Drug Repositioning

Integrative analysis of CRISPR screening data uncovers new opportunities for optimizing cancer immunotherapy

Tue, 2022-01-04 06:00

Mol Cancer. 2022 Jan 2;21(1):2. doi: 10.1186/s12943-021-01462-z.

ABSTRACT

BACKGROUND: In recent years, the application of functional genetic immuno-oncology screens has showcased the striking ability to identify potential regulators engaged in tumor-immune interactions. Although these screens have yielded substantial data, few studies have attempted to systematically aggregate and analyze them.

METHODS: In this study, a comprehensive data collection of tumor immunity-associated functional screens was performed. Large-scale genomic data sets were exploited to conduct integrative analyses.

RESULTS: We identified 105 regulator genes that could mediate resistance or sensitivity to immune cell-induced tumor elimination. Further analysis identified MON2 as a novel immune-oncology target with considerable therapeutic potential. In addition, based on the 105 genes, a signature named CTIS (CRISPR screening-based tumor-intrinsic immune score) for predicting response to immune checkpoint blockade (ICB) and several immunomodulatory agents with the potential to augment the efficacy of ICB were also determined.

CONCLUSION: Overall, our findings provide insights into immune oncology and open up novel opportunities for improving the efficacy of current immunotherapy agents.

PMID:34980132 | DOI:10.1186/s12943-021-01462-z

Categories: Literature Watch

Repurposing potential of rimantadine hydrochloride and development of a promising platinum(II)-rimantadine metallodrug for the treatment of Chikungunya virus infection

Mon, 2022-01-03 06:00

Acta Trop. 2021 Dec 31:106300. doi: 10.1016/j.actatropica.2021.106300. Online ahead of print.

ABSTRACT

Most of the patients infected with Chikungunya virus (CHIKV) develop chronic manifestations characterized by pain and deformity in joints, impacting their quality of life. The aminoadamantanes, in their turn, have been exploited due to their biological activities, with amantadine and memantine recently described with anti-CHIKV activities. Here we evaluated the antiviral activity of rimantadine hydrochloride (rtdH), a well-known antiviral agent against influenza A, its platinum complex (Pt-rtd), and the precursor cis-[PtCl2(dmso)2], against CHIKV infection in vitro. The rtdH demonstrated significant antiviral activity in all stages of CHIKV replication (29% in pre-treatment; 57% in early stages of infection; 60% in post-entry stages). The Pt-rtd complex protected the cells against infection in 92%, inhibited 100% of viral entry, mainly by a virucidal effect, and impaired 60% of post-entry stages. Alternatively, cis-[PtCl2(dmso)2] impaired viral entry in 100% and post-entry steps in 60%, but had no effect in protecting cells when administered prior to CHIKV infection. Collectively, the obtained data demonstrated that rtdH and Pt-rtd significantly interfered in the early stages of CHIKV life cycle, with the strongest effect observed to Pt-rtd complex, which reduced up to 100% of CHIKV infection. Moreover, molecular docking analysis and infrared spectroscopy data (ATR-FTIR) suggest an interaction of Pt-rtd with CHIKV glycoproteins, potentially related to the mechanism of inhibition of viral entry by Pt-rtd. Through a migration retardation assay, it was also shown that Pt-rtd and cis-[PtCl2(dmso)2] interacted with the dsRNA in 87% and 100%, respectively. The obtained results highlight the repurposing potential of rtdH as an anti-CHIKV drug, as well as the synthesis of promising platinum(II) metallodrugs with potential application for the treatment of CHIKV infections. ImportanceChikungunya fever is a disease that can result in persistent symptoms due to the chronic infection process. Infected patients can develop physical disability, resulting and high costs to the health system and significant impacts on the quality of life of affected individuals. Additionally, there are no licensed vaccines or antivirals against the Chikungunya virus (CHIKV) and the virus is easily transmitted due to the abundance of viable vectors in epidemic regions. In this context, our study highlights the repurposing potential of the commercial drug rimantadine hydrochloride (rtdH) as an antiviral agent for the treatment of CHIKV infections. Moreover, our data demonstrated that a platinum(II)-rimantadine metallodrug (Pt-rtd) poses as a potent anti-CHIKV molecule with potential application for the treatment of Chikungunya fever. Altogether, rtdH and Pt-rtd significantly interfered in the early stages of CHIKV life cycle, reducing up to 100% of CHIKV infection in vitro.

PMID:34979144 | DOI:10.1016/j.actatropica.2021.106300

Categories: Literature Watch

Hypoxia enhances motility and EMT through the Na<sup>+</sup>/H<sup>+</sup> exchanger NHE-1 in MDA-MB-231 breast cancer cells

Mon, 2022-01-03 06:00

Exp Cell Res. 2021 Dec 31:113006. doi: 10.1016/j.yexcr.2021.113006. Online ahead of print.

ABSTRACT

Breast cancer metastasis is the leading cause of cancer-related deaths. Hypoxia in the tumor mass is believed to trigger cell migration, which is involved in a crucial process of breast cancer metastasis. However, the molecular mechanisms underlying aggressive behavior under hypoxic conditions have not been fully elucidated. Here, we demonstrate the significant motility of MDA-MB-231 cells cultured under hypoxic conditions compared to that of cells cultured under normoxic conditions. MDA-MB-231 cells under hypoxic conditions showed a significant increase in Na+/H+ exchanger isoform 1 (NHE1) expression level, which was observed to co-locate in lamellipodia formation. Inhibition of NHE1 significantly suppressed the intracellular pH and the expression of mesenchymal markers, thereby blocking the high migration activity in hypoxia. Moreover, treatment with ciglitazone, a potent and selective peroxisome proliferator-activated receptor γ (PPARγ) agonist, modulated hypoxia-enhanced motion in cells via the repression of NHE1. These findings highlight that NHE1 is required for migratory activity through the enhancement of epithelial-mesenchymal transition in MDA-MB-231 cells under hypoxic conditions, and we propose new drug repurposing strategies targeting hypoxia based on NHE1 suppression by effective usage of PPARγ agonists.

PMID:34979106 | DOI:10.1016/j.yexcr.2021.113006

Categories: Literature Watch

In silico Repurposing of Drugs for pan-HDAC and pan-SIRT Inhibitors: Consensus Structure-based Virtual Screening and Pharmacophore Modeling Investigations

Mon, 2022-01-03 06:00

Turk J Pharm Sci. 2021 Dec 31;18(6):730-737. doi: 10.4274/tjps.galenos.2021.25564.

ABSTRACT

OBJECTIVES: Drug repurposing is a highly popular approach to find new indications for drugs, which greatly reduces time and costs for drug design and discovery. Non-selective inhibitors of histone deacetylase (HDAC) isoforms including sirtuins (SIRTs) are effective against conditions like cancer. In this study, we used molecular docking to screen Food and Drug Administration (FDA)-approved drugs to identify a number of drugs with a potential to be repurposed for pan-HDAC and pan-SIRT inhibitor activity.

MATERIALS AND METHODS: The library of FDA-approved drugs was optimized using MacroModel. The crystal structures of HDAC1-4, 6-8, SIRT1-3, 5, 6 were prepared before the library was docked to each structure using Glide, FRED, and AutoDock Vina/PyRx. Consensus scores were derived from the docking scores obtained from each software. Pharmacophore modeling was performed using Phase.

RESULTS: Based on the consensus scores, belinostat, bexarotene, and cianidanol emerged as top virtual pan-HDAC inhibitors whereas alosetron, cinacalcet, and indacaterol emerged as virtual pan-SIRT inhibitors. Pharmacophore hypotheses for these virtual inhibitors were also suggested through pharmacophore modeling in agreement with the molecular docking models.

CONCLUSION: The consensus approach enabled selection of the best performing drug molecules according to different software, and good scores against isoforms (virtual pan-HDAC and pan-SIRT inhibitors). The study not only proposes potential drugs to be repurposed for HDAC and SIRT-related diseases but also provides insights for designing potent de novo derivatives.

PMID:34978402 | DOI:10.4274/tjps.galenos.2021.25564

Categories: Literature Watch

Corrigendum: Antiviral and Immunomodulatory Effects of <em>Pelargonium sidoides DC.</em> Root Extract EPs<sup>®</sup> 7630 in SARS-CoV-2-Infected Human Lung Cells

Mon, 2022-01-03 06:00

Front Pharmacol. 2021 Dec 17;12:814452. doi: 10.3389/fphar.2021.814452. eCollection 2021.

ABSTRACT

[This corrects the article DOI: 10.3389/fphar.2021.757666.].

PMID:34975509 | PMC:PMC8719588 | DOI:10.3389/fphar.2021.814452

Categories: Literature Watch

Low-Dose Fluvoxamine Modulates Endocytic Trafficking of SARS-CoV-2 Spike Protein: A Potential Mechanism for Anti-COVID-19 Protection by Antidepressants

Mon, 2022-01-03 06:00

Front Pharmacol. 2021 Dec 16;12:787261. doi: 10.3389/fphar.2021.787261. eCollection 2021.

ABSTRACT

Commonly prescribed antidepressants may be associated with protection against severe COVID-19. The mechanism of their action in this context, however, remains unknown. Here, I investigated the effect of an antidepressant drug fluvoxamine on membrane trafficking of the SARS-CoV-2 spike protein and its cell host receptor ACE2 in HEK293T cells. A sub-therapeutic concentration (80 nM) of fluvoxamine rapidly upregulated fluid-phase endocytosis, resulting in enhanced accumulation of the spike-ACE2 complex in enlarged early endosomes. Diversion of endosomal trafficking provides a simple cell biological mechanism consistent with the protective effect of antidepressants against COVID-19, highlighting their therapeutic and prophylactic potential.

PMID:34975483 | PMC:PMC8716620 | DOI:10.3389/fphar.2021.787261

Categories: Literature Watch

Potential role of Drug Repositioning Strategy (DRS) for management of tauopathy

Sun, 2022-01-02 06:00

Life Sci. 2021 Dec 30:120267. doi: 10.1016/j.lfs.2021.120267. Online ahead of print.

ABSTRACT

Tauopathy is a term that has been used to represent a pathological condition in which hyperphosphorylated tau protein aggregates in neurons and glia which results in neurodegeneration, synapse loss and dysfunction and cognitive impairments. Recently, drug repositioning strategy (DRS) becomes a promising field and an alternative approach to advancing new treatments from actually developed and FDA approved drugs for an indication other than the indication it was originally intended for. This paradigm provides an advantage because the safety of the candidate compound has already been established, which abolishes the need for further preclinical safety testing and thus substantially reduces the time and cost involved in progressing of clinical trials. In the present review, we focused on correlation between tauopathy and common diseases as type 2 diabetes mellitus and the global virus COVID-19 and how tau pathology can aggravate development of these diseases in addition to how these diseases can be a risk factor for development of tauopathy. Moreover, correlation between COVID-19 and type 2 diabetes mellitus was also discussed. Therefore, repositioning of a drug in the daily clinical practice of patients to manage or prevent two or more diseases at the same time with lower side effects and drug-drug interactions is a promising idea. This review concluded the results of pre-clinical and clinical studies applied on antidiabetics, COVID-19 medications, antihypertensives, antidepressants and cholesterol lowering drugs for possible drug repositioning for management of tauopathy.

PMID:34974076 | DOI:10.1016/j.lfs.2021.120267

Categories: Literature Watch

Molecular Modeling Strategies of Cancer Multidrug Resistance

Sun, 2022-01-02 06:00

Drug Resist Updat. 2021 Nov 24:100789. doi: 10.1016/j.drup.2021.100789. Online ahead of print.

ABSTRACT

Cancer remains a leading cause of morbidity and mortality worldwide. Hence, the increase in cancer cases observed in the elderly population, as well as in children and adolescents, makes human malignancies a prime target for anticancer drug development. Although highly effective chemotherapeutic agents are continuously developed and approved for clinical treatment, the major impediment towards curative cancer therapy remains multidrug resistance (MDR). In recent years, intensive studies have been carried out on the identification of new therapeutic molecules to reverse MDR efflux transporters of the ATP-binding cassette (ABC) superfamily. Although a great deal of progress has been made in the development of specific inhibitors for certain MDR efflux pumps in experimental studies, advanced computational studies can accelerate this drug development process. In the literature, there are many experimental studies on the impact of natural products and synthetic small molecules on the reversal of cancer MDR. Molecular modeling methods provide an opportunity to explain the activity of these molecules on the ABC-transporter family with non-covalent interactions as well as it is possible to carry out studies for the discovery of new anticancer drugs specific to MDR with these methods. The coordinate file of the 3-dimensional (3D) structure of the target protein is indispensable for molecular modeling studies. In some cases where a 3D structure cannot be obtained by experimental methods, the homology modeling method can be applied to obtain the file containing the target protein's information including atomic coordinates, secondary structure assignments, and atomic connectivity. Homology modeling studies are of great importance for efflux transporter proteins that still lack 3D structures due to crystallization problems with multiple hydrophobic transmembrane domains. Quantum mechanics, molecular docking and molecular dynamics simulation applications are the most frequently used molecular modeling methods in the literature to investigate non-covalent interactions between the drug-ABC transporter superfamily. The quantitative structure-activity relationship (QSAR) model provides a relationship between the chemical properties of a compound and its biological activity. Determining the pharmacophore region for a new drug molecule by superpositioning a series of molecules according to their physicochemical properties using QSAR models is another method in which molecular modeling is used in computational drug development studies with ABC transporter proteins. There are also in silico absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) studies conducted to make a prediction about the pharmacokinetic properties, and drug-likeness of new molecules. Drug repurposing studies, which have become a trending topic in recent years, involve identifying possible new targets for an already approved drug molecule. There are few studies in the literature in which drug repurposing performed by molecular modelling methods has been applied on ABC transporter proteins. The aim of the current paper is to create a complete review of drug development studies including aforementioned molecular modeling methods carried out between the years 2019-2021. Furthermore, an intensive investigation is also conducted on licensed applications and free web servers used in in silico studies. The current review is an up-to-date guide for researchers who plan to conduct computational studies with MDR transporter proteins.

PMID:34973929 | DOI:10.1016/j.drup.2021.100789

Categories: Literature Watch

Tuberculosis drug discovery: Progression and future interventions in the wake of emerging resistance

Sat, 2022-01-01 06:00

Eur J Med Chem. 2021 Dec 26;229:114066. doi: 10.1016/j.ejmech.2021.114066. Online ahead of print.

ABSTRACT

The emergence of drug resistance continues to afflict TB control where drug resistant strains have become a global health concern. Contrary to drug-sensitive TB, the treatment of MDR/XDR-TB is more complicated requiring the administration of second-line drugs that are inefficient than the first line drugs and are associated with greater side effects. The emergence of drug resistant Mtb strains had coincided with an innovation void in the field of drug discovery of anti-mycobacterials. However, the approval of bedaquiline and delamanid recently for use in MDR/XDR-TB has given an impetus to the TB drug discovery. The review discusses the drug discovery efforts in the field of tuberculosis with a focus on the strategies adopted and challenges confronted by TB research community. Here, we discuss the diverse clinical candidates in the current TB drug discovery pipeline. There is an urgent need to combat the current TB menace through multidisciplinary approaches and strategies making use of the recent advances in understanding the molecular biology and pathogenesis of Mtb. The review highlights the recent advances in drug discovery, with the host directed therapeutics and nanoparticles-drug delivery coming up as important tools to fight tuberculosis in the future.

PMID:34973508 | DOI:10.1016/j.ejmech.2021.114066

Categories: Literature Watch

Bioinformatics Approaches for Parkinson's Disease in Clinical Practice: Data-Driven Biomarkers and Pharmacological Treatment

Sat, 2022-01-01 06:00

Adv Exp Med Biol. 2021;1338:193-198. doi: 10.1007/978-3-030-78775-2_23.

ABSTRACT

Parkinson's disease is a gradually progressive neurodegenerative disorder characterized by a selective loss of dopaminergic neurons in the midbrain area called the substantia nigra pars compacta and cytoplasmic alpha-synuclein-rich inclusions termed Lewy bodies. The etiology and pathogenesis remain incompletely understood. The development of reliable biomarkers for the early and accurate diagnosis, including biochemical, genetic, clinical, and neuroimaging markers, is crucial for unraveling the pathogenic processes of the disease as well as patients' progress surveillance. High-throughput technologies and system biology methodologies can support the identification of potent molecular fingerprints together with the establishment of dynamic network biomarkers. Emphasis is given on multi-omics datasets and dysregulated pathways associated with differentially expressed transcripts, modified protein motifs, and altered metabolic profiles. Although there is no therapy that terminates the neurodegenerative process and dopamine replacement strategy with L-DOPA represents the most effective treatment, numerous therapeutic protocols such as dopamine receptor agonists, MAO-B inhibitors, and cholinesterase inhibitors represent candidate treatments providing at the same time valuable network-based approaches to drug repositioning. Computational methodologies and bioinformatics platforms for visualization, clustering, and validating of molecular and clinical datasets provide important insights into diagnostic processing and therapeutic pipeline.

PMID:34973025 | DOI:10.1007/978-3-030-78775-2_23

Categories: Literature Watch

Network-Based Approaches for Drug Repositioning

Fri, 2021-12-31 06:00

Mol Inform. 2021 Dec 30:e2100200. doi: 10.1002/minf.202100200. Online ahead of print.

ABSTRACT

With deep learning creeping up into the ranks of big data, new models based on deep learning and massive data have made great leaps forward rapidly in the field of drug repositioning. However, there is no relevant review to summarize the transformations and development process of models and their data in the field of drug repositioning. Among all the computational methods, network-based methods play an extraordinary role. In view of these circumstances, understanding and comparing existing network-based computational methods applied in drug repositioning will help us recognize the cutting-edge technologies and offer valuable information for relevant researchers. Therefore, in this review, we present an interpretation of the series of important network-based methods applied in drug repositioning, together with their comparisons and development process.

PMID:34970871 | DOI:10.1002/minf.202100200

Categories: Literature Watch

A deep learning method for repurposing antiviral drugs against new viruses via multi-view nonnegative matrix factorization and its application to SARS-CoV-2

Wed, 2021-12-29 06:00

Brief Bioinform. 2021 Dec 30:bbab526. doi: 10.1093/bib/bbab526. Online ahead of print.

ABSTRACT

The outbreak of COVID-19 caused by SARS-coronavirus (CoV)-2 has made millions of deaths since 2019. Although a variety of computational methods have been proposed to repurpose drugs for treating SARS-CoV-2 infections, it is still a challenging task for new viruses, as there are no verified virus-drug associations (VDAs) between them and existing drugs. To efficiently solve the cold-start problem posed by new viruses, a novel constrained multi-view nonnegative matrix factorization (CMNMF) model is designed by jointly utilizing multiple sources of biological information. With the CMNMF model, the similarities of drugs and viruses can be preserved from their own perspectives when they are projected onto a unified latent feature space. Based on the CMNMF model, we propose a deep learning method, namely VDA-DLCMNMF, for repurposing drugs against new viruses. VDA-DLCMNMF first initializes the node representations of drugs and viruses with their corresponding latent feature vectors to avoid a random initialization and then applies graph convolutional network to optimize their representations. Given an arbitrary drug, its probability of being associated with a new virus is computed according to their representations. To evaluate the performance of VDA-DLCMNMF, we have conducted a series of experiments on three VDA datasets created for SARS-CoV-2. Experimental results demonstrate that the promising prediction accuracy of VDA-DLCMNMF. Moreover, incorporating the CMNMF model into deep learning gains new insight into the drug repurposing for SARS-CoV-2, as the results of molecular docking experiments reveal that four antiviral drugs identified by VDA-DLCMNMF have the potential ability to treat SARS-CoV-2 infections.

PMID:34965582 | DOI:10.1093/bib/bbab526

Categories: Literature Watch

Discovery of potential anti-SARS-CoV-2 drugs based on large-scale screening in vitro and effect evaluation in vivo

Tue, 2021-12-28 06:00

Sci China Life Sci. 2021 Dec 24. doi: 10.1007/s11427-021-2031-7. Online ahead of print.

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global crisis. Clinical candidates with high efficacy, ready availability, and that do not develop resistance are in urgent need. Despite that screening to repurpose clinically approved drugs has provided a variety of hits shown to be effective against SARS-CoV-2 infection in cell culture, there are few confirmed antiviral candidates in vivo. In this study, 94 compounds showing high antiviral activity against SARS-CoV-2 in Vero E6 cells were identified from 2,580 FDA-approved small-molecule drugs. Among them, 24 compounds with low cytotoxicity were selected, and of these, 17 compounds also effectively suppressed SARS-CoV-2 infection in HeLa cells transduced with human ACE2. Six compounds disturb multiple processes of the SARS-CoV-2 life cycle. Their prophylactic efficacies were determined in vivo using Syrian hamsters challenged with SARS-CoV-2 infection. Seven compounds reduced weight loss and promoted weight regain of hamsters infected not only with the original strain but also the D614G variant. Except for cisatracurium, six compounds reduced hamster pulmonary viral load, and IL-6 and TNF-α mRNA when assayed at 4 d postinfection. In particular, sertraline, salinomycin, and gilteritinib showed similar protective effects as remdesivir in vivo and did not induce antiviral drug resistance after 10 serial passages of SARS-CoV-2 in vitro, suggesting promising application for COVID-19 treatment.

PMID:34962614 | DOI:10.1007/s11427-021-2031-7

Categories: Literature Watch

Computationally prioritized drugs inhibit SARS-CoV-2 infection and syncytia formation

Tue, 2021-12-28 06:00

Brief Bioinform. 2021 Dec 27:bbab507. doi: 10.1093/bib/bbab507. Online ahead of print.

ABSTRACT

The pharmacological arsenal against the COVID-19 pandemic is largely based on generic anti-inflammatory strategies or poorly scalable solutions. Moreover, as the ongoing vaccination campaign is rolling slower than wished, affordable and effective therapeutics are needed. To this end, there is increasing attention toward computational methods for drug repositioning and de novo drug design. Here, multiple data-driven computational approaches are systematically integrated to perform a virtual screening and prioritize candidate drugs for the treatment of COVID-19. From the list of prioritized drugs, a subset of representative candidates to test in human cells is selected. Two compounds, 7-hydroxystaurosporine and bafetinib, show synergistic antiviral effects in vitro and strongly inhibit viral-induced syncytia formation. Moreover, since existing drug repositioning methods provide limited usable information for de novo drug design, the relevant chemical substructures of the identified drugs are extracted to provide a chemical vocabulary that may help to design new effective drugs.

PMID:34962256 | DOI:10.1093/bib/bbab507

Categories: Literature Watch

JAK-STAT Pathway: A Novel Target to Tackle Viral Infections

Tue, 2021-12-28 06:00

Viruses. 2021 Nov 27;13(12):2379. doi: 10.3390/v13122379.

ABSTRACT

Modulation of the antiviral innate immune response has been proposed as a putative cellular target for the development of novel pan-viral therapeutic strategies. The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is especially relevant due to its essential role in the regulation of local and systemic inflammation in response to viral infections, being, therefore, a putative therapeutic target. Here, we review the extraordinary diversity of strategies that viruses have evolved to interfere with JAK-STAT signaling, stressing the relevance of this pathway as a putative antiviral target. Moreover, due to the recent remarkable progress on the development of novel JAK inhibitors (JAKi), the current knowledge on its efficacy against distinct viral infections is also discussed. JAKi have a proven efficacy against a broad spectrum of disorders and exhibit safety profiles comparable to biologics, therefore representing good candidates for drug repurposing strategies, including viral infections.

PMID:34960648 | DOI:10.3390/v13122379

Categories: Literature Watch

Advances in Antifungal Drug Development: An Up-To-Date Mini Review

Tue, 2021-12-28 06:00

Pharmaceuticals (Basel). 2021 Dec 16;14(12):1312. doi: 10.3390/ph14121312.

ABSTRACT

The utility of clinically available antifungals is limited by their narrow spectrum of activity, high toxicity, and emerging resistance. Antifungal drug discovery has always been a challenging area, since fungi and their human host are eukaryotes, making it difficult to identify unique targets for antifungals. Novel antifungals in clinical development include first-in-class agents, new structures for an established target, and formulation modifications to marketed antifungals, in addition to repurposed agents. Membrane interacting peptides and aromatherapy are gaining increased attention in the field. Immunotherapy is another promising treatment option, with antifungal antibodies advancing into clinical trials. Novel targets for antifungal therapy are also being discovered, allowing the design of new promising agents that may overcome the resistance issue. In this mini review, we will summarize the current status of antifungal drug pipelines in clinical stages, and the most recent advancements in preclinical antifungal drug development, with special focus on their chemistry.

PMID:34959712 | DOI:10.3390/ph14121312

Categories: Literature Watch

The Selective Serotonin 2A Receptor Antagonist Sarpogrelate Prevents Cardiac Hypertrophy and Systolic Dysfunction via Inhibition of the ERK1/2-GATA4 Signaling Pathway

Tue, 2021-12-28 06:00

Pharmaceuticals (Basel). 2021 Dec 5;14(12):1268. doi: 10.3390/ph14121268.

ABSTRACT

Drug repositioning has recently emerged as a strategy for developing new treatments at low cost. In this study, we used a library of approved drugs to screen for compounds that suppress cardiomyocyte hypertrophy. We identified the antiplatelet drug sarpogrelate, a selective serotonin-2A (5-HT2A) receptor antagonist, and investigated the drug's anti-hypertrophic effect in cultured cardiomyocytes and its effect on heart failure in vivo. Primary cultured cardiomyocytes pretreated with sarpogrelate were stimulated with angiotensin II, endothelin-1, or phenylephrine. Immunofluorescence staining showed that sarpogrelate suppressed the cardiomyocyte hypertrophy induced by each of the stimuli. Western blotting analysis revealed that 5-HT2A receptor level was not changed by phenylephrine, and that sarpogrelate suppressed phenylephrine-induced phosphorylation of ERK1/2 and GATA4. C57BL/6J male mice were subjected to transverse aortic constriction (TAC) surgery followed by daily oral administration of sarpogrelate for 8 weeks. Echocardiography showed that 5 mg/kg of sarpogrelate suppressed TAC-induced cardiac hypertrophy and systolic dysfunction. Western blotting revealed that sarpogrelate suppressed TAC-induced phosphorylation of ERK1/2 and GATA4. These results indicate that sarpogrelate suppresses the development of heart failure and that it does so at least in part by inhibiting the ERK1/2-GATA4 signaling pathway.

PMID:34959669 | DOI:10.3390/ph14121268

Categories: Literature Watch

In Vitro and Clinical Compassionate Use Experiences with the Drug-Repurposing Approach CUSP9v3 in Glioblastoma

Tue, 2021-12-28 06:00

Pharmaceuticals (Basel). 2021 Nov 29;14(12):1241. doi: 10.3390/ph14121241.

ABSTRACT

BACKGROUND: Glioblastoma represents the most common primary brain tumor in adults. Despite technological advances, patients with this disease typically die within 1-2 years after diagnosis. In the search for novel therapeutics, drug repurposing has emerged as an alternative to traditional drug development pipelines, potentially facilitating and expediting the transition from drug discovery to clinical application. In a drug repurposing effort, the original CUSP9 and its derivatives CUSP9* and CUSP9v3 were developed as combinations of nine non-oncological drugs combined with metronomic low-dose temozolomide.

METHODS: In this work, we performed pre-clinical testing of CUSP9v3 in different established, primary cultured and stem-like glioblastoma models. In addition, eight patients with heavily pre-treated recurrent glioblastoma received the CUSP9v3 regime on a compassionate use basis in a last-ditch effort.

RESULTS: CUSP9v3 had profound antiproliferative and pro-apoptotic effects across all tested glioblastoma models. Moreover, the cells' migratory capacity and ability to form tumor spheres was drastically reduced. In vitro, additional treatment with temozolomide did not significantly enhance the antineoplastic activity of CUSP9v3. CUSP9v3 was well-tolerated with the most frequent grade 3 or 4 adverse events being increased hepatic enzyme levels.

CONCLUSIONS: CUSP9v3 displays a strong anti-proliferative and anti-migratory activity in vitro and seems to be safe to apply to patients. These data have prompted further investigation of CUSP9v3 in a phase Ib/IIa clinical trial (NCT02770378).

PMID:34959641 | DOI:10.3390/ph14121241

Categories: Literature Watch

Understanding COVID-19 Pathogenesis: A Drug-Repurposing Effort to Disrupt Nsp-1 Binding to Export Machinery Receptor Complex

Tue, 2021-12-28 06:00

Pathogens. 2021 Dec 17;10(12):1634. doi: 10.3390/pathogens10121634.

ABSTRACT

Non-structural protein 1 (Nsp1) is a virulence factor found in all beta coronaviruses (b-CoVs). Recent studies have shown that Nsp1 of SARS-CoV-2 virus interacts with the nuclear export receptor complex, which includes nuclear RNA export factor 1 (NXF1) and nuclear transport factor 2-like export factor 1 (NXT1). The NXF1-NXT1 complex plays a crucial role in the transport of host messenger RNA (mRNA). Nsp1 interferes with the proper binding of NXF1 to mRNA export adaptors and its docking to the nuclear pore complex. We propose that drugs targeting the binding surface between Nsp1 and NXF1-NXT1 may be a useful strategy to restore host antiviral gene expression. Exploring this strategy forms the main goals of this paper. Crystal structures of Nsp1 and the heterodimer of NXF1-NXT1 have been determined. We modeled the docking of Nsp1 to the NXF1-NXT1 complex, and discovered repurposed drugs that may interfere with this binding. To our knowledge, this is the first attempt at drug-repurposing of this complex. We used structural analysis to screen 1993 FDA-approved drugs for docking to the NXF1-NXT1 complex. The top hit was ganirelix, with a docking score of -14.49. Ganirelix competitively antagonizes the gonadotropin releasing hormone receptor (GNRHR) on pituitary gonadotrophs, and induces rapid, reversible suppression of gonadotropin secretion. The conformations of Nsp1 and GNRHR make it unlikely that they interact with each other. Additional drug leads were inferred from the structural analysis of this complex, which are discussed in the paper. These drugs offer several options for therapeutically blocking Nsp1 binding to NFX1-NXT1, which may normalize nuclear export in COVID-19 infection.

PMID:34959589 | DOI:10.3390/pathogens10121634

Categories: Literature Watch

Small Molecule Compounds, A Novel Strategy against <em>Streptococcus mutans</em>

Tue, 2021-12-28 06:00

Pathogens. 2021 Nov 25;10(12):1540. doi: 10.3390/pathogens10121540.

ABSTRACT

Dental caries, as a common oral infectious disease, is a worldwide public health issue. Oral biofilms are the main cause of dental caries. Streptococcus mutans (S. mutans) is well recognized as the major causative factor of dental caries within oral biofilms. In addition to mechanical removal such as tooth brushing and flossing, the topical application of antimicrobial agents is necessarily adjuvant to the control of caries particularly for high-risk populations. The mainstay antimicrobial agents for caries such as chlorhexidine have limitations including taste confusions, mucosal soreness, tooth discoloration, and disruption of an oral microbial equilibrium. Antimicrobial small molecules are promising in the control of S. mutans due to good antimicrobial activity, good selectivity, and low toxicity. In this paper, we discussed the application of antimicrobial small molecules to the control of S. mutans, with a particular focus on the identification and development of active compounds and their modes of action against the growth and virulence of S. mutans.

PMID:34959495 | DOI:10.3390/pathogens10121540

Categories: Literature Watch

Pages