Drug Repositioning
Acriflavine, a clinically approved drug, inhibits SARS-CoV-2 and other betacoronaviruses
Cell Chem Biol. 2022 Jan 11:S2451-9456(21)00513-4. doi: 10.1016/j.chembiol.2021.11.006. Online ahead of print.
ABSTRACT
The COVID-19 pandemic caused by SARS-CoV-2 has been socially and economically devastating. Despite an unprecedented research effort and available vaccines, effective therapeutics are still missing to limit severe disease and mortality. Using high-throughput screening, we identify acriflavine (ACF) as a potent papain-like protease (PLpro) inhibitor. NMR titrations and a co-crystal structure confirm that acriflavine blocks the PLpro catalytic pocket in an unexpected binding mode. We show that the drug inhibits viral replication at nanomolar concentration in cellular models, in vivo in mice and ex vivo in human airway epithelia, with broad range activity against SARS-CoV-2 and other betacoronaviruses. Considering that acriflavine is an inexpensive drug approved in some countries, it may be immediately tested in clinical trials and play an important role during the current pandemic and future outbreaks.
PMID:35021060 | DOI:10.1016/j.chembiol.2021.11.006
Ion Transporting Proteins and Cancer: Progress and Perspectives
Rev Physiol Biochem Pharmacol. 2022 Jan 12. doi: 10.1007/112_2021_66. Online ahead of print.
ABSTRACT
Ion transporting proteins (ITPs) comprise a wide range of ion channels, exchangers, pumps and ionotropic receptors many of which are expressed in tumours and contribute dynamically to the different components and stages of the complex cancer process, from initiation to metastasis. In this promising major field of biomedical research, several candidate ITPs have emerged as clinically viable. Here, we consider a series of general issues concerning the oncological potential of ITPs focusing on voltage-gated sodium channels as a 'case study'. First, we outline some key properties of 'cancer' as a whole. These include epigenetics, stemness, metastasis, heterogeneity, neuronal characteristics and bioelectricity. Cancer specificity of ITP expression is evaluated in relation to tissue restriction, splice variance, functional specificity and macro-molecular complexing. As regards clinical potential, diagnostics is covered with emphasis on enabling early detection. For therapeutics, we deal with molecular approaches, drug repurposing and combinations. Importantly, we emphasise the need for carefully designed clinical trials. We highlight also the area of 'social responsibility' and the need to involve the public (cancer patients and healthy individuals) in the work of cancer research professionals as well as clinicians. In advising patients how best to manage cancer, and live with it, we offer the following four principles: Awareness and prevention, early detection, specialist, integrated care, and psychological support. Finally, we highlight four key prerequisites for commercialisation of ITP-based technologies against cancer. We conclude that ITPs offer significant potential as regards both understanding the intricacies of the complex process of cancer and for developing much needed novel therapies.
PMID:35018530 | DOI:10.1007/112_2021_66
Atorvastatin does not display an antimicrobial activity on its own nor potentiates the activity of other antibiotics against <em>Acinetobacter baumannii</em> ATCC17978 or <em>A. baumannii</em> AB030
Access Microbiol. 2021 Nov 30;3(11):000288. doi: 10.1099/acmi.0.000288. eCollection 2021.
ABSTRACT
With the current arsenal of antibiotics increasingly becoming ineffective against bacteria, there is an increasing interest in the possibility of using previously approved non-antibiotic drugs as antimicrobials. Statins have recently been investigated for their antimicrobial activity and their ability to potentially synergize with current treatment options. Atorvastatin had been shown previously to be the most promising candidate for effectivity against Acinetobacter baumannii ATCC17978. In this study, we tested atorvastatin for its activity against an extensively drug-resistant (XDR) strain A. baumannii AB030. However, our data show that atorvastatin has no effect A. baumannii AB030. Intriguingly, atorvastatin was also ineffective against our laboratory's A. baumannii ATCC17978. This lack of atorvastatin activity against A. baumannii ATCC17978 cannot be attributed to RND efflux pumps as a strain deficient in the three most clinically relevant RND efflux systems in A. baumannii showed no change in susceptibility compared to its parent strain ATCC17978. Further, atorvastatin failed to potentiate the activity of tobramycin and ciprofloxacin. While it is not clear to us why atorvastatin is not active against A. baumannii ATCC17978 used in our study, our study shows that evaluation of compounds for their antibacterial activity should involve multiple strains to account for strain-to-strain variation.
PMID:35018330 | PMC:PMC8742588 | DOI:10.1099/acmi.0.000288
Diacerein, an inhibitor of IL-1β downstream mediated apoptosis, improves radioimmunotherapy in a mouse model of Burkitt's lymphoma
Am J Cancer Res. 2021 Dec 15;11(12):6147-6159. eCollection 2021.
ABSTRACT
Lymphoma has the characteristics of a solid tumor. Penetration of monoclonal antibodies is limited in solid tumors during radioimmunotherapy (RIT). Here, we first investigated the use of diacerein (DIA) as a combination drug to improve the penetration and therapeutic efficacy of 131I-rituximab (RTX) using the Burkitt's lymphoma mouse model. We selected DIA through computational drug repurposing and focused on rheumatoid arthritis (RA) drug interaction genes to minimize side effects. Then, the cytotoxicity of DIA was assessed in vitro using three different lymphoma cell lines. DIA-induced apoptosis was confirmed by Western blotting. After confirming apoptosis, we confirmed the enhanced uptake of 131I-RTX in Burkitt's lymphoma mouse model using SPECT/CT. Autoradiography of 131I-RTX confirmed the therapeutic effect of DIA. Finally, the tumor size and survival rate were assessed to measure the enhanced therapeutic efficacy when DIA was used. In addition, we assessed the dose-dependency of DIA in terms of the accumulation of 131I-RTX in tumor tissue, the tumor size, and the survival rate. The in vitro cytotoxicity was 10.9%. We showed that DIA induced apoptosis which was related to downstream IL-1β signaling by Western blotting. We found increased Annexin V positive apoptosis after DIA administration. Immuno SPECT/CT images demonstrated a higher uptake of 131I-RTX in tumors in the DIA-administered group than that in the PBS-alone group. However, there were no statistical differences of dose-dependency between 20 mg/kg and 40 mg/kg of DIA. Tumor growth was significantly inhibited in the group treated with the combination of DIA plus 131I-RTX at 7 days after injection. Our suggested combination of DIA and 131I-RTX strategies could enhance the efficacy of 131I-RTX treatment.
PMID:35018248 | PMC:PMC8727812
Therapeutic opportunities in cancer therapy: targeting the p53-MDM2/MDMX interactions
Am J Cancer Res. 2021 Dec 15;11(12):5762-5781. eCollection 2021.
ABSTRACT
Ubiquitination is a key enzymatic post-translational modification that influences p53 stability and function. p53 protein regulates the expression of MDM2 (mouse double-minute 2 protein) E3 ligase and MDMX (double-minute 4 protein), through proteasome-based degradation. Exploration of targeting the ubiquitination pathway offers a potentially promising strategy for precision therapy in a variety of cancers. The p53-MDM2-MDMX pathway provides multiple molecular targets for small molecule screening as potential therapies for wild-type p53. As a result of its effect on molecular carcinogenesis, a personalized therapeutic approach based on the wild-type and mutant p53 protein is desirable. We highlighted the implications of p53 mutations in cancer, p53 ubiquitination mechanistic details, targeting p53-MDM2/MDMX interactions, significant discoveries related to MDM2 inhibitor drug development, MDM2 and MDMX dual target inhibitors, and clinical trials with p53-MDM2/MDMX-targeted drugs. We also investigated potential therapeutic repurposing of selective estrogen receptor modulators (SERMs) in targeting p53-MDM2/MDMX interactions. Molecular docking studies of SERMs were performed utilizing the solved structures of the p53/MDM2/MDMX proteins. These studies identified ormeloxifene as a potential dual inhibitor of p53/MDM2/MDMX interaction, suggesting that repurposing SERMs for dual targeting of p53/MDM2 and p53/MDMX interactions is an attractive strategy for targeting wild-type p53 tumors and warrants further preclinical research.
PMID:35018225 | PMC:PMC8727821
Drug Repurposing for Tooth Regeneration: The Promising Premises
J Pharm Bioallied Sci. 2021 Nov;13(Suppl 2):S957-S959. doi: 10.4103/jpbs.jpbs_67_21. Epub 2021 Nov 10.
ABSTRACT
Drug repurposing which identifies new therapeutic use(s) for drugs currently in use is a brand-new avenue of research interest worldwide. It circumvents the high-end monetary and time investment usually associated with contemporary drug discoveries. In the field of dentistry, recent studies in drug repurposing focuses in attaining dentin repair or reduction of bone resorption associated with apical periodontitis. Metformin, an anti-diabetic drug has shown pro-osteogenic properties. Aspirin a known anti-inflammatory agent with anticoagulant action is found to modulate the differentiation of dental pulp cells. The significant role of glycogen synthase kinase-3 inhibitors in activating the Wnt/-beta cat signaling pathway of mesenchymal pulp stem cells may pave the way to the pharmacological treatment of dental caries in near future. It is to be noted here that further preclinical and clinical studies are warranted for the regular therapeutic use of these potential drugs in clinical dentistry.
PMID:35017906 | PMC:PMC8687015 | DOI:10.4103/jpbs.jpbs_67_21
Structure-based inhibitor design and repurposing clinical drugs to target SARS-CoV-2 proteases
Biochem Soc Trans. 2022 Jan 11:BST20211180. doi: 10.1042/BST20211180. Online ahead of print.
ABSTRACT
SARS-CoV-2, the coronavirus responsible for the current COVID-19 pandemic, encodes two proteases, 3CLpro and PLpro, two of the main antiviral research targets. Here we provide an overview of the structures and functions of 3CLpro and PLpro and examine strategies of structure-based drug designing and drug repurposing against these proteases. Rational structure-based drug design enables the generation of potent and target-specific antivirals. Drug repurposing offers an attractive prospect with an accelerated turnaround. Thus far, several protease inhibitors have been identified, and some candidates are undergoing trials that may well prove to be effective antivirals against SARS-CoV-2.
PMID:35015073 | DOI:10.1042/BST20211180
Integrating gene expression and clinical data to identify drug repurposing candidates for hyperlipidemia and hypertension
Nat Commun. 2022 Jan 10;13(1):46. doi: 10.1038/s41467-021-27751-1.
ABSTRACT
Discovering novel uses for existing drugs, through drug repurposing, can reduce the time, costs, and risk of failure associated with new drug development. However, prioritizing drug repurposing candidates for downstream studies remains challenging. Here, we present a high-throughput approach to identify and validate drug repurposing candidates. This approach integrates human gene expression, drug perturbation, and clinical data from publicly available resources. We apply this approach to find drug repurposing candidates for two diseases, hyperlipidemia and hypertension. We screen >21,000 compounds and replicate ten approved drugs. We also identify 25 (seven for hyperlipidemia, eighteen for hypertension) drugs approved for other indications with therapeutic effects on clinically relevant biomarkers. For five of these drugs, the therapeutic effects are replicated in the All of Us Research Program database. We anticipate our approach will enable researchers to integrate multiple publicly available datasets to identify high priority drug repurposing opportunities for human diseases.
PMID:35013250 | DOI:10.1038/s41467-021-27751-1
Transcription Factor Activation Profiles (TFAP) identify compounds promoting differentiation of Acute Myeloid Leukemia cell lines
Cell Death Discov. 2022 Jan 10;8(1):16. doi: 10.1038/s41420-021-00811-7.
ABSTRACT
Repurposing of drugs for new therapeutic use has received considerable attention for its potential to limit time and cost of drug development. Here we present a new strategy to identify chemicals that are likely to promote a desired phenotype. We used data from the Connectivity Map (CMap) to produce a ranked list of drugs according to their potential to activate transcription factors that mediate myeloid differentiation of leukemic progenitor cells. To validate our strategy, we tested the in vitro differentiation potential of candidate compounds using the HL-60 human cell line as a myeloid differentiation model. Ten out of 22 compounds, which were ranked high in the inferred list, were confirmed to promote significant differentiation of HL-60. These compounds may be considered candidate for differentiation therapy. The method that we have developed is versatile and it can be adapted to different drug repurposing projects.
PMID:35013135 | DOI:10.1038/s41420-021-00811-7
Artificial intelligence framework identifies candidate targets for drug repurposing in Alzheimer's disease
Alzheimers Res Ther. 2022 Jan 10;14(1):7. doi: 10.1186/s13195-021-00951-z.
ABSTRACT
BACKGROUND: Genome-wide association studies (GWAS) have identified numerous susceptibility loci for Alzheimer's disease (AD). However, utilizing GWAS and multi-omics data to identify high-confidence AD risk genes (ARGs) and druggable targets that can guide development of new therapeutics for patients suffering from AD has heretofore not been successful.
METHODS: To address this critical problem in the field, we have developed a network-based artificial intelligence framework that is capable of integrating multi-omics data along with human protein-protein interactome networks to accurately infer accurate drug targets impacted by GWAS-identified variants to identify new therapeutics. When applied to AD, this approach integrates GWAS findings, multi-omics data from brain samples of AD patients and AD transgenic animal models, drug-target networks, and the human protein-protein interactome, along with large-scale patient database validation and in vitro mechanistic observations in human microglia cells.
RESULTS: Through this approach, we identified 103 ARGs validated by various levels of pathobiological evidence in AD. Via network-based prediction and population-based validation, we then showed that three drugs (pioglitazone, febuxostat, and atenolol) are significantly associated with decreased risk of AD compared with matched control populations. Pioglitazone usage is significantly associated with decreased risk of AD (hazard ratio (HR) = 0.916, 95% confidence interval [CI] 0.861-0.974, P = 0.005) in a retrospective case-control validation. Pioglitazone is a peroxisome proliferator-activated receptor (PPAR) agonist used to treat type 2 diabetes, and propensity score matching cohort studies confirmed its association with reduced risk of AD in comparison to glipizide (HR = 0.921, 95% CI 0.862-0.984, P = 0.0159), an insulin secretagogue that is also used to treat type 2 diabetes. In vitro experiments showed that pioglitazone downregulated glycogen synthase kinase 3 beta (GSK3β) and cyclin-dependent kinase (CDK5) in human microglia cells, supporting a possible mechanism-of-action for its beneficial effect in AD.
CONCLUSIONS: In summary, we present an integrated, network-based artificial intelligence methodology to rapidly translate GWAS findings and multi-omics data to genotype-informed therapeutic discovery in AD.
PMID:35012639 | DOI:10.1186/s13195-021-00951-z
Cysteamine with In Vitro Antiviral Activity and Immunomodulatory Effects Has the Potential to Be a Repurposing Drug Candidate for COVID-19 Therapy
Cells. 2021 Dec 24;11(1):52. doi: 10.3390/cells11010052.
ABSTRACT
The ongoing pandemic of coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), needs better treatment options both at antiviral and anti-inflammatory levels. It has been demonstrated that the aminothiol cysteamine, an already human applied drug, and its disulfide product of oxidation, cystamine, have anti-infective properties targeting viruses, bacteria, and parasites. To determine whether these compounds exert antiviral effects against SARS-CoV-2, we used different in vitro viral infected cell-based assays. Moreover, since cysteamine has also immune-modulatory activity, we investigated its ability to modulate SARS-CoV-2-specific immune response in vitro in blood samples from COVID-19 patients. We found that cysteamine and cystamine decreased SARS-CoV-2-induced cytopathic effects (CPE) in Vero E6 cells. Interestingly, the antiviral action was independent of the treatment time respect to SARS-CoV-2 infection. Moreover, cysteamine and cystamine significantly decreased viral production in Vero E6 and Calu-3 cells. Finally, cysteamine and cystamine have an anti-inflammatory effect, as they significantly decrease the SARS-CoV-2 specific IFN-γ production in vitro in blood samples from COVID-19 patients. Overall, our findings suggest that cysteamine and cystamine exert direct antiviral actions against SARS-CoV-2 and have in vitro immunomodulatory effects, thus providing a rational to test these compounds as a novel therapy for COVID-19.
PMID:35011614 | DOI:10.3390/cells11010052
Two Possible Strategies for Drug Modification of Gemcitabine and Future Contributions to Personalized Medicine
Molecules. 2022 Jan 4;27(1):291. doi: 10.3390/molecules27010291.
ABSTRACT
Drug repurposing is an emerging strategy, which uses already approved drugs for new medical indications. One such drug is gemcitabine, an anticancer drug that only works at high doses since a portion is deactivated in the serum, which causes toxicity. In this review, two methods were discussed that could improve the anticancer effect of gemcitabine. The first is a chemical modification by conjugation with cell-penetrating peptides, namely penetratin, pVEC, and different kinds of CPP6, which mostly all showed an increased anticancer effect. The other method is combining gemcitabine with repurposed drugs, namely itraconazole, which also showed great cancer cell inhibition growth. Besides these two strategies, physiologically based pharmacokinetic models (PBPK models) are also the key for predicting drug distribution based on physiological data, which is very important for personalized medicine, so that the correct drug and dosage regimen can be administered according to each patient's physiology. Taking all of this into consideration, it is believed that gemcitabine can be repurposed to have better anticancer effects.
PMID:35011522 | DOI:10.3390/molecules27010291
Dexamethasone Attenuates Oncostatin M Production via Suppressing of PI3K/Akt/NF-κB Signaling in Neutrophil-like Differentiated HL-60 Cells
Molecules. 2021 Dec 27;27(1):129. doi: 10.3390/molecules27010129.
ABSTRACT
Oncostatin M (OSM) plays a role in various inflammatory reactions, and neutrophils are the main source of OSM in pulmonary diseases. However, there is no evidence showing the mechanism of OSM production in neutrophils. While dexamethasone (Dex) has been known to exert anti-inflammatory activity in various fields, the precise mechanisms of OSM downregulation by Dex in neutrophils remain to be determined. Here, we examined how OSM is produced in neutrophil-like differentiated HL-60 cells. Enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and Western blot analysis were utilized to assess the potential of Dex. Granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulation resulted in OSM elevation in neutrophil-like dHL-60 cells. OSM elevation induced by GM-CSF is regulated by phosphatidylinositol 3-kinase (PI3K)/Akt/nuclear factor (NF)-kB signal cascades. GM-CSF stimulation upregulated phosphorylated levels of PI3K or Akt or NF-κB in neutrophil-like dHL-60 cells. Treatment with Dex decreased OSM levels as well as the phosphorylated levels of PI3K or Akt or NF-κB in neutrophil-like dHL-60 cells. Our findings show the potential of Dex in the treatment of inflammatory diseases via blocking of OSM.
PMID:35011361 | DOI:10.3390/molecules27010129
Systems Biology-Derived Genetic Signatures of Mastitis in Dairy Cattle: A New Avenue for Drug Repurposing
Animals (Basel). 2021 Dec 23;12(1):29. doi: 10.3390/ani12010029.
ABSTRACT
Mastitis, a disease with high incidence worldwide, is the most prevalent and costly disease in the dairy industry. Gram-negative bacteria such as Escherichia coli (E. coli) are assumed to be among the leading agents causing acute severe infection with clinical signs. E. Coli, environmental mastitis pathogens, are the primary etiological agents of bovine mastitis in well-managed dairy farms. Response to E. Coli infection has a complex pattern affected by genetic and environmental parameters. On the other hand, the efficacy of antibiotics and/or anti-inflammatory treatment in E. coli mastitis is still a topic of scientific debate, and studies on the treatment of clinical cases show conflicting results. Unraveling the bio-signature of mastitis in dairy cattle can open new avenues for drug repurposing. In the current research, a novel, semi-supervised heterogeneous label propagation algorithm named Heter-LP, which applies both local and global network features for data integration, was used to potentially identify novel therapeutic avenues for the treatment of E. coli mastitis. Online data repositories relevant to known diseases, drugs, and gene targets, along with other specialized biological information for E. coli mastitis, including critical genes with robust bio-signatures, drugs, and related disorders, were used as input data for analysis with the Heter-LP algorithm. Our research identified novel drugs such as Glibenclamide, Ipratropium, Salbutamol, and Carbidopa as possible therapeutics that could be used against E. coli mastitis. Predicted relationships can be used by pharmaceutical scientists or veterinarians to find commercially efficacious medicines or a combination of two or more active compounds to treat this infectious disease.
PMID:35011134 | DOI:10.3390/ani12010029
Pros and Cons of Pharmacological Manipulation of cGMP-PDEs in the Prevention and Treatment of Breast Cancer
Int J Mol Sci. 2021 Dec 27;23(1):262. doi: 10.3390/ijms23010262.
ABSTRACT
The cyclic nucleotides, cAMP and cGMP, are ubiquitous second messengers responsible for translating extracellular signals to intracellular biological responses in both normal and tumor cells. When these signals are aberrant or missing, cells may undergo neoplastic transformation or become resistant to chemotherapy. cGMP-hydrolyzing phosphodiesterases (PDEs) are attracting tremendous interest as drug targets for many diseases, including cancer, where they regulate cell growth, apoptosis and sensitization to radio- and chemotherapy. In breast cancer, PDE5 inhibition is associated with increased intracellular cGMP levels, which is responsible for the phosphorylation of PKG and other downstream molecules involved in cell proliferation or apoptosis. In this review, we provide an overview of the most relevant studies regarding the controversial role of PDE inhibitors as off-label adjuvants in cancer therapy.
PMID:35008687 | DOI:10.3390/ijms23010262
Nelfinavir Induces Cytotoxicity towards High-Grade Serous Ovarian Cancer Cells, Involving Induction of the Unfolded Protein Response, Modulation of Protein Synthesis, DNA Damage, Lysosomal Impairment, and Potentiation of Toxicity Caused by Proteasome...
Cancers (Basel). 2021 Dec 26;14(1):99. doi: 10.3390/cancers14010099.
ABSTRACT
High-grade serous ovarian cancer (HGSOC) is a significant cause of mortality among women worldwide. Traditional treatment consists of platinum-based therapy; however, rapid development of platinum resistance contributes to lower life expectancy, warranting newer therapies to supplement the current platinum-based protocol. Repurposing market-available drugs as cancer therapeutics is a cost- and time-effective way to avail new therapies to drug-resistant patients. The anti-HIV agent nelfinavir (NFV) has shown promising toxicity against various cancers; however, its role against HGSOC is unknown. Here, we studied the effect of NFV against HGSOC cells obtained from patients along disease progression and carrying different sensitivities to platinum. NFV triggered, independently of platinum sensitivity, a dose-dependent reduction in the HGSOC cell number and viability, and a parallel increase in hypo-diploid DNA content. Moreover, a dose-dependent reduction in clonogenic survival of cells escaping the acute toxicity was indicative of long-term residual damage. In addition, dose- and time-dependent phosphorylation of H2AX indicated NFV-mediated DNA damage, which was associated with decreased survival and proliferation signals driven by the AKT and ERK pathways. NFV also mediated a dose-dependent increase in endoplasmic reticulum stress-related molecules associated with long-term inhibition of protein synthesis and concurrent cell death; such events were accompanied by a proapoptotic environment, signaled by increased phospho-eIF2α, ATF4, and CHOP, increased Bax/Bcl-2 ratio, and cleaved executer caspase-7. Finally, we show that NFV potentiates the short-term cell cycle arrest and long-term toxicity caused by the proteasome inhibitor bortezomib. Overall, our in vitro study demonstrates that NFV can therapeutically target HGSOC cells of differential platinum sensitivities via several mechanisms, suggesting its prospective repurposing benefit considering its good safety profile.
PMID:35008264 | DOI:10.3390/cancers14010099
The multifaceted role of Matricellular Proteins in health and cancer, as biomarkers and therapeutic targets
Gene. 2022 Jan 7:146137. doi: 10.1016/j.gene.2021.146137. Online ahead of print.
ABSTRACT
The extracellular matrix (ECM) is composed of a mesh of proteins, proteoglycans, growth factors, and other secretory components. It constitutes the tumor microenvironment along with the endothelial cells, cancer-associated fibroblasts, adipocytes, and immune cells. The proteins of ECM can be functionally classified as adhesive proteins and matricellular proteins (MCP). In the tumor milieu, the ECM plays a major role in tumorigenesis and therapeutic resistance. The current review encompasses thrombospondins, osteonectin, osteopontin, tenascin C, periostin, the CCN family, laminin, biglycan, decorin, mimecan, and galectins. The matrix metalloproteinases (MMPs) are also discussed as they are an integral part of the ECM with versatile functions in the tumor stroma. In this review, the role of these proteins in tumor initiation, growth, invasion and metastasis have been highlighted, with emphasis on their contribution to tumor therapeutic resistance. Further, their potential as biomarkers and therapeutic targets based on existing evidence are discussed. Owing to the recent advancements in protein targeting, the possibility of agents to modulate MCPs in cancer as therapeutic options are discussed.
PMID:35007686 | DOI:10.1016/j.gene.2021.146137
Computationally repurposed drugs and natural products against RNA dependent RNA polymerase as potential COVID-19 therapies
Mol Biomed. 2021 Sep 20;2(1):28. doi: 10.1186/s43556-021-00050-3.
ABSTRACT
Repurposing of existing drugs and drug candidates is an ideal approach to identify new potential therapies for SARS-CoV-2 that can be tested without delay in human trials of infected patients. Here we applied a virtual screening approach using Autodock Vina and molecular dynamics simulation in tandem to calculate binding energies for repurposed drugs against the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). We thereby identified 80 promising compounds with potential activity against SARS-Cov2, consisting of a mixture of antiviral drugs, natural products and drugs with diverse modes of action. A substantial proportion of the top 80 compounds identified in this study had been shown by others to have SARS-CoV-2 antiviral effects in vitro or in vivo, thereby validating our approach. Amongst our top hits not previously reported to have SARS-CoV-2 activity, were eribulin, a macrocyclic ketone analogue of the marine compound halichondrin B and an anticancer drug, the AXL receptor tyrosine kinase inhibitor bemcentinib. Our top hits from our RdRp drug screen may not only have utility in treating COVID-19 but may provide a useful starting point for therapeutics against other coronaviruses. Hence, our modelling approach successfully identified multiple drugs with potential activity against SARS-CoV-2 RdRp.
PMID:35006427 | DOI:10.1186/s43556-021-00050-3
Multipurpose Drugs Active Against Both Plasmodium spp. and Microorganisms: Potential Application for New Drug Development
Front Cell Infect Microbiol. 2021 Dec 24;11:797509. doi: 10.3389/fcimb.2021.797509. eCollection 2021.
ABSTRACT
Malaria, a disease caused by the protozoan parasites Plasmodium spp., is still causing serious problems in endemic regions in the world. Although the WHO recommends artemisinin combination therapies for the treatment of malaria patients, the emergence of artemisinin-resistant parasites has become a serious issue and underscores the need for the development of new antimalarial drugs. On the other hand, new and re-emergences of infectious diseases, such as the influenza pandemic, Ebola virus disease, and COVID-19, are urging the world to develop effective chemotherapeutic agents against the causative viruses, which are not achieved to the desired level yet. In this review article, we describe existing drugs which are active against both Plasmodium spp. and microorganisms including viruses, bacteria, and fungi. We also focus on the current knowledge about the mechanism of actions of these drugs. Our major aims of this article are to describe examples of drugs that kill both Plasmodium parasites and other microbes and to provide valuable information to help find new ideas for developing novel drugs, rather than merely augmenting already existing drug repurposing efforts.
PMID:35004357 | PMC:PMC8740689 | DOI:10.3389/fcimb.2021.797509
A new glimpse on the active site of SARS-CoV-2 3CLpro, coupled with drug repurposing study
Mol Divers. 2022 Jan 10. doi: 10.1007/s11030-021-10355-8. Online ahead of print.
ABSTRACT
Coronavirus disease 2019 (COVID-19) is caused by novel severe acute respiratory syndrome coronavirus (SARS-CoV-2). Its main protease, 3C-like protease (3CLpro), is an attractive target for drug design, due to its importance in virus replication. The analysis of the radial distribution function of 159 3CLpro structures reveals a high similarity index. A study of the catalytic pocket of 3CLpro with bound inhibitors reveals that the influence of the inhibitors is local, perturbing dominantly only residues in the active pocket. A machine learning based model with high predictive ability against SARS-CoV-2 3CLpro is designed and validated. The model is used to perform a drug-repurposing study, with the main aim to identify existing drugs with the highest 3CLpro inhibition power. Among antiviral agents, lopinavir, idoxuridine, paritaprevir, and favipiravir showed the highest inhibition potential. Enzyme - ligand interactions as a key ingredient for successful drug design.
PMID:35001230 | DOI:10.1007/s11030-021-10355-8