. Overall, our study identified three non-antibiotic drugs and demonstrated their therapeutic and prophylactic efficacies in ameliorating intraocular bacterial infection.
PMID:36034221 | PMC:PMC9399287 | DOI:10.1016/j.isci.2022.104862
A new use for old drugs: identifying compounds with an anti-obesity effect using a high through-put semi-automated <em>Caenorhabditis elegans</em> screening platform
Heliyon. 2022 Aug 11;8(8):e10108. doi: 10.1016/j.heliyon.2022.e10108. eCollection 2022 Aug.
ABSTRACT
Obesity is one of the most common global health problems for all age groups with obese people at risk of a variety of associated health complications. Consequently, there is a need to develop new therapies that lower body fat without the side effects. However, obesity is a complex and systemic disease, so that in vitro results are not easily translatable to clinical situations. A promising way to circumnavigate these issues is to reposition already approved drugs for new treatments, enabling a more streamlined drug discovery process due to the availability of pre-existing pharmacological and toxicological datasets. Chemical libraries, such as the Prestwick Chemical Library of 1200 FDA approved drugs, are available for this purpose. We have developed a simple semi-automated whole-organism approach to screening the Prestwick Chemical Library for those compounds which reduce fat content using the model organism Caenorhabditis elegans. Our whole-organism approach to high-throughput screening identified 9 "lead" compounds that reduced fat within 2 weeks in the model. Further screening and analysis provided 4 "hit" compounds (Midodrine, Vinpocetine, Fenoprofen and Lamivudine) that showed significant promise as drugs to reduce fat levels. The effects of these candidates were found to further reduce fat content in nematodes where an nhr-49/PPAR mutation resulted in "overweight" worms. Upon unblinding the "hit" compounds, they were found to have recently been shown to have anti-obesity effects in mammalian models too. In developing a whole-animal chemical screen to identify pharmacological agents as potential anti-obesity compounds, we demonstrate how chemical libraries can be rapidly and relatively cheaply profiled for active hits. Using the nematode Caenorhabditis elegans thus enables drugs to be assessed for applicability in humans and provides a new incentive to explore drug repurposing as a feasible and efficient way to identify new anti-obesity compounds.
PMID:36033279 | PMC:PMC9399480 | DOI:10.1016/j.heliyon.2022.e10108
Repositioning potentials of smallpox vaccines and antiviral agents in monkeypox outbreak: A rapid review on comparative benefits and risks
Health Sci Rep. 2022 Aug 23;5(5):e798. doi: 10.1002/hsr2.798. eCollection 2022 Sep.
ABSTRACT
BACKGROUND AND AIMS: There is a sought for vaccines and antiviral agents as countermeasures for the recent monkeypox outbreak. Here, we aimed to review and discuss the repurposing potentials of smallpox vaccines and drugs in monkeypox outbreaks based on their comparative benefits and risks. Therefore, we conducted this rapid review and discussed the repurposing potentials of smallpox vaccines and drugs in monkeypox infection.
METHODS: Here, we searched Google Scholar and PubMed for relevant information and data. We found many articles that have suggested the use of smallpox vaccines and antiviral drugs in monkeypox outbreaks according to the study findings. We read the relevant articles to extract information.
RESULTS: According to the available documents, we found two replication-competent and one replication-deficient vaccinia vaccines were effective against Orthopoxvirus. However, the healthcare authorities have authorized second-generation live vaccina virus vaccines against Orthopoxvirus in many countries. Smallpox vaccine is almost 85% effective in preventing monkeypox infection as monkeypox virus, variola virus, and vaccinia virus are similar. The United States and Canada have approved a replication-deficient third-generation smallpox vaccine for the prevention of monkeypox infection. However, the widely used second-generation smallpox vaccines contain a live virus and replicate it into the human cell. Therefore, there is a chance to cause virus-induced complications among the vaccinated subjects. In those circumstances, the available Orthopoxvirus inhibitors might be a good choice for treating monkeypox infections as they showed similar efficacy in monkeypox infection in different animal model clinical trials. Also, the combined use of antiviral drugs and vaccinia immune globulin can enhance significant effectiveness in immunocompromised subjects.
CONCLUSION: Repurposing of these smallpox vaccines and antiviral agents might be weapons to fight monkeypox infection. Also, we recommend further investigations of smallpox vaccines and Orthopoxvirus inhibitors in a human model study to explore their exact role in human monkeypox infections.
PMID:36032515 | PMC:PMC9399446 | DOI:10.1002/hsr2.798
RSDB: A rare skin disease database to link drugs with potential drug targets for rare skin diseases
Sci Data. 2022 Aug 26;9(1):521. doi: 10.1038/s41597-022-01654-2.
ABSTRACT
Rare skin diseases include more than 800 diseases affecting more than 6.8 million patients worldwide. However, only 100 drugs have been developed for treating rare skin diseases in the past 38 years. To investigate potential treatments through drug repurposing for rare skin diseases, it is necessary to have a well-organized database to link all known disease causes, mechanisms, and related information to accelerate the process. Drug repurposing provides less expensive and faster potential options to develop treatments for known diseases. In this work, we designed and constructed a rare skin disease database (RSDB) as a disease-centered information depository to facilitate repurposing drug candidates for rare skin diseases. We collected and integrated associated genes, chemicals, and phenotypes into a network connected by pairwise relationships between different components for rare skin diseases. The RSDB covers 891 rare skin diseases defined by the Orphanet and GARD databases. The organized network for each rare skin disease comprises associated genes, phenotypes, and chemicals with the corresponding connections. The RSDB is available at https://rsdb.cmdm.tw .
PMID:36028515 | DOI:10.1038/s41597-022-01654-2
Literature-based drug-drug similarity for drug repurposing: impact of Medical Subject Headings term refinement and hierarchical clustering
Future Med Chem. 2022 Aug 26. doi: 10.4155/fmc-2022-0074. Online ahead of print.
ABSTRACT
Background: We describe herein, an improved procedure for drug repurposing based on refined Medical Subject Headings (MeSH) terms and hierarchical clustering method. Materials & methods: In the present study, we have employed MeSH data from MEDLINE (2019), 1669 US FDA approved drugs from Open FDA and a refined set of MeSH terms. Refinement of MeSH terms was performed to include terms related to mechanistic information of drugs and diseases. Results and Conclusions: In-depth analysis of the results obtained, demonstrated greater efficiency of the proposed approach, based on refined MeSH terms and hierarchical clustering, in terms of number of selected drug candidates for repurposing. Further, analysis of misclustering and size of noise clusters suggest that the proposed approach is reliable and can be employed in drug repurposing.
PMID:36017692 | DOI:10.4155/fmc-2022-0074
A pharmacometric approach to evaluate drugs for potential repurposing as COVID-19 therapeutics
Expert Rev Clin Pharmacol. 2022 Aug 26. doi: 10.1080/17512433.2022.2113388. Online ahead of print.
ABSTRACT
INTRODUCTION: Developing and evaluating novel compounds for treatment or prophylaxis of emerging infectious diseases is costly and time-consuming. Repurposing of already available marketed compounds is an appealing option as they already have an established safety profile. This approach could substantially reduce cost and time required to make effective treatments available to fight the COVID-19 pandemic. However, this approach is challenging since many drug candidates show efficacy in in vitro experiments, but fail to deliver effect when evaluated in clinical trials. Better approaches to evaluate in vitro data are needed, in order to prioritize drugs for repurposing.
AREAS COVERED: This article evaluates potential drugs that might be of interest for repurposing in the treatment of patients with COVID-19 disease. A pharmacometric simulation-based approach was developed to evaluate in vitro activity data in combination with expected clinical drug exposure, in order to evaluate the likelihood of achieving effective concentrations in patients.
EXPERT OPINION: The presented pharmacometric approach bridges in vitro activity data to clinically expected drug exposures, and could therefore be a useful compliment to other methods in order to prioritize repurposed drugs for evaluation in prospective randomized controlled clinical trials.
PMID:36017624 | DOI:10.1080/17512433.2022.2113388
Structures of the SARS-CoV-2 spike glycoprotein and applications for novel drug development
Front Pharmacol. 2022 Aug 9;13:955648. doi: 10.3389/fphar.2022.955648. eCollection 2022.
ABSTRACT
COVID-19 caused by SARS-CoV-2 has raised a health crisis worldwide. The high morbidity and mortality associated with COVID-19 and the lack of effective drugs or vaccines for SARS-CoV-2 emphasize the urgent need for standard treatment and prophylaxis of COVID-19. The receptor-binding domain (RBD) of the glycosylated spike protein (S protein) is capable of binding to human angiotensin-converting enzyme 2 (hACE2) and initiating membrane fusion and virus entry. Hence, it is rational to inhibit the RBD activity of the S protein by blocking the RBD interaction with hACE2, which makes the glycosylated S protein a potential target for designing and developing antiviral agents. In this study, the molecular features of the S protein of SARS-CoV-2 are highlighted, such as the structures, functions, and interactions of the S protein and ACE2. Additionally, computational tools developed for the treatment of COVID-19 are provided, for example, algorithms, databases, and relevant programs. Finally, recent advances in the novel development of antivirals against the S protein are summarized, including screening of natural products, drug repurposing and rational design. This study is expected to provide novel insights for the efficient discovery of promising drug candidates against the S protein and contribute to the development of broad-spectrum anti-coronavirus drugs to fight against SARS-CoV-2.
PMID:36016554 | PMC:PMC9395726 | DOI:10.3389/fphar.2022.955648
Pharmacophore-Model-Based Drug Repurposing for the Identification of the Potential Inhibitors Targeting the Allosteric Site in Dengue Virus NS5 RNA-Dependent RNA Polymerase
Viruses. 2022 Aug 20;14(8):1827. doi: 10.3390/v14081827.
ABSTRACT
Dengue virus (DENV) is the causative agent of DENV infection. To tackle DENV infection, the development of therapeutic molecules as direct-acting antivirals (DAAs) has been demonstrated as a truly effective approach. Among various DENV drug targets, non-structural protein 5 (NS5)-a highly conserved protein among the family Flaviviridae-carries the RNA-dependent RNA polymerase (DENVRdRp) domain at the C-terminal, and its "N-pocket" allosteric site is widely considered for anti-DENV drug development. Therefore, in this study, we developed a pharmacophore model by utilising 41 known inhibitors of the DENVRdRp domain, and performed model screening against the FDA's approved drug database for drug repurposing against DENVRdRp. Herein, drugs complying with the pharmacophore hypothesis were further processed through standard-precision (SP) and extra-precision (XP) docking scores (DSs) and binding pose refinement based on MM/GBSA binding energy (BE) calculations. This resulted in the identification of four potential potent drugs: (i) desmopressin (DS: -10.52, BE: -69.77 kcal/mol), (ii) rutin (DS: -13.43, BE: -67.06 kcal/mol), (iii) lypressin (DS: -9.84, BE: -67.65 kcal/mol), and (iv) lanreotide (DS: -8.72, BE: -64.7 kcal/mol). The selected drugs exhibited relevant interactions with the allosteric N-pocket of DENVRdRp, including priming-loop and entry-point residues (i.e., R729, R737, K800, and E802). Furthermore, 100 ns explicit-solvent molecular dynamics simulations and end-point binding free energy assessments support the considerable stability and free energy of the selected drugs in the targeted allosteric pocket of DENVRdRp. Hence, these four drugs, repurposed as potent inhibitors of the allosteric site of DENVRdRp, are recommended for further validation using experimental assays.
PMID:36016449 | DOI:10.3390/v14081827
Searching for Blockers of Dengue and West Nile Virus Viroporins
Viruses. 2022 Aug 11;14(8):1750. doi: 10.3390/v14081750.
ABSTRACT
Flavivirus infections, such as those caused by dengue and West Nile viruses, emerge as new challenges for the global healthcare sector. It has been found that these two viruses encode ion channels collectively termed viroporins. Therefore, drug molecules that block such ion-channel activity can serve as potential antiviral agents and may play a primary role in therapeutic purposes. We screened 2839 FDA-approved drugs and compounds in advanced experimental phases using three bacteria-based channel assays to identify such ion channel blockers. We primarily followed a negative genetic screen in which the channel is harmful to the bacteria due to excessive membrane permeabilization that can be relieved by a blocker. Subsequently, we cross-checked the outcome with a positive genetic screen and a pH-dependent assay. The following drugs exhibited potential blocker activities: plerixafor, streptomycin, tranexamic acid, CI-1040, glecaprevir, kasugamycin, and mesna were effective against dengue virus DP1. In contrast, idasanutlin, benzbromarone, 5-azacytidine, and plerixafor were effective against West Nile Virus MgM. These drugs can serve as future antiviral therapeutic agents following subsequent in vitro and in vivo efficacy studies.
PMID:36016372 | DOI:10.3390/v14081750