Drug Repositioning

Aripiprazole sensitizes head and neck cancer cells to ionizing radiation by enhancing the production of reactive oxygen species

Fri, 2022-07-29 06:00

Pharmacol Res Perspect. 2022 Aug;10(4):e00989. doi: 10.1002/prp2.989.

ABSTRACT

Drug repositioning is an alternative process for drug development in cancer. Specifically, it is a strategy for the discovery of new antitumor drugs by screening previously approved clinical drugs. On the basis of this strategy, aripiprazole, an antipsychotic drug, was found to have anticancer activity. In this study, we investigated the radiosensitizing effects of aripiprazole on head and neck cancer cells at sublethal doses of ionizing radiation (IR) in vitro and in vivo. Treatment with aripiprazole suppressed the growth of head and neck cancer cells in a concentration-dependent manner, as evidenced by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Intriguingly, aripiprazole significantly enhanced the sensitivity of these cells to the IC50 dose of IR. The combination of aripiprazole with IR synergistically increased annexin and propidium iodide double-positive and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cell populations, and induced cleaved poly(ADP-ribose) polymerase and caspase-3 expression, indicating the induction of apoptosis in these cells. Aripiprazole and IR-induced apoptosis were accompanied by an increase in reactive oxygen species and was almost completely suppressed by the addition of the antioxidant, N-acetylcysteine. Finally, aripiprazole greatly sensitized xenograft tumors to IR at doses that did not affect tumor growth. Taken together, these results suggest that aripiprazole could be considered a potent radiosensitizer for head and neck cancer.

PMID:35904494 | DOI:10.1002/prp2.989

Categories: Literature Watch

Robust antiviral activity of commonly prescribed antidepressants against emerging coronaviruses: in vitro and in silico drug repurposing studies

Thu, 2022-07-28 06:00

Sci Rep. 2022 Jul 28;12(1):12920. doi: 10.1038/s41598-022-17082-6.

ABSTRACT

During the current coronavirus disease 2019 (COVID-19) pandemic, symptoms of depression are commonly documented among both symptomatic and asymptomatic quarantined COVID-19 patients. Despite that many of the FDA-approved drugs have been showed anti-SARS-CoV-2 activity in vitro and remarkable efficacy against COVID-19 in clinical trials, no pharmaceutical products have yet been declared to be fully effective for treating COVID-19. Antidepressants comprise five major drug classes for the treatment of depression, neuralgia, migraine prophylaxis, and eating disorders which are frequently reported symptoms in COVID-19 patients. Herein, the efficacy of eight frequently prescribed FDA-approved antidepressants on the inhibition of both SARS-CoV-2 and MERS-CoV was assessed. Additionally, the in vitro anti-SARS-CoV-2 and anti-MERS-CoV activities were evaluated. Furthermore, molecular docking studies have been performed for these drugs against the spike (S) and main protease (Mpro) pockets of both SARS-CoV-2 and MERS-CoV. Results showed that Amitriptyline, Imipramine, Paroxetine, and Sertraline had potential anti-viral activities. Our findings suggested that the aforementioned drugs deserve more in vitro and in vivo studies targeting COVID-19 especially for those patients suffering from depression.

PMID:35902647 | DOI:10.1038/s41598-022-17082-6

Categories: Literature Watch

Repurposing of the antihistamine mebhydrolin napadisylate for treatment of Zika virus infection

Thu, 2022-07-28 06:00

Bioorg Chem. 2022 Jul 22;128:106024. doi: 10.1016/j.bioorg.2022.106024. Online ahead of print.

ABSTRACT

Zika virus (ZIKV) infection can lead to severe neurological disorders and fetal defects, which has become a public health problem worldwide. However, effective clinical treatment for ZIKV infection was still arduous. Antihistamines are attractive candidates for drug repurposing due to their low price and widespread availability. Here we screened FDA-approved antihistamine drugs to obtain anti-ZIKV candidate compounds and identified mebhydrolin napadisylate (MHL) that exhibits the potent inhibition of ZIKV infection in various cell lines in a histamine H1 receptor-independent manner. Mechanistic studies suggest that MHL acts as a ZIKV NS5 RNA-dependent RNA polymerase (RdRp) inhibitor, supported by a structure-activity relationship (SAR) analysis showing the correlation between the inhibitory effect upon viral RNA synthesis and ZIKV infectivity. Furthermore, MHL was shown to bind ZIKV NS5 RdRp in vitro and predicted to interact with key residues at the active site of ZIKV NS5 RdRp by molecular docking analysis. Our data together suggest that MHL suppresses ZIKV infection through the inhibition of ZIKV NS5 RdRp activity. This study highlights that MHL might be a promising clinical anti-ZIKV therapeutic.

PMID:35901544 | DOI:10.1016/j.bioorg.2022.106024

Categories: Literature Watch

Identification of Potential Parkinson's Disease Drugs Based on Multi-Source Data Fusion and Convolutional Neural Network

Thu, 2022-07-28 06:00

Molecules. 2022 Jul 26;27(15):4780. doi: 10.3390/molecules27154780.

ABSTRACT

Parkinson's disease (PD) is a serious neurodegenerative disease. Most of the current treatment can only alleviate symptoms, but not stop the progress of the disease. Therefore, it is crucial to find medicines to completely cure PD. Finding new indications of existing drugs through drug repositioning can not only reduce risk and cost, but also improve research and development efficiently. A drug repurposing method was proposed to identify potential Parkinson's disease-related drugs based on multi-source data integration and convolutional neural network. Multi-source data were used to construct similarity networks, and topology information were utilized to characterize drugs and PD-associated proteins. Then, diffusion component analysis method was employed to reduce the feature dimension. Finally, a convolutional neural network model was constructed to identify potential associations between existing drugs and LProts (PD-associated proteins). Based on 10-fold cross-validation, the developed method achieved an accuracy of 91.57%, specificity of 87.24%, sensitivity of 95.27%, Matthews correlation coefficient of 0.8304, area under the receiver operating characteristic curve of 0.9731 and area under the precision-recall curve of 0.9727, respectively. Compared with the state-of-the-art approaches, the current method demonstrates superiority in some aspects, such as sensitivity, accuracy, robustness, etc. In addition, some of the predicted potential PD therapeutics through molecular docking further proved that they can exert their efficacy by acting on the known targets of PD, and may be potential PD therapeutic drugs for further experimental research. It is anticipated that the current method may be considered as a powerful tool for drug repurposing and pathological mechanism studies.

PMID:35897954 | DOI:10.3390/molecules27154780

Categories: Literature Watch

Evidence of Metallic and Polyether Ionophores as Potent Therapeutic Drug Candidate in Cancer Management

Thu, 2022-07-28 06:00

Molecules. 2022 Jul 23;27(15):4708. doi: 10.3390/molecules27154708.

ABSTRACT

Cancer remains one of the most crucial human malignancies with a higher mortality rate globally, and is predicted to escalate soon. Dysregulated ion homeostasis in cancerous cells prompted the researchers to investigate further ion homeostasis impeding agents as potent anticancerous agents. Reutilization of FDA-approved non-cancerous drugs has emerged as a practical approach to developing potent, cost-effective drugs for cancer treatment. Across the globe, most nations are incapable of fulfilling the medical demands of cancer patients due to costlier cancerous drugs. Therefore, we have inclined our review towards emphasizing recent advancements in cancer therapies involving ionophores utilization in exploring potent anticancer drugs. Numerous research reports have established the significant anticancerous potential of ionophores in several pre-clinical reports via modulating aberrant cell signaling pathways and enhancing antitumor immunity in immune cells. This review has mainly summarized the most significant ion homeostasis impeding agents, including copper, zinc, calcium, and polyether, that presented remarkable potential in cancer therapeutics via enhanced antitumor immunity and apoptosis induction. Altogether, this study could provide a robust future perspective for developing cost-effective anticancerous drugs rapidly and cost-effectively, thereby combating the limitations of currently available drugs used in cancer treatment.

PMID:35897885 | DOI:10.3390/molecules27154708

Categories: Literature Watch

Repositioning of Old Drugs for Novel Cancer Therapies: Continuous Therapeutic Perfusion of Aspirin and Oseltamivir Phosphate with Gemcitabine Treatment Disables Tumor Progression, Chemoresistance, and Metastases

Wed, 2022-07-27 06:00

Cancers (Basel). 2022 Jul 23;14(15):3595. doi: 10.3390/cancers14153595.

ABSTRACT

Metastatic pancreatic cancer has an invariably fatal outcome, with an estimated median progression-free survival of approximately six months employing our best combination chemotherapeutic regimens. Once drug resistance develops, manifested by increased primary tumor size and new and growing metastases, patients often die rapidly from their disease. Emerging evidence indicates that chemotherapy may contribute to the development of drug resistance through the upregulation of epithelial-mesenchymal transition (EMT) pathways and subsequent cancer stem cell (CSC) enrichment. Neuraminidase-1 (Neu-1) regulates the activation of several receptor tyrosine kinases implicated in EMT induction, angiogenesis, and cellular proliferation. Here, continuous therapeutic targeting of Neu-1 using parenteral perfusion of oseltamivir phosphate (OP) and aspirin (ASA) with gemcitabine (GEM) treatment significantly disrupts tumor progression, critical compensatory signaling mechanisms, EMT program, CSC, and metastases in a preclinical mouse model of human pancreatic cancer. ASA- and OP-treated xenotumors significantly inhibited the metastatic potential when transferred into animals.

PMID:35892853 | DOI:10.3390/cancers14153595

Categories: Literature Watch

Locally Applied Repositioned Hormones for Oral Bone and Periodontal Tissue Engineering: A Narrative Review

Wed, 2022-07-27 06:00

Polymers (Basel). 2022 Jul 21;14(14):2964. doi: 10.3390/polym14142964.

ABSTRACT

Bone and periodontium are tissues that have a unique capacity to repair from harm. However, replacing or regrowing missing tissues is not always effective, and it becomes more difficult as the defect grows larger. Because of aging and the increased prevalence of debilitating disorders such as diabetes, there is a considerable increase in demand for orthopedic and periodontal surgical operations, and successful techniques for tissue regeneration are still required. Even with significant limitations, such as quantity and the need for a donor area, autogenous bone grafts remain the best solution. Topical administration methods integrate osteoconductive biomaterial and osteoinductive chemicals as hormones as alternative options. This is a promising method for removing the need for autogenous bone transplantation. Furthermore, despite enormous investigation, there is currently no single approach that can reproduce all the physiologic activities of autogenous bone transplants. The localized bioengineering technique uses biomaterials to administer different hormones to capitalize on the host's regeneration capacity and capability, as well as resemble intrinsic therapy. The current study adds to the comprehension of the principle of hormone redirection and its local administration in both bone and periodontal tissue engineering.

PMID:35890740 | DOI:10.3390/polym14142964

Categories: Literature Watch

Repurposing Drugs via Network Analysis: Opportunities for Psychiatric Disorders

Wed, 2022-07-27 06:00

Pharmaceutics. 2022 Jul 14;14(7):1464. doi: 10.3390/pharmaceutics14071464.

ABSTRACT

Despite advances in pharmacology and neuroscience, the path to new medications for psychiatric disorders largely remains stagnated. Drug repurposing offers a more efficient pathway compared with de novo drug discovery with lower cost and less risk. Various computational approaches have been applied to mine the vast amount of biomedical data generated over recent decades. Among these methods, network-based drug repurposing stands out as a potent tool for the comprehension of multiple domains of knowledge considering the interactions or associations of various factors. Aligned well with the poly-pharmacology paradigm shift in drug discovery, network-based approaches offer great opportunities to discover repurposing candidates for complex psychiatric disorders. In this review, we present the potential of network-based drug repurposing in psychiatry focusing on the incentives for using network-centric repurposing, major network-based repurposing strategies and data resources, applications in psychiatry and challenges of network-based drug repurposing. This review aims to provide readers with an update on network-based drug repurposing in psychiatry. We expect the repurposing approach to become a pivotal tool in the coming years to battle debilitating psychiatric disorders.

PMID:35890359 | DOI:10.3390/pharmaceutics14071464

Categories: Literature Watch

Integration of In Silico Strategies for Drug Repositioning towards P38α Mitogen-Activated Protein Kinase (MAPK) at the Allosteric Site

Wed, 2022-07-27 06:00

Pharmaceutics. 2022 Jul 13;14(7):1461. doi: 10.3390/pharmaceutics14071461.

ABSTRACT

P38α mitogen-activated protein kinase (p38α MAPK), one of the p38 MAPK isoforms participating in a signaling cascade, has been identified for its pivotal role in the regulation of physiological processes such as cell proliferation, differentiation, survival, and death. Herein, by shedding light on docking- and 100-ns dynamic-based screening from 3210 FDA-approved drugs, we found that lomitapide (a lipid-lowering agent) and nilotinib (a Bcr-Abl fusion protein inhibitor) could alternatively inhibit phosphorylation of p38α MAPK at the allosteric site. All-atom molecular dynamics simulations and free energy calculations including end-point and QM-based ONIOM methods revealed that the binding affinity of the two screened drugs exhibited a comparable level as the known p38α MAPK inhibitor (BIRB796), suggesting the high potential of being a novel p38α MAPK inhibitor. In addition, noncovalent contacts and the number of hydrogen bonds were found to be corresponding with the great binding recognition. Key influential amino acids were mostly hydrophobic residues, while the two charged residues including E71 and D168 were considered crucial ones due to their ability to form very strong H-bonds with the focused drugs. Altogether, our contributions obtained here could be theoretical guidance for further conducting experimental-based preclinical studies necessary for developing therapeutic agents targeting p38α MAPK.

PMID:35890356 | DOI:10.3390/pharmaceutics14071461

Categories: Literature Watch

New Life of an Old Drug: Caffeine as a Modulator of Antibacterial Activity of Commonly Used Antibiotics

Wed, 2022-07-27 06:00

Pharmaceuticals (Basel). 2022 Jul 15;15(7):872. doi: 10.3390/ph15070872.

ABSTRACT

With the rapid and continuous emergence of antimicrobial resistance, bacterial infections became a significant global healthcare concern. One of the proposed strategies to combat multidrug-resistant pathogens is to use additional compounds, such as natural biologically active substances, as adjuvants for existing antibiotics. In this study, we investigated the potential of caffeine, the widely consumed alkaloid, to modulate the antibacterial effects of antibiotics commonly used in clinical practice. We used disc diffusion assay to evaluate the effects of caffeine on 40 antibiotics in two Staphylococcus aureus strains (methicillin-resistant and methicillin-sensitive). Based on the results of this step, we selected five antibiotics for which the greatest caffeine-induced improvements in antibacterial activity were observed, and further analyzed their interactions with caffeine using a checkerboard approach. Caffeine at concentrations of 250 µg/mL or higher halved the MIC values of ticarcillin, cefepime, gentamycin, azithromycin, and novobiocin for all gram-negative species investigated (Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii). At the highest caffeine concentrations tested (up to 16 mg/mL), decreases in MIC values were 8- to 16-fold. The obtained results prove that caffeine modulates the activity of structurally diverse antibiotics, with the most promising synergistic effects observed for cefepime and azithromycin toward gram-negative pathogens.

PMID:35890171 | DOI:10.3390/ph15070872

Categories: Literature Watch

Selective COX-2 Inhibitors: Road from Success to Controversy and the Quest for Repurposing

Wed, 2022-07-27 06:00

Pharmaceuticals (Basel). 2022 Jul 3;15(7):827. doi: 10.3390/ph15070827.

ABSTRACT

The introduction of selective COX-2 inhibitors (so-called 'coxibs') has demonstrated tremendous commercial success due to their claimed lower potential of serious gastrointestinal adverse effects than traditional NSAIDs. However, following the repeated questioning on safety concerns, the coxibs 'controversial me-too' saga increased substantially, inferring to the risk of cardiovascular complications, subsequently leading to the voluntary withdrawal of coxibs (e.g., rofecoxib and valdecoxib) from the market. For instance, the makers (Pfizer and Merck) had to allegedly settle individual claims of cardiovascular hazards from celecoxib and valdecoxib. Undoubtedly, the lessons drawn from this saga revealed the flaws in drug surveillance and regulation, and taught science to pursue a more integrated translational approach for data acquisition and interpretation, prompting science-based strategies of risk avoidance in order to sustain the value of such drugs, rather than their withdrawal. Looking forward, coxibs are now being studied for repurposing, given their possible implications in the management of a myriad of diseases, including cancer, epilepsy, psychiatric disorders, obesity, Alzheimer's disease, and so on. This article briefly summarizes the development of COX-2 inhibitors to their market impression, followed by the controversy related to their toxicity. In addition, the events recollected in hindsight (the past lessons), the optimistic step towards drug repurposing (the present), and the potential for forthcoming success (the future) are also discussed.

PMID:35890126 | DOI:10.3390/ph15070827

Categories: Literature Watch

Advances in Antifungal Development: Discovery of New Drugs and Drug Repurposing

Wed, 2022-07-27 06:00

Pharmaceuticals (Basel). 2022 Jun 24;15(7):787. doi: 10.3390/ph15070787.

ABSTRACT

This Special Issue of Pharmaceuticals describes recent advances accomplished in the field of antifungal development, especially the discovery of new drugs and drug repurposing [...].

PMID:35890086 | DOI:10.3390/ph15070787

Categories: Literature Watch

Inhibition of Microtubule Affinity Regulating Kinase 4 by Metformin: Exploring the Neuroprotective Potential of Antidiabetic Drug through Spectroscopic and Computational Approaches

Wed, 2022-07-27 06:00

Molecules. 2022 Jul 21;27(14):4652. doi: 10.3390/molecules27144652.

ABSTRACT

Microtubule affinity regulating kinase 4 (MARK4) regulates the mechanism of microtubules by its ability to phosphorylate the microtubule-associated proteins (MAP's). MARK4 is known for its major role in tau phosphorylation via phosphorylating Ser262 residue in the KXGS motif, which results in the detachment of tau from microtubule. In lieu of this vital role in tau pathology, a hallmark of Alzheimer's disease (AD), MARK4 is a druggable target to treat AD and other neurodegenerative disorders (NDs). There is growing evidence that NDs and diabetes are connected with many pieces of literature demonstrating a high risk of developing AD in diabetic patients. Metformin (Mtf) has been a drug in use against type 2 diabetes mellitus (T2DM) for a long time; however, recent studies have established its therapeutic effect in neurodegenerative diseases (NDs), namely AD, Parkinson's disease (PD) and amnestic mild cognitive impairment. In this study, we have explored the MARK4 inhibitory potential of Mtf, employing in silico and in vitro approaches. Molecular docking demonstrated that Mtf binds to MARK4 with a significant affinity of -6.9 kcal/mol forming interactions with binding pocket's critical residues. Additionally, molecular dynamics (MD) simulation provided an atomistic insight into the binding of Mtf with MARK4. ATPase assay of MARK4 in the presence of Mtf shows that it inhibits MARK4 with an IC50 = 7.05 µM. The results of the fluorescence binding assay demonstrated significant binding of MARK4 with a binding constant of 0.6 × 106 M-1. The present study provides an additional axis towards the utilization of Mtf as MARK4 inhibitor targeting diabetes with NDs.

PMID:35889524 | DOI:10.3390/molecules27144652

Categories: Literature Watch

In Silico Drug Repurposing of FDA-Approved Drugs Highlighting Promacta as a Potential Inhibitor of H7N9 Influenza Virus

Wed, 2022-07-27 06:00

Molecules. 2022 Jul 15;27(14):4515. doi: 10.3390/molecules27144515.

ABSTRACT

Influenza virus infections continue to be a significant and recurrent public health problem. Although vaccine efficacy varies, regular immunisation is the most effective method for suppressing the influenza virus. Antiviral drugs are available for influenza, although two of the four FDA-approved antiviral treatments have resulted in significant drug resistance. Therefore, new treatments are being sought to reduce the burden of flu-related illness. The time-consuming development of treatments for new and re-emerging diseases such as influenza and the high failure rate are increasing concerns. In this context, we used an in silico-based drug repurposing method to repurpose FDA-approved drugs as potential therapies against the H7N9 virus. To find potential inhibitors, a total of 2568 drugs were screened. Promacta, tucatinib, and lurasidone were identified as promising hits in the DrugBank database. According to the calculations of MM-GBSA, tucatinib (-54.11 kcal/mol) and Promacta (-56.20 kcal/mol) occupied the active site of neuraminidase with a higher binding affinity than the standard drug peramivir (-49.09 kcal/mol). Molecular dynamics (MD) simulation studies showed that the C-α atom backbones of the complexes of tucatinib and Promacta neuraminidase were stable throughout the simulation period. According to ADME analysis, the hit compounds have a high gastrointestinal absorption (GI) and do not exhibit properties that allow them to cross the blood-brain barrier (BBB). According to the in silico toxicity prediction, Promacta is not cardiotoxic, while lurasidone and tucatinib show only weak inhibition. Therefore, we propose to test these compounds experimentally against the influenza H7N9 virus. The investigation and validation of these potential H7N9 inhibitors would be beneficial in order to bring these compounds into clinical settings.

PMID:35889388 | DOI:10.3390/molecules27144515

Categories: Literature Watch

Statistical Bioinformatics to Uncover the Underlying Biological Mechanisms That Linked Smoking with Type 2 Diabetes Patients Using Transcritpomic and GWAS Analysis

Wed, 2022-07-27 06:00

Molecules. 2022 Jul 8;27(14):4390. doi: 10.3390/molecules27144390.

ABSTRACT

Type 2 diabetes (T2D) is a chronic metabolic disease defined by insulin insensitivity corresponding to impaired insulin sensitivity, decreased insulin production, and eventually failure of beta cells in the pancreas. There is a 30-40 percent higher risk of developing T2D in active smokers. Moreover, T2D patients with active smoking may gradually develop many complications. However, there is still no significant research conducted to solve the issue. Hence, we have proposed a highthroughput network-based quantitative pipeline employing statistical methods. Transcriptomic and GWAS data were analysed and obtained from type 2 diabetes patients and active smokers. Differentially Expressed Genes (DEGs) resulted by comparing T2D patients' and smokers' tissue samples to those of healthy controls of gene expression transcriptomic datasets. We have found 55 dysregulated genes shared in people with type 2 diabetes and those who smoked, 27 of which were upregulated and 28 of which were downregulated. These identified DEGs were functionally annotated to reveal the involvement of cell-associated molecular pathways and GO terms. Moreover, protein-protein interaction analysis was conducted to discover hub proteins in the pathways. We have also identified transcriptional and post-transcriptional regulators associated with T2D and smoking. Moreover, we have analysed GWAS data and found 57 common biomarker genes between T2D and smokers. Then, Transcriptomic and GWAS analyses are compared for more robust outcomes and identified 1 significant common gene, 19 shared significant pathways and 12 shared significant GOs. Finally, we have discovered protein-drug interactions for our identified biomarkers.

PMID:35889263 | DOI:10.3390/molecules27144390

Categories: Literature Watch

The Current Role of Biologics for Meniscus Injury and Treatment

Tue, 2022-07-26 06:00

Curr Rev Musculoskelet Med. 2022 Jul 26. doi: 10.1007/s12178-022-09778-z. Online ahead of print.

ABSTRACT

PURPOSE OF REVIEW: There is little doubt that the consensus has changed to favor preservation of meniscal function where possible. Accordingly, the indications for meniscal repair strategies have been refocused on the long-term interest of knee joint health. The development and refinements in surgical technique have been complemented by biological augmentation strategies to address intrinsic challenges in healing capacity of meniscal tissue, with variable effects.

RECENT FINDINGS: A contemporary approach to meniscal healing includes adequate surgical fixation, meniscal and synovial tissue stimulation, and management of the intraarticular milieu. Overall, evidence supporting the use of autogenous or allogeneic cell sources remains limited. The use of FDA-approved medications to effect biologically favorable mechanisms during meniscal healing holds promise. Development and characterization of biologics continue to advance with translational research focused on specific growth factors, cell and tissue behaviors in meniscal healing, and joint homeostasis. Although significant strides have been made in laboratory and pre-clinical studies, translation to clinical application remains challenging. Finally, expert consensus and standardization of nomenclature related to orthobiologics for meniscal preservation will be important for the advancement of this field.

PMID:35881326 | DOI:10.1007/s12178-022-09778-z

Categories: Literature Watch

Tetramisole is a new I<sub>K1</sub> channel agonist and exerts I<sub>K1</sub> -dependent cardioprotective effects in rats

Tue, 2022-07-26 06:00

Pharmacol Res Perspect. 2022 Aug;10(4):e00992. doi: 10.1002/prp2.992.

ABSTRACT

Cardiac ischemia, hypoxia, arrhythmias, and heart failure share the common electrophysiological changes featured by the elevation of intracellular Ca2+ (Ca2+ overload) and inhibition of the inward rectifier potassium (IK1 ) channel. IK1 channel agonists have been considered a new type of anti-arrhythmia and cardioprotective agents. We predicted using a drug repurposing strategy that tetramisole (Tet), a known anthelminthic agent, was a new IK1 channel agonist. The present study aimed to experimentally identify the above prediction and further demonstrate that Tet has cardioprotective effects. Results of the whole-cell patch clamp technique showed that Tet at 1-100 μmol/L enhanced IK1 current, hyperpolarized resting potential (RP), and shortened action potential duration (APD) in isolated rat cardiomyocytes, while without effects on other ion channels or transporters. In adult Sprague-Dawley (SD) rats in vivo, Tet showed anti-arrhythmia and anticardiac remodeling effects, respectively, in the coronary ligation-induced myocardial infarction model and isoproterenol (Iso, i.p., 3 mg/kg/day, 10 days) infusion-induced cardiac remodeling model. Tet also showed anticardiomyocyte remodeling effect in Iso (1 μmol/L) infused adult rat ventricular myocytes or cultured H9c2 (2-1) cardiomyocytes. Tet at 0.54 mg/kg in vivo or 30 μmol/L in vitro showed promising protections on acute ischemic arrhythmias, myocardial hypertrophy, and fibrosis. Molecular docking was performed and identified the selective binding of Tet with Kir2.1. The cardioprotection of Tet was associated with the facilitation of IK1 channel forward trafficking, deactivation of PKA signaling, and inhibition of intracellular calcium overload. Enhancing IK1 may play dual roles in anti-arrhythmia and antiventricular remodeling mediated by restoration of Ca2+ homeostasis.

PMID:35880674 | DOI:10.1002/prp2.992

Categories: Literature Watch

Looking at NSAIDs from a historical perspective and their current status in drug repurposing for cancer treatment and prevention

Mon, 2022-07-25 06:00

J Cancer Res Clin Oncol. 2022 Jul 25. doi: 10.1007/s00432-022-04187-8. Online ahead of print.

ABSTRACT

Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most frequently prescribed drug classes with wide therapeutic applications over the centuries. Starting from the use of salicylate-containing willow leaves to the recent rise and fall of highly selective cyclooxygenase-2 (COX-2) inhibitors and the latest dual-acting anti-inflammatory molecules, they have displayed a rapid and ongoing evolution. Despite the enormous advances in the last twenty years, investigators are still in search of the design and development of more potent and safer therapy against inflammatory conditions. This challenge has been increasingly attractive as the emergence of inflammation as a common seed and unifying mechanism for most chronic diseases. Indeed, this fact put the NSAIDs in the spotlight for repurposing against inflammation-related disorders. This review attempts to present a historical perspective on the evolution of NSAIDs, regarding their COX-dependent/independent mode of actions, structural and mechanism-based classifications, and adverse effects. Additionally, a systematic review of previous studies was carried out to show the current situation in drug repurposing, particularly in cancers associated with the GI tract such as gastric and colorectal carcinoma. In the case of non-GI-related cancers, preclinical studies elucidating the effects and modes of action were collected and summarized.

PMID:35876951 | DOI:10.1007/s00432-022-04187-8

Categories: Literature Watch

Evaluation of the dual effects of antiviral drugs on SARS-CoV-2 receptors and the ACE2 receptor using structure-based virtual screening and molecular dynamics simulation

Mon, 2022-07-25 06:00

J Biomol Struct Dyn. 2022 Jul 25:1-23. doi: 10.1080/07391102.2022.2103735. Online ahead of print.

ABSTRACT

The use of US FDA-approved drugs is preferred due to the need for lower costs and less time. In in silico medicine, repurposing is a quick and accurate way to screen US FDA-approved medications to find a therapeutic option for COVID-19 infection. Dual inhibitors possess dual inhibitory activity, which may be due to the inhibition of two different enzymes, and are considered better than combination therapy from the developmental and clinical perspectives. In this study, a molecular docking simulation was performed to identify the interactions of antiviral drugs with the critical residues in the binding site of the main SARS-CoV-2 protease, spike glycoprotein, and papain-like protease receptors compared to the angiotensin-converting enzyme-related carboxypeptidase (ACE2) receptor of host cells. Each of the receptors was docked with 70 US FDA-approved antiviral drugs using AutoDock Vina. A molecular dynamics (MD) simulation study was also used for 100 ns to confirm the stability behaviour of the ligand receptor complexes. Among the drugs that had the strongest interaction with the SARS-CoV-2 main protease, spike glycoprotein and papain-like protease receptors, and host cell ACE2 receptors, Simeprevir, Maraviroc and Saquinavir had dual inhibitory effects. The MD simulation study confirmed the stability of the strongest interactions between the antiviral drugs and the main protease, ACE2, spike glycoprotein, and papain-like protease receptors to 100 ns. However the results of MMPBSA analysis showed that the bond between Saquinavir and the ACE2 receptor was weak. Simeprevir and Maraviroc drugs had acceptable binding energies with dual receptors, especially the Simeprevir.Communicated by Ramaswamy H. Sarma.

PMID:35876061 | DOI:10.1080/07391102.2022.2103735

Categories: Literature Watch

Long COVID and its Management

Mon, 2022-07-25 06:00

Int J Biol Sci. 2022 Jul 11;18(12):4768-4780. doi: 10.7150/ijbs.75056. eCollection 2022.

ABSTRACT

The pandemic of COVID-19 is the biggest public health crisis in 21st Century. Besides the acute symptoms after infection, patients and society are also being challenged by the long-term health complications associated with COVID-19, commonly known as long COVID. While health professionals work hard to find proper treatments, large amount of knowledge has been accumulated in recent years. In order to deal with long COVID efficiently, it is important for people to keep up with current progresses and take proactive actions on long COVID. For this purpose, this review will first introduce the general background of long COVID, and then discuss its risk factors, diagnostic indicators and management strategies. This review will serve as a useful resource for people to understand and prepare for long COVID that will be with us in the foreseeable future.

PMID:35874958 | PMC:PMC9305273 | DOI:10.7150/ijbs.75056

Categories: Literature Watch

Pages