Drug Repositioning
Drug Development Digital Twins for Drug Discovery, Testing and Repurposing: A Schema for Requirements and Development
Front Syst Biol. 2022;2:928387. doi: 10.3389/fsysb.2022.928387. Epub 2022 Jun 20.
ABSTRACT
There has been a great deal of interest in the concept, development and implementation of medical digital twins. This interest has led to wide ranging perceptions of what constitutes a medical digital twin. This Perspectives article will provide 1) a description of fundamental features of industrial digital twins, the source of the digital twin concept, 2) aspects of biology that challenge the implementation of medical digital twins, 3) a schematic program of how a specific medical digital twin project could be defined, and 4) an example description within that schematic program for a specific type of medical digital twin intended for drug discovery, testing and repurposing, the Drug Development Digital Twin (DDDT).
PMID:35935475 | PMC:PMC9351294 | DOI:10.3389/fsysb.2022.928387
Drug repurposing: re-inventing therapies for cancer without re-entering the development pipeline-a review
J Egypt Natl Canc Inst. 2022 Aug 8;34(1):33. doi: 10.1186/s43046-022-00137-0.
ABSTRACT
While majority of the current treatment approaches for cancer remain expensive and are associated with several side effects, development of new treatment modalities takes a significant period of research, time, and expenditure. An alternative novel approach is drug repurposing that focuses on finding new applications for the previously clinically approved drugs. The process of drug repurposing has also been facilitated by current advances in the field of proteomics, genomics, and information computational biology. This approach not only provides cheaper, effective, and potentially safer drugs with less side effects but also increases the processing pace of drug development. In this review, we wish to highlight some recent developments in the area of drug repurposing in cancer with a specific focus on the repurposing potential of anti-psychotic, anti-inflammatory and anti-viral drugs, anti-diabetic, antibacterial, and anti-fungal drugs.
PMID:35934727 | DOI:10.1186/s43046-022-00137-0
The ARIA approach of Value-Added Medicines: as-needed treatment in allergic rhinitis
J Allergy Clin Immunol Pract. 2022 Aug 4:S2213-2198(22)00749-8. doi: 10.1016/j.jaip.2022.07.020. Online ahead of print.
ABSTRACT
Drug repurposing is one of the major fields of Value-Added Medicines. It involves the investigation and evaluation of existing drugs for new therapeutic purposes that address unmet healthcare needs. There are several unmet needs in allergic rhinitis that could be improved by drug repurposing. This could be game-changing for disease management. The current medications for allergic rhinitis are centered around a continuous long-term treatment, and medication registration is based on randomized controlled trials carried out for a minimum of 14 days with adherence ≥70%. A new way of treating allergic rhinitis is to propose an as-needed treatment depending on symptoms, rather than the classical continuous treatment. This rostrum will discuss the existing clinical trials on as-needed treatment for allergic rhinitis and real-world data obtained by the mobile health app MASK-air that has a focus on digitally-enabled, patient-centered care pathways.
PMID:35934308 | DOI:10.1016/j.jaip.2022.07.020
Drug screening approach against mycobacterial fatty acyl-AMP ligase FAAL32 renews the interest of the salicylanilide pharmacophore in the fight against tuberculosis
Bioorg Med Chem. 2022 Jul 29;71:116938. doi: 10.1016/j.bmc.2022.116938. Online ahead of print.
ABSTRACT
Tuberculosis (TB) remains a global health crisis, further exacerbated by the slow pace of new treatment options, and the emergence of extreme and total drug resistance to existing drugs. The challenge to developing new antibacterial compounds with activity against Mycobacterium tuberculosis (Mtb), the causative agent of TB, is in part due to unique features of this pathogen, especially the composition and structure of its complex cell envelope. Therefore, targeting enzymes involved in cell envelope synthesis has been of major interest for anti-TB drug discovery. FAAL32 is a fatty acyl-AMP ligase involved in the biosynthesis of the cell wall mycolic acids, and a potential target for drug discovery. To rapidly advance research in this area, we initiated a drug repurposing campaign and screened a collection of 1280 approved human or veterinary drugs (Prestwick Chemical Library) using a biochemical assay that reads out FAAL32 inhibition. These efforts led to the discovery of salicylanilide closantel, and some of its derivatives as inhibitors with potent in vitro activity against M. tuberculosis. These results suggest that salicylanilide represents a potentially promising pharmacophore for the conception of novel anti-tubercular candidates targeting FAAL32 that would open new targeting opportunities. Moreover, this work illustrates the value of drug repurposing campaigns to discover new leads in challenging drug discovery fields.
PMID:35933838 | DOI:10.1016/j.bmc.2022.116938
A Comprehensive Discussion in Vaginal Cancer Based on Mechanisms, Treatments, Risk Factors and Prevention
Front Oncol. 2022 Jul 18;12:883805. doi: 10.3389/fonc.2022.883805. eCollection 2022.
ABSTRACT
Vaginal cancer is a rare and uncommon disease that is rarely discussed. Although vaginal cancer traditionally occurs in older postmenopausal women, the incidence of high-risk human papillomavirus (HPV)-induced cancers is increasing in younger women. Cervical cancer cells contain high-risk human papillomavirus (HPV) E6 and E7 proteins and inhibiting HPV gene expression leads the cells to stop proliferating and enter senescence. As E6, and E7 protein promoted the carcinogenesis mechanism, and here not only regulate the cellular degradation of P53, and pRb but also enhances the cell proliferation along with E6 protein targets the p53 for breakdown and subsequently promote the apoptotic cell death, and DNA repair inhibition, that is indispensable to the continue the lifecycle of the HPV. As a synchronous or metachronous tumor, vaginal cancer is frequently found in combination with cervical cancer. It is uncertain what causes invasive female vaginal organ cancer. HPV type 16 is the most often isolated HPV type in female vaginal organ cancers. Due to cancer's rarity, case studies have provided the majority of etiologic findings. Many findings demonstrate that ring pessaries, chronic vaginitis, sexual behavior, birth trauma, obesity, vaginal chemical exposure, and viruses are all risk factors. Because of insufficient understanding and disease findings, we are trying to find the disease's mechanism with the available data. We also address different risk factors, therapy at various stages, diagnosis, and management of vaginal cancer in this review.
PMID:35924174 | PMC:PMC9341270 | DOI:10.3389/fonc.2022.883805
Altiratinib blocks <em>Toxoplasma gondii</em> and <em>Plasmodium falciparum</em> development by selectively targeting a spliceosome kinase
Sci Transl Med. 2022 Aug 3;14(656):eabn3231. doi: 10.1126/scitranslmed.abn3231. Epub 2022 Aug 3.
ABSTRACT
The Apicomplexa comprise a large phylum of single-celled, obligate intracellular protozoa that include Toxoplasma gondii, Plasmodium, and Cryptosporidium spp., which infect humans and animals and cause severe parasitic diseases. Available therapeutics against these diseases are limited by suboptimal efficacy and frequent side effects, as well as the emergence and spread of resistance. We use a drug repurposing strategy and identify altiratinib, a compound originally developed to treat glioblastoma, as a promising drug candidate with broad spectrum activity against apicomplexans. Altiratinib is parasiticidal and blocks the development of intracellular zoites in the nanomolar range and with a high selectivity index when used against T. gondii. We have identified TgPRP4K of T. gondii as the primary target of altiratinib using genetic target deconvolution, which highlighted key residues within the kinase catalytic site that conferred drug resistance when mutated. We have further elucidated the molecular basis of the inhibitory mechanism and species selectivity of altiratinib for TgPRP4K and for its Plasmodium falciparum counterpart, PfCLK3. Our data identified structural features critical for binding of the other PfCLK3 inhibitor, TCMDC-135051. Consistent with the splicing control activity of this kinase family, we have shown that altiratinib can cause global disruption of splicing, primarily through intron retention in both T. gondii and P. falciparum. Thus, our data establish parasitic PRP4K/CLK3 as a potential pan-apicomplexan target whose repertoire of inhibitors can be expanded by the addition of altiratinib.
PMID:35921477 | DOI:10.1126/scitranslmed.abn3231
Partner-Specific Drug Repositioning Approach Based on Graph Convolutional Network
IEEE J Biomed Health Inform. 2022 Aug 3;PP. doi: 10.1109/JBHI.2022.3194891. Online ahead of print.
ABSTRACT
Drug repositioning identifies novel therapeutic potentials for existing drugs and is considered an attractive approach due to the opportunity for reduced development timelines and overall costs. Prior computational methods usually learned a drug's representation from an entire graph of drug-disease associations. Therefore, the representation of learned drugs representation are static and agnostic to various diseases. However, for different diseases, a drug's mechanism of actions (MoAs) are different. The relevant context information should be differentiated for the same drug to target different diseases. Computational methods are thus required to learn different representations corresponding to different drug-disease associations for the given drug. In view of this, we propose an end-to-end partner-specific drug repositioning approach based on graph convolutional network, named PSGCN. PSGCN firstly extracts specific context information around drug-disease pairs from an entire graph of drug-disease associations. Then, it implements a graph convolutional network on the extracted graph to learn partner-specific graph representation. As the different layers of graph convolutional network contribute differently to the representation of the partner-specific graph, we design a layer self-attention mechanism to capture multi-scale layer information. Finally, PSGCN utilizes sortpool strategy to obtain the partner-specific graph embedding and formulates a drug-disease association prediction as a graph classification task. A fully-connected module is established to classify the partner-specific graph representations. The experiments on three benchmark datasets prove that the representation learning of partner-specific graph can lead to superior performances over state-of-the-art methods. In particular, case studies on small cell lung cancer and breast carcinoma confirmed that PSGCN is able to retrieve more actual drug-disease associations in the top prediction results. Moreover, in comparison with other static approaches, PSGCN can partly distinguish the different disease context information for the given drug.
PMID:35921345 | DOI:10.1109/JBHI.2022.3194891
Inhibition of dengue virus infection by trifluoperazine
Arch Virol. 2022 Aug 3. doi: 10.1007/s00705-022-05555-y. Online ahead of print.
ABSTRACT
Dengue virus (DENV), a member of the genus Flavivirus, family Flaviviridae, is the most widespread viral pathogen transmitted to humans by mosquitoes. Despite the increased incidence of DENV infection, there are no antiviral drugs available for treatment or prevention. Phenothiazines are heterocyclic compounds with various pharmacological properties that are very adaptable for drug repurposing. In the present report, we analyzed the antiviral activity against DENV and the related Zika virus (ZIKV) of trifluoperazine (TFP), a phenothiazine derivative in clinical use as an antipsychotic and antiemetic agent. TFP exhibited dose-dependent inhibitory activity against the four DENV serotypes and ZIKV in monkey Vero cells at non-cytotoxic concentrations with 50% effective concentration values in the range 1.6-6.4 µM. A similar level of antiviral efficacy was exhibited by TFP against flavivirus infection in the human cell lines A549 and HepG2. Mechanistic studies, performed using time-dependent infectivity assays, real-time RT-PCR, Western blot, and immunofluorescence techniques, indicated that uncoating of the virus during penetration into the cell was the main target for TFP in infected cells, but the compound also exerted a minor effect on a late stage of the virus multiplication cycle. This study demonstrates that TFP, a pharmacologically active phenothiazine, is a selective inhibitor of DENV multiplication in cell culture. Our findings open perspectives for the repositioning of phenothiazines like TFP with a wide spectrum of antiviral efficacy as potential agents for the control of pathogenic flaviviruses.
PMID:35920983 | DOI:10.1007/s00705-022-05555-y
Reciprocal perspective as a super learner improves drug-target interaction prediction (MUSDTI)
Sci Rep. 2022 Aug 2;12(1):13237. doi: 10.1038/s41598-022-16493-9.
ABSTRACT
The identification of novel drug-target interactions (DTI) is critical to drug discovery and drug repurposing to address contemporary medical and public health challenges presented by emergent diseases. Historically, computational methods have framed DTI prediction as a binary classification problem (indicating whether or not a drug physically interacts with a given protein target); however, framing the problem instead as a regression-based prediction of the physiochemical binding affinity is more meaningful. With growing databases of experimentally derived drug-target interactions (e.g. Davis, Binding-DB, and Kiba), deep learning-based DTI predictors can be effectively leveraged to achieve state-of-the-art (SOTA) performance. In this work, we formulated a DTI competition as part of the coursework for a senior undergraduate machine learning course and challenged students to generate component DTI models that might surpass SOTA models and effectively combine these component models as part of a meta-model using the Reciprocal Perspective (RP) multi-view learning framework. Following 6 weeks of concerted effort, 28 student-produced component deep-learning DTI models were leveraged in this work to produce a new SOTA RP-DTI model, denoted the Meta Undergraduate Student DTI (MUSDTI) model. Through a series of experiments we demonstrate that (1) RP can considerably improve SOTA DTI prediction, (2) our new double-cold experimental design is more appropriate for emergent DTI challenges, (3) that our novel MUSDTI meta-model outperforms SOTA models, (4) that RP can improve upon individual models as an ensembling method, and finally, (5) RP can be utilized for low computation transfer learning. This work introduces a number of important revelations for the field of DTI prediction and sequence-based, pairwise prediction in general.
PMID:35918366 | DOI:10.1038/s41598-022-16493-9
Nanoparticulate drugs and vaccines: Breakthroughs and bottlenecks of repurposing in breast cancer
J Control Release. 2022 Jul 29:S0168-3659(22)00474-6. doi: 10.1016/j.jconrel.2022.07.039. Online ahead of print.
ABSTRACT
Breast cancer (BC) is a highly diagnosed and topmost cause of death in females worldwide. Drug repurposing (DR) has shown great potential against BC by overcoming major shortcomings of approved anticancer therapeutics. However, poor physicochemical properties, pharmacokinetic performance, stability, non-selectivity to tumors, and side effects are severe hurdles in repurposed drug delivery against BC. The variety of nanocarriers (NCs) has shown great promise in delivering repurposed therapeutics for effective treatment of BC via improving solubility, stability, tumor selectivity and reducing toxicity. Besides, delivering repurposed cargos via theranostic NCs can be helpful in the quick diagnosis and treatment of BC. Localized delivery of repurposed candidates through apt NCs can diminish the systemic side effects and improve anti-tumor effectiveness. However, breast tumor variability and tumor microenvironment have created several challenges to nanoparticulate delivery of repurposed cargos. This review focuses on DR as an ingenious strategy to treat BC and circumvent the drawbacks of approved anticancer therapeutics. Various nanoparticulate avenues delivering repurposed therapeutics, including non-oncology cargos and vaccines to target BC effectively, are discussed along with case studies. Moreover, clinical trial information on repurposed medications and vaccines for the treatment of BC is covered along with various obstacles in nanoparticulate drug delivery against cancer that have been so far identified. In a nutshell, DR and drug delivery of repurposed drugs via NCs appears to be a propitious approach in devastating BC.
PMID:35914614 | DOI:10.1016/j.jconrel.2022.07.039
Human TMPRSS2 non-catalytic ectodomain and SARS-CoV-2 S2' subunit interaction mediated SARS-CoV-2 endocytosis: a model proposal with virtual screening for potential drug molecules to inhibit this interaction
J Biomol Struct Dyn. 2022 Jul 31:1-12. doi: 10.1080/07391102.2022.2105956. Online ahead of print.
ABSTRACT
This study proposes a novel model for integration of SARS-CoV-2 into host cell via endocytosis as a possible alternative to the prevailing direct fusion model. It is known that the SARS-CoV-2 spike protein undergoes proteolytic cleavage at S1-S2 cleavage site and the cleaved S2 domain is primed by the activated serine protease domain (SPD) of humanTMPRSS2 to become S2'. The activated SPD of TMPRSS2 is formed after it is cleaved by autocatalysis from the membrane bound non-catalytic ectodomain (hNECD) comprising of LDLRA CLASS-I repeat and a SRCR domain. It is known that the SRCR domains as well as LDLRA repeat harboring proteins mediate endocytosis of viruses and certain ligands. Based on this, we put forward a hypothesis that the exposed hNECD binds to the S2' as both are at an interaction proximity soon after S2 is processed by the SPD and this interaction may lead to the endocytosis of virus. Based on this hypothesis we have modelled the hNECD structure, followed by docking studies with the known 3D structure of S2'. The interaction interface of hNECD with S2' was further used for virtual screening of FDA-approved drug molecules and Indian medicinal plant-based compounds. We also mapped the known mutations of concern and mutations of interest on interaction interface of S2' and found that none of the known mutations map onto the interaction interface. This indicates that targeting the interaction between the hNECD of TMPRSS2 and S2' may serve as an attractive therapeutic target.Communicated by Ramaswamy H. Sarma.
PMID:35912718 | DOI:10.1080/07391102.2022.2105956
4-Phenylbutyrate restored γ-aminobutyric acid uptake and reduced seizures in <em>SLC6A1</em> patient variant-bearing cell and mouse models
Brain Commun. 2022 Jun 6;4(3):fcac144. doi: 10.1093/braincomms/fcac144. eCollection 2022.
ABSTRACT
We have studied the molecular mechanisms of variants in solute carrier Family 6 Member 1 associated with neurodevelopmental disorders, including various epilepsy syndromes, autism and intellectual disability. Based on functional assays of solute carrier Family 6 Member 1 variants, we conclude that partial or complete loss of γ-amino butyric acid uptake due to reduced membrane γ-amino butyric acid transporter 1 trafficking is the primary aetiology. Importantly, we identified common patterns of the mutant γ-amino butyric acid transporter 1 protein trafficking from biogenesis, oligomerization, glycosylation and translocation to the cell membrane across variants in different cell types such as astrocytes and neurons. We hypothesize that therapeutic approaches to facilitate membrane trafficking would increase γ-amino butyric acid transporter 1 protein membrane expression and function. 4-Phenylbutyrate is a Food and Drug Administration-approved drug for paediatric use and is orally bioavailable. 4-Phenylbutyrate shows promise in the treatment of cystic fibrosis. The common cellular mechanisms shared by the mutant γ-amino butyric acid transporter 1 and cystic fibrosis transmembrane conductance regulator led us to hypothesize that 4-phenylbutyrate could be a potential treatment option for solute carrier Family 6 Member 1 mutations. We examined the impact of 4-phenylbutyrate across a library of variants in cell and knockin mouse models. Because γ-amino butyric acid transporter 1 is expressed in both neurons and astrocytes, and γ-amino butyric acid transporter 1 deficiency in astrocytes has been hypothesized to underlie seizure generation, we tested the effect of 4-phenylbutyrate in both neurons and astrocytes with a focus on astrocytes. We demonstrated existence of the mutant γ-amino butyric acid transporter 1 retaining wildtype γ-amino butyric acid transporter 1, suggesting the mutant protein causes aberrant protein oligomerization and trafficking. 4-Phenylbutyrate increased γ-amino butyric acid uptake in both mouse and human astrocytes and neurons bearing the variants. Importantly, 4-phenylbutyrate alone increased γ-amino butyric acid transporter 1 expression and suppressed spike wave discharges in heterozygous knockin mice. Although the mechanisms of action for 4-phenylbutyrate are still unclear, with multiple possibly being involved, it is likely that 4-phenylbutyrate can facilitate the forward trafficking of the wildtype γ-amino butyric acid transporter 1 regardless of rescuing the mutant γ-amino butyric acid transporter 1, thus increasing γ-amino butyric acid uptake. All patients with solute carrier Family 6 Member 1 variants are heterozygous and carry one wildtype allele, suggesting a great opportunity for treatment development leveraging wildtype protein trafficking. The study opens a novel avenue of treatment development for genetic epilepsy via drug repurposing.
PMID:35911425 | PMC:PMC9336585 | DOI:10.1093/braincomms/fcac144
Identification of SARS-CoV-2 inhibitors through phylogenetics and drug repurposing
Struct Chem. 2022 Jul 26:1-9. doi: 10.1007/s11224-022-02019-6. Online ahead of print.
ABSTRACT
The novel coronavirus that has affected the whole world is declared a pandemic by the World Health Organization. Since the emergence of this virus, researchers worldwide have searched for potential antivirals against it. Being an RNA virus, it shows a high rate of mutability and variability in its genome. In the present study, all the reported SARS-CoV-2 genomes isolated from diverse regions of the world available in the GISAID database have been considered for phylogenetic analysis. The strain identified at the root is subjected to phylogenetic analysis with genomes of other known human viruses obtained from NCBI for identifying the nearest viral neighbor. Furthermore, the phylogenetic relationship between various human viruses was used to repurpose the known antiviral drugs towards coronavirus using in silico docking approach. The phylogeny reveals the link of the COVID virus with adenovirus. The known drugs against adenovirus are considered in the present study for drug repurposing through molecular docking analysis. The reference inhibitors of the respective targets were also considered in the docking study. The protein targets, namely protease, endoribonuclease, methyltransferase, phosphatase, and spike protein, are considered for screening with the known drug of adenovirus. Ribavirin, known to treat adenoviral infection, shows the best docking score, suggesting its use as a repurposed drug to treat SARS-CoV-2. Furthermore, the potency of the ribavirin drug is analyzed using molecular dynamics studies.
SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11224-022-02019-6.
PMID:35910782 | PMC:PMC9315090 | DOI:10.1007/s11224-022-02019-6
Renoprotective potentials of small molecule natural products targeting mitochondrial dysfunction
Front Pharmacol. 2022 Jul 15;13:925993. doi: 10.3389/fphar.2022.925993. eCollection 2022.
ABSTRACT
Kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD), have become critical clinical, socioeconomic, and public health concerns worldwide. The kidney requires a lot of energy, and mitochondria act as the central organelle for the proper functioning of the kidney. Mitochondrial dysfunction has been associated with the pathogenesis of AKI and CKD. Natural products and their structural analogs have been sought as an alternative therapeutic strategy despite the challenges in drug discovery. Many studies have shown that small-molecule natural products can improve renal function and ameliorate kidney disease progression. This review summarizes the nephroprotective effects of small-molecule natural products, such as berberine, betulinic acid, celastrol, curcumin, salidroside, polydatin, and resveratrol. Treatment with small-molecule natural products was shown to attenuate renal oxidative stress and mitochondrial DNA (mtDNA) damage and restore mitochondrial biogenesis and dynamics in the kidneys against various injury stimuli. Therefore, small-molecule natural products should be recognized as multi-target therapeutics and promising drugs to prevent kidney diseases, particularly those with mitochondrial dysfunction.
PMID:35910356 | PMC:PMC9334908 | DOI:10.3389/fphar.2022.925993
Use of Tox21 Screening Data to Evaluate the COVID-19 Drug Candidates for Their Potential Toxic Effects and Related Pathways
Front Pharmacol. 2022 Jul 14;13:935399. doi: 10.3389/fphar.2022.935399. eCollection 2022.
ABSTRACT
Currently, various potential therapeutic agents for coronavirus disease-2019 (COVID-19), a global pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are being investigated worldwide mainly through the drug repurposing approach. Several anti-viral, anti-bacterial, anti-malarial, and anti-inflammatory drugs were employed in randomized trials and observational studies for developing new therapeutics for COVID-19. Although an increasing number of repurposed drugs have shown anti-SARS-CoV-2 activities in vitro, so far only remdesivir has been approved by the US FDA to treat COVID-19, and several other drugs approved for Emergency Use Authorization, including sotrovimab, tocilizumab, baricitinib, paxlovid, molnupiravir, and other potential strategies to develop safe and effective therapeutics for SARS-CoV-2 infection are still underway. Many drugs employed as anti-viral may exert unwanted side effects (i.e., toxicity) via unknown mechanisms. To quickly assess these drugs for their potential toxicological effects and mechanisms, we used the Tox21 in vitro assay datasets generated from screening ∼10,000 compounds consisting of approved drugs and environmental chemicals against multiple cellular targets and pathways. Here we summarize the toxicological profiles of small molecule drugs that are currently under clinical trials for the treatment of COVID-19 based on their in vitro activities against various targets and cellular signaling pathways.
PMID:35910344 | PMC:PMC9333127 | DOI:10.3389/fphar.2022.935399
COVID-19: Pathophysiology, transmission, and drug development for therapeutic treatment and vaccination strategies
Curr Pharm Des. 2022 Jul 29. doi: 10.2174/1381612828666220729093340. Online ahead of print.
ABSTRACT
COVID-19, a dreaded and highly contagious pandemic, is flagrantly known for its rapid prevalence across the world. Till date, none of the treatments are distinctly accessible for this life-threatening disease. Under the prevailing conditions of medical emergency, one creative strategy for the identification of novel and potential antiviral agents gaining momentum in research institutions and progressively being leveraged by pharmaceutical companies is target-based drug repositioning/repurposing. A continuous monitoring and recording of results offer an anticipation that this strategy may help to reveal new medications for viral infections. This review recapitulates the neoteric illation of COVID-19, its genomic dispensation, molecular evolution via phylogenetic assessment, drug targets, the most frequently worldwide used repurposed drugs and their therapeutic applications, and a recent update on vaccine management strategies. The available data from solidarity trials exposed that the treatment with several known drugs, viz. lopinavir-ritonavir, chloroquine, hydroxychloroquine, etc had displayed various antagonistic effects along with no impactful result in diminution of mortality rate. The drugs like remdesivir, favipiravir, and ribavirin proved to be quite safer therapeutic options for treatment against COVID-19. Similarly, dexamethasone, convalescent plasma therapy and oral administration of 2DG are expected to reduce the mortality rate of COVID-19 patients.
PMID:35909276 | DOI:10.2174/1381612828666220729093340
Ibudilast Reduces IL-6 Levels and Ameliorates Symptoms in Lipopolysaccharide-Induced Sepsis Mice
Biol Pharm Bull. 2022;45(8):1180-1184. doi: 10.1248/bpb.b22-00284.
ABSTRACT
In Japan, ibudilast (IBD) is a therapeutic agent used to treat asthma, allergic conjunctivitis, and dizziness caused by cerebrovascular disease. Previously, we have reported that IBD could reduce the secretion of proinflammatory cytokines, including interleukin (IL)-6 and tumor necrosis factor (TNF)-α, in lipopolysaccharide (LPS)-treated RAW264.7 monocyte-linage cells in vitro. In the present study, we examined the anti-inflammatory effects of IBD in vivo. As IL-6 is a biomarker for sepsis and has been suggested to exacerbate symptoms, we determined whether IBD reduces IL-6 levels in vivo and improves sepsis symptoms in animal models. We observed that IBD treatment reduced IL-6 levels in the lungs of LPS-treated mice and improved LPS-induced hypothermia, one of the symptoms of sepsis. In addition, IBD reduced IL-6 and attenuated plasminogen activator inhibitor-1 (PAI-1) and alanine aminotransferase (ALT) levels in the serum of LPS-treated mice. Elevated PAI-1 levels exacerbate sepsis-induced disseminated intravascular coagulation (DIC), and ALT is a biomarker for liver dysfunction. IBD improved the survival of mice administered a lethal dose of LPS. IBD administration ameliorated kidney pathology of model mice. Overall, these results suggest that IBD exerts anti-inflammatory functions in vivo and could be a drug candidate for treating endotoxemia, including sepsis.
PMID:35908899 | DOI:10.1248/bpb.b22-00284
Repurposing clofazimine for malignant pleural mesothelioma treatment - In-vitro assessment of efficacy and mechanism of action
Life Sci. 2022 Jul 28:120843. doi: 10.1016/j.lfs.2022.120843. Online ahead of print.
ABSTRACT
AIMS: Malignant pleural mesothelioma (MPM) is a rare cancer of lungs' pleural cavity, with minimally effective therapies available. Thus, there exists a necessity for drug repurposing which is an attractive strategy for drug development in MPM. Repurposing of an old FDA-approved anti-leprotic drug, Clofazimine (CFZ), presents an outstanding opportunity to explore its efficacy in treating MPM.
MAIN METHODS: Cytotoxicity, scratch assay, and clonogenic assays were employed to determine CFZ's ability to inhibit cell viability, cell migration, and colony growth. 3D Spheroid cell culture studies were performed to identify tumor growth inhibition potential of CFZ in MSTO-211H cell line. Gene expression analysis was performed using RT-qPCR assays to determine the CFZ's effect of key genes. Western blot studies were performed to determine CFZ's ability to induce apoptosis its effect to induce autophagy marker.
KEY FINDINGS: CFZ showed significant cytotoxicity against both immortalized and primary patient-derived cell lines with IC50 values ranging from 3.4 μM (MSTO-211H) to 7.1 μM (HAY). CFZ significantly impaired MPM cell cloning efficiency, migration, and tumor spheroid formation. 3D Spheroid model showed that CFZ resulted in reduction in spheroid volume. RT-qPCR data showed downregulation of genes β-catenin, BCL-9, and PRDX1; and upregulation of apoptosis markers such as PARP, Cleaved caspase 3, and AXIN2. Additionally, immunoblot analysis showed that CFZ down-regulates the expression of β-catenin (apoptosis induction) and up-regulates p62, LC3B protein II (autophagy inhibition).
SIGNIFICANCE: It can be concluded that CFZ could be a promising molecule to repurpose for MPM treatment which needs numerous efforts from further studies.
PMID:35908620 | DOI:10.1016/j.lfs.2022.120843
The SARS-CoV-2 targeted human RNA binding proteins network biology to investigate COVID-19 associated manifestations
Int J Biol Macromol. 2022 Jul 27:S0141-8130(22)01638-5. doi: 10.1016/j.ijbiomac.2022.07.200. Online ahead of print.
ABSTRACT
The global coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 virus has had unprecedented social and economic ramifications. Identifying targets for drug repurposing could be an effective means to present new and fast treatments. Furthermore, the risk of morbidity and mortality from COVID-19 goes up when there are coexisting medical conditions, however, the underlying mechanisms remain unclear. In the current study, we have adopted a network-based systems biology approach to investigate the RNA binding proteins (RBPs)-based molecular interplay between COVID-19, various human cancers, and neurological disorders. The network based on RBPs commonly involved in the three disease conditions consisted of nine RBPs connecting 10 different cancer types, 22 brain disorders, and COVID-19 infection, ultimately hinting at the comorbidities and complexity of COVID-19. Further, we underscored five miRNAs with reported antiviral properties that target all of the nine shared RBPs and are thus therapeutically valuable. As a strategy to improve the clinical conditions in comorbidities associated with COVID-19, we propose perturbing the shared RBPs by drug repurposing. The network-based analysis presented hereby contributes to a better knowledge of the molecular underpinnings of the comorbidities associated with COVID-19.
PMID:35907451 | DOI:10.1016/j.ijbiomac.2022.07.200
Drug repurposing: a systematic review on root causes, barriers and facilitators
BMC Health Serv Res. 2022 Jul 29;22(1):970. doi: 10.1186/s12913-022-08272-z.
ABSTRACT
BACKGROUND: Repurposing is a drug development strategy receiving heightened attention after the Food and Drug Administration granted emergency use authorization of several repurposed drugs to treat Covid-19. There remain knowledge gaps on the root causes, facilitators and barriers for repurposing.
METHOD: This systematic review used controlled vocabulary and free text terms to search ABI/Informa, Academic Search Premier, Business Source Complete, Cochrane Library, EconLit, Google Scholar, Ovid Embase, Ovid Medline, Pubmed, Scopus, and Web of Science Core Collection databases for the characteristics, reasons and example of companies deprioritizing development of promising drugs and barriers, facilitators and examples of successful re-purposing.
RESULTS: We identified 11,814 articles, screened 5,976 for relevance, found 437 eligible for full text review, 115 of which were included in full analysis. Most articles (66%, 76/115) discussed why promising drugs are abandoned, with lack of efficacy or superiority to other therapies (n = 59), strategic business reasons (n = 35), safety problems (n = 28), research design decisions (n = 12), the complex nature of a studied disease or drug (n = 7) and regulatory bodies requiring more information (n = 2) among top reasons. Key barriers to repurposing include inadequate resources (n = 42), trial data access and transparency around abandoned compounds (n = 20) and expertise (n = 11). Additional barriers include uncertainty about the value of repurposing (n = 13), liability risks (n = 5) and intellectual property (IP) challenges (n = 26). Facilitators include the ability to form multi-partner collaborations (n = 38), access to compound databases and database screening tools (n = 32), regulatory modifications (n = 5) and tax incentives (n = 2).
CONCLUSION: Promising drugs are commonly shelved due to insufficient efficacy or superiority to alternate therapies, poor market prospects, and industry consolidation. Inadequate resources and data access and challenges negotiating IP are key barriers to repurposing reaching its full potential as a core approach in drug development. Multi-partner collaborations and the availability and use of compound databases and tax incentives are key facilitators for repurposing. More research is needed on the current value of repurposing in drug development and how to better facilitate resources to support it, where valuable, especially financial, staffing for out-licensing shelved products, and legal expertise to negotiate IP agreements in multi-partner collaborations.
TRIAL REGISTRATION: The protocol was registered on Open Science Framework ( https://osf.io/f634k/ ) as it was not eligible for registration on PROSPERO as the review did not focus on a health-related outcome.
PMID:35906687 | DOI:10.1186/s12913-022-08272-z