Drug Repositioning
Sex-tailored pharmacology and COVID-19: next steps towards appropriateness and health equity
Pharmacol Res. 2021 Aug 25:105848. doi: 10.1016/j.phrs.2021.105848. Online ahead of print.
ABSTRACT
Making gender bias visible allows to fill the gaps in knowledge and understand health records and risks of women and men. The coronavirus disease 2019 (COVID-19) pandemic has shown a clear gender difference in health outcomes. The more severe symptoms and higher mortality in men as compared to women are likely due to sex and age differences in immune responses. Age-associated decline in sex steroid hormone levels may mediate proinflammatory reactions in older adults, thereby increasing their risk of adverse outcomes, whereas sex hormones and/or sex hormone receptor modulators may attenuate the inflammatory response and provide benefit to COVID-19 patients. While multiple pharmacological options including anticoagulants, glucocorticoids, antivirals, anti-inflammatory agents and traditional Chinese medicine preparations have been tested to treat COVID-19 patients with varied levels of evidence in terms of efficacy and safety, information on sex-targeted treatment strategies is currently limited. Women may have more benefit from COVID-19 vaccines than men, despite the occurrence of more frequent adverse effects, and long-term safety data with newly developed vectors are eagerly awaited. The prevalent inclusion of men in randomised clinical trials (RCTs) with subsequent extrapolation of results to women needs to be addressed, as reinforcing sex-neutral claims into COVID-19 research may insidiously lead to increased inequities in health care. The huge worldwide effort with over 3,000 ongoing RCTs of pharmacological agents should focus on improving knowledge on sex, gender and age as pillars of individual variation in drug responses and enforce appropriateness.
PMID:34454035 | DOI:10.1016/j.phrs.2021.105848
In Vitro and In Vivo Activity of AS101 against Carbapenem-Resistant <em>Acinetobacter baumannii</em>
Pharmaceuticals (Basel). 2021 Aug 21;14(8):823. doi: 10.3390/ph14080823.
ABSTRACT
The increasing trend of carbapenem-resistant Acinetobacter baumannii (CRAB) worldwide has become a concern, limiting therapeutic alternatives and increasing morbidity and mortality rates. The immunomodulation agent ammonium trichloro (dioxoethylene-O,O'-) tellurate (AS101) was repurposed as an antimicrobial agent against CRAB. Between 2016 and 2018, 27 CRAB clinical isolates were collected in Taiwan. The in vitro antibacterial activities of AS101 were evaluated using broth microdilution, time-kill assay, reactive oxygen species (ROS) detection and electron microscopy. In vivo effectiveness was assessed using a sepsis mouse infection model. The MIC range of AS101 for 27 CRAB isolates was from 0.5 to 32 µg/mL, which is below its 50% cytotoxicity (approximately 150 µg/mL). Bactericidal activity was confirmed using a time-kill assay. The antibacterial mechanism of AS101 was the accumulation of the ROS and the disruption of the cell membrane, which, in turn, results in cell death. The carbapenemase-producing A. baumannii mouse sepsis model showed that AS101 was a better therapeutic effect than colistin. The mice survival rate after 120 h was 33% (4/12) in the colistin-treated group and 58% (7/12) in the high-dose AS101 (3.33 mg/kg/day) group. Furthermore, high-dose AS101 significantly decreased bacterial population in the liver, kidney and spleen (all p < 0.001). These findings support the concept that AS101 is an ideal candidate for further testing in future studies.
PMID:34451920 | DOI:10.3390/ph14080823
Evaluation of the Organotellurium Compound AS101 for Treating Colistin- and Carbapenem-Resistant <em>Klebsiella pneumoniae</em>
Pharmaceuticals (Basel). 2021 Aug 12;14(8):795. doi: 10.3390/ph14080795.
ABSTRACT
Colistin- and carbapenem-resistant Enterobacteriaceae cases are increasing at alarming rates worldwide. Drug repurposing is receiving greater attention as an alternative approach in light of economic and technical barriers in antibiotics research. The immunomodulation agent ammonium trichloro(dioxoethylene-O,O'-)tellurate (AS101) was repurposed as an antimicrobial agent against colistin- and carbapenem-resistant Klebsiella pneumoniae (CRKP). 134 CRKP isolates were collected between 2012 and 2015 in Taiwan. The in vitro antibacterial activities of AS101 was observed through broth microdilution, time-kill assay, and electron microscopy. Pharmaceutical manipulation and RNA microarray were applied to investigate these antimicrobial mechanisms. Caenorhabditis elegans, a nematode animal model, and the Institute for Cancer Research (ICR) mouse model was employed for the evaluation of in vivo efficacy. The in vitro antibacterial results were found for AS101 against colistin- and CRKP isolates, with minimum inhibitory concentration (MIC) values ranging from <0.5 to 32 μg/mL. ROS-mediated antibacterial activity eliminated 99.9% of bacteria within 2-4 h. AS101 also extended the median survival time in a C. elegans animal model infected with a colistin-resistant CRKP isolate and rescued lethally infected animals in a separate mouse model of mono-bacterial sepsis by eliminating bacterial organ loads. These findings support the use of AS101 as an antimicrobial agent for addressing the colistin and carbapenem resistance crisis.
PMID:34451891 | DOI:10.3390/ph14080795
Just a Reflection: Does Drug Repurposing Perpetuate Sex-Gender Bias in the Safety Profile?
Pharmaceuticals (Basel). 2021 Jul 27;14(8):730. doi: 10.3390/ph14080730.
ABSTRACT
Vaccines constitute a strategy to reduce the burden of COVID-19, but the treatment of COVID-19 is still a challenge. The lack of approved drugs for severe COVID-19 makes repurposing or repositioning of approved drugs a relevant approach because it occurs at lower costs and in a shorter time. Most preclinical and clinical tests, including safety and pharmacokinetic profiles, were already performed. However, infective and inflammatory diseases such as COVID-19 are linked with hypoalbuminemia and downregulation of both phase I and phase II drug-metabolizing enzymes and transporters, which can occur in modifications of pharmacokinetics and consequentially of safety profiles. This appears to occur in a sex- and gender-specific way because of the sex and gender differences present in the immune system and inflammation, which, in turn, reflect on pharmacokinetic parameters. Therefore, to make better decisions about drug dosage regimens and to increases the safety profile in patients suffering from infective and inflammatory diseases such as COVID-19, it is urgently needed to study repurposing or repositioning drugs in men and in women paying attention to pharmacokinetics, especially for those drugs that are previously scarcely evaluated in women.
PMID:34451827 | DOI:10.3390/ph14080730
Pitavastatin Is a Highly Potent Inhibitor of T-Cell Proliferation
Pharmaceuticals (Basel). 2021 Jul 27;14(8):727. doi: 10.3390/ph14080727.
ABSTRACT
Repositioning of approved drugs is an alternative time- and cost-saving strategy to classical drug development. Statins are 3-hydroxy-3-methylglutaryl-CoA (HMG CoA) reductase inhibitors that are usually used as cholesterol-lowering medication, and they also exhibit anti-inflammatory effects. In the present study, we observed that the addition of Pitavastatin at nanomolar concentrations inhibits the proliferation of CD3/CD28 antibody-stimulated human T cells of healthy donors in a dose-dependent fashion. The 50% inhibition of proliferation (IC50) were 3.6 and 48.5 nM for freshly stimulated and pre-activated T cells, respectively. In addition, Pitavastatin suppressed the IL-10 and IL-17 production of stimulated T cells. Mechanistically, we found that treatment of T cells with doses <1 µM of Pitavastatin induced hyperphosphorylation of ERK1/2, and activation of caspase-9, -3 and -7, thus leading to apoptosis. Mevalonic acid, cholesterol and the MEK1/2 inhibitor U0126 reversed this Pitavastatin-mediated ERK1/2 activation and apoptosis of T cells. In summary, our results suggest that Pitavastatin is a highly potent inhibitor of T-cell proliferation, which induces apoptosis via pro-apoptotic ERK1/2 activation, thus representing a potential repositioning candidate for the treatment of T-cell-mediated autoimmune diseases.
PMID:34451823 | DOI:10.3390/ph14080727
Paradoxical Pro-angiogenic Effect of Low-Dose Ellipticine Identified by In Silico Drug Repurposing
Int J Mol Sci. 2021 Aug 23;22(16):9067. doi: 10.3390/ijms22169067.
ABSTRACT
Inadequate vessel maintenance or growth causes ischemia in diseases such as myocardial infarction, stroke, and neurodegenerative disorders. Therefore, developing an effective strategy to salvage ischemic tissues using a novel compound is urgent. Drug repurposing has become a widely used method that can make drug discovery more efficient and less expensive. Additionally, computational virtual screening tools make drug discovery faster and more accurate. This study found a novel drug candidate for pro-angiogenesis by in silico virtual screening. Using Gene Expression Omnibus (GEO) microarray datasets related to angiogenesis studies, differentially expressed genes were identified and characteristic direction signatures extracted from GEO2EnrichR were used as input data on L1000CDS2 to screen pro-angiogenic molecules. After a thorough review of the candidates, a list of compounds structurally similar to TWS-119 was generated using ChemMine Tools and its clustering toolbox. ChemMine Tools and ChemminR structural similarity search tools for small-molecule analysis and clustering were used for second screening. A molecular docking simulation was conducted using AutoDock v.4 to evaluate the physicochemical effect of secondary-screened chemicals. A cell viability or toxicity test was performed to determine the proper dose of the final candidate, ellipticine. As a result, we found ellipticine, which has pro-angiogenic effects, using virtual computational methods. The noncytotoxic concentration of ellipticine was 156.25 nM. The phosphorylation of glycogen synthase kinase-3β was decreased, whereas the β-catenin expression was increased in human endothelial cells treated with ellipticine. We concluded that ellipticine at sublethal dosage could be successfully repositioned as a pro-angiogenic substance by in silico virtual screening.
PMID:34445773 | DOI:10.3390/ijms22169067
Suppression of LPS-Induced Inflammation and Cell Migration by Azelastine through Inhibition of JNK/NF-κB Pathway in BV2 Microglial Cells
Int J Mol Sci. 2021 Aug 23;22(16):9061. doi: 10.3390/ijms22169061.
ABSTRACT
The c-Jun N-terminal kinases (JNKs) are implicated in many neuropathological conditions, including neurodegenerative diseases. To explore potential JNK3 inhibitors from the U.S. Food and Drug Administration-approved drug library, we performed structure-based virtual screening and identified azelastine (Aze) as one of the candidates. NMR spectroscopy indicated its direct binding to the ATP-binding site of JNK3, validating our observations. Although the antihistamine effect of Aze is well documented, the involvement of the JNK pathway in its action remains to be elucidated. This study investigated the effects of Aze on lipopolysaccharide (LPS)-induced JNK phosphorylation, pro-inflammatory mediators, and cell migration in BV2 microglial cells. Aze was found to inhibit the LPS-induced phosphorylation of JNK and c-Jun. It also inhibited the LPS-induced production of pro-inflammatory mediators, including interleukin-6, tumor necrosis factor-α, and nitric oxide. Wound healing and transwell migration assays indicated that Aze attenuated LPS-induced BV2 cell migration. Furthermore, Aze inhibited LPS-induced IκB phosphorylation, thereby suppressing nuclear translocation of NF-κB. Collectively, our data demonstrate that Aze exerts anti-inflammatory and anti-migratory effects through inhibition of the JNK/NF-κB pathway in BV2 cells. Based on our findings, Aze may be a potential candidate for drug repurposing to mitigate neuroinflammation in various neurodegenerative disorders, including Alzheimer's and Parkinson's diseases.
PMID:34445767 | DOI:10.3390/ijms22169061
Combination of Drugs and Cell Transplantation: More Beneficial Stem Cell-Based Regenerative Therapies Targeting Neurological Disorders
Int J Mol Sci. 2021 Aug 22;22(16):9047. doi: 10.3390/ijms22169047.
ABSTRACT
Cell transplantation therapy using pluripotent/multipotent stem cells has gained attention as a novel therapeutic strategy for treating neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease, Huntington's disease, ischemic stroke, and spinal cord injury. To fully realize the potential of cell transplantation therapy, new therapeutic options that increase cell engraftments must be developed, either through modifications to the grafted cells themselves or through changes in the microenvironment surrounding the grafted region. Together these developments could potentially restore lost neuronal function by better supporting grafted cells. In addition, drug administration can improve the outcome of cell transplantation therapy through better accessibility and delivery to the target region following cell transplantation. Here we introduce examples of drug repurposing approaches for more successful transplantation therapies based on preclinical experiments with clinically approved drugs. Drug repurposing is an advantageous drug development strategy because drugs that have already been clinically approved can be repurposed to treat other diseases faster and at lower cost. Therefore, drug repurposing is a reasonable approach to enhance the outcomes of cell transplantation therapies for neurological diseases. Ideal repurposing candidates would result in more efficient cell transplantation therapies and provide a new and beneficial therapeutic combination.
PMID:34445753 | DOI:10.3390/ijms22169047
Drug Discovery of Spinal Muscular Atrophy (SMA) from the Computational Perspective: A Comprehensive Review
Int J Mol Sci. 2021 Aug 20;22(16):8962. doi: 10.3390/ijms22168962.
ABSTRACT
Spinal muscular atrophy (SMA), one of the leading inherited causes of child mortality, is a rare neuromuscular disease arising from loss-of-function mutations of the survival motor neuron 1 (SMN1) gene, which encodes the SMN protein. When lacking the SMN protein in neurons, patients suffer from muscle weakness and atrophy, and in the severe cases, respiratory failure and death. Several therapeutic approaches show promise with human testing and three medications have been approved by the U.S. Food and Drug Administration (FDA) to date. Despite the shown promise of these approved therapies, there are some crucial limitations, one of the most important being the cost. The FDA-approved drugs are high-priced and are shortlisted among the most expensive treatments in the world. The price is still far beyond affordable and may serve as a burden for patients. The blooming of the biomedical data and advancement of computational approaches have opened new possibilities for SMA therapeutic development. This article highlights the present status of computationally aided approaches, including in silico drug repurposing, network driven drug discovery as well as artificial intelligence (AI)-assisted drug discovery, and discusses the future prospects.
PMID:34445667 | DOI:10.3390/ijms22168962
JI017 Attenuates Oxaliplatin-Induced Cold Allodynia via Spinal TRPV1 and Astrocytes Inhibition in Mice
Int J Mol Sci. 2021 Aug 16;22(16):8811. doi: 10.3390/ijms22168811.
ABSTRACT
Oxaliplatin, a well-known chemotherapeutic agent, can induce severe neuropathic pain, which can seriously decrease the quality of life of patients. JI017 is an herb mixture composed of Aconitum carmichaelii, Angelica gigas, and Zingiber officinale. Its anti-tumor effect has been reported; however, the efficacy of JI017 against oxaliplatin-induced allodynia has never been explored. Single oxaliplatin injection [6 mg/kg, intraperitoneal, (i.p.)] induced both cold and mechanical allodynia, and oral administration of JI017 (500 mg/kg) alleviated cold but not mechanical allodynia in mice. Real-time polymerase chain reaction (PCR) analysis demonstrated that the upregulation of mRNA of spinal transient receptor potential vanilloid 1 (TRPV1) and astrocytes following oxaliplatin injection was downregulated after JI017 treatment. Moreover, TRPV1 expression and the activation of astrocytes were intensely increased in the superficial area of the spinal dorsal horn after oxaliplatin treatment, whereas JI017 suppressed both. The administration of TRPV1 antagonist [capsazepine, intrathecal (i.t.), 10 μg] attenuated the activation of astrocytes in the dorsal horn, demonstrating that the functions of spinal TRPV1 and astrocytes are closely related in oxaliplatin-induced neuropathic pain. Altogether, these results suggest that JI017 may be a potent candidate for the management of oxaliplatin-induced neuropathy as it decreases pain, spinal TRPV1, and astrocyte activation.
PMID:34445514 | DOI:10.3390/ijms22168811
Bazedoxifene, a GP130 Inhibitor, Modulates EMT Signaling and Exhibits Antitumor Effects in HPV-Positive Cervical Cancer
Int J Mol Sci. 2021 Aug 13;22(16):8693. doi: 10.3390/ijms22168693.
ABSTRACT
Persistent HPV (Human Papillomavirus) infection is the primary cause of cervical cancer. Despite the development of the HPV vaccine to prevent infections, cervical cancer is still a fatal malignant tumor and metastatic disease, and it is often difficult to treat, so a new treatment strategy is needed. The FDA-approved drug Bazedoxifene is a novel inhibitor of protein-protein interactions between IL-6 and GP130. Multiple ligand simultaneous docking and drug repositioning approaches have demonstrated that an IL-6/GP130 inhibitor can act as a selective estrogen modulator. However, the molecular basis for GP130 activation in cervical cancer remains unclear. In this study, we investigated the anticancer properties of Bazedoxifene in HPV-positive cervical cancer cells. In vitro and in vivo experiments showed that Bazedoxifene inhibited cell invasion, migration, colony formation, and tumor growth in cervical cancer cells. We also confirmed that Bazedoxifene inhibits the GP130/STAT3 pathway and suppresses the EMT (Epithelial-mesenchymal transition) sub-signal. Thus, these data not only suggest a molecular mechanism by which the GP130/STAT3 pathway may promote cancer, but also may provide a basis for cervical cancer replacement therapy.
PMID:34445405 | DOI:10.3390/ijms22168693
The Antimalarial Mefloquine Shows Activity against <em>Mycobacterium abscessus</em>, Inhibiting Mycolic Acid Metabolism
Int J Mol Sci. 2021 Aug 8;22(16):8533. doi: 10.3390/ijms22168533.
ABSTRACT
Some nontuberculous mycobacteria (NTM) are considered opportunistic pathogens. Nevertheless, NTM infections are increasing worldwide, becoming a major public health threat. Furthermore, there is no current specific drugs to treat these infections, and the recommended regimens generally lack efficacy, emphasizing the need for novel antibacterial compounds. In this paper, we focused on the essential mycolic acids transporter MmpL3, which is a well-characterized target of several antimycobacterial agents, to identify new compounds active against Mycobacterium abscessus (Mab). From the crystal structure of MmpL3 in complex with known inhibitors, through an in silico approach, we developed a pharmacophore that was used as a three-dimensional filter to identify new putative MmpL3 ligands within databases of known drugs. Among the prioritized compounds, mefloquine showed appreciable activity against Mab (MIC = 16 μg/mL). The compound was confirmed to interfere with mycolic acids biosynthesis, and proved to also be active against other NTMs, including drug-resistant clinical isolates. Importantly, mefloquine is a well-known antimalarial agent, opening the possibility of repurposing an already approved drug, which is a useful strategy to reduce the time and cost of disclosing novel drug candidates.
PMID:34445239 | DOI:10.3390/ijms22168533
Immunometabolic Modulatory Role of Naltrexone in BV-2 Microglia Cells
Int J Mol Sci. 2021 Aug 5;22(16):8429. doi: 10.3390/ijms22168429.
ABSTRACT
Background: Naltrexone is an opioid receptor antagonist commonly used to treat opioid and alcohol dependence. The use of low dose naltrexone (LDN) was found to have anti-inflammatory properties for treatment of diseases such as fibromyalgia, Crohn's disease, multiple sclerosis and regional pain syndromes. Related to its anti-neuroinflammatory properties, the mechanism of action is possibly mediated via Toll-like receptor 4 antagonism, which is widely expressed on microglial cells. The aim of the present study was to assess the immunometabolic effects of naltrexone on microglia cells in in vitro conditions.
METHODS: All experiments were performed in the BV-2 microglial cell line. The cells were treated with naltrexone at 100 μM concentrations corresponding to low dose for 24 h. Cell viability was assessed for every drug dose. To induce additional activation, the cells were pretreated with LPS and IFN-γ. Immunofluorescence was used to analyse the classical microglial activation markers iNOS and CD206, while Seahorse was used for real-time cellular metabolic assessments. mTOR activity measured over the expression of a major direct downstream target S6K was assessed using western blot.
RESULTS: LDN induced a shift from highly activated pro-inflammatory phenotype (iNOShighCD206low) to quiescent anti-inflammatory M2 phenotype (iNOSlowCD206high) in BV-2 microglia cells. Changes in the inflammatory profile were accompanied by cellular metabolic switching based on the transition from high glycolysis to mitochondrial oxidative phosphorylation (OXPHOS). LDN-treated cells were able to maintain a metabolically suppressive phenotype by supporting OXPHOS with high oxygen consumption, and also maintain a lower energetic state due to lower lactate production. The metabolic shift induced by transition from glycolysis to mitochondrial oxidative metabolism was more prominent in cells pretreated with immunometabolic modulators such as LPS and IFN-γ. In a dose-dependent manner, naltrexone also modulated mTOR/S6K expression, which underlies the cell metabolic phenotype regulating microglia immune properties and adaptation.
CONCLUSION: By modulating the phenotypic features by metabolic switching of activated microglia, naltrexone was found to be an effective and powerful tool for immunometabolic reprogramming and could be a promising novel treatment for various neuroinflammatory conditions.
PMID:34445130 | DOI:10.3390/ijms22168429
Effect of Berberine on Cardiovascular Disease Risk Factors: A Mechanistic Randomized Controlled Trial
Nutrients. 2021 Jul 26;13(8):2550. doi: 10.3390/nu13082550.
ABSTRACT
Cardiovascular disease (CVD) is a major contributor to the global burden of disease. Berberine, a long-standing, widely used, traditional Chinese medicine, is thought to have beneficial effects on CVD risk factors and in women with polycystic ovary syndrome. The mechanisms and effects, specifically in men, possibly via testosterone, have not been examined previously. To assess the effect of berberine on CVD risk factors and any potential pathway via testosterone in men, we conducted a randomized, double-blind, placebo-controlled, parallel trial in Hong Kong. In total, 84 eligible Chinese men with hyperlipidemia were randomized to berberine (500 mg orally, twice a day) or placebo for 12 weeks. CVD risk factors (lipids, thromboxane A2, blood pressure, body mass index and waist-hip ratio) and testosterone were assessed at baseline, and 8 and 12 weeks after intervention. We compared changes in CVD risk factors and testosterone after 12 weeks of intervention using analysis of variance, and after 8 and 12 weeks using generalized estimating equations (GEE). Of the 84 men randomized, 80 men completed the trial. Men randomized to berberine had larger reductions in total cholesterol (-0.39 mmol/L, 95% confidence interval (CI) -0.70 to -0.08) and high-density lipoprotein cholesterol (-0.07 mmol/L, 95% CI -0.13 to -0.01) after 12 weeks. Considering changes after 8 and 12 weeks together, berberine lowered total cholesterol and possibly low-density lipoprotein-cholesterol (LDL-c), and possibly increased testosterone. Changes in triglycerides, thromboxane A2, blood pressure, body mass index and waist-hip ratio after the intervention did not differ between the berberine and placebo groups. No serious adverse event was reported. Berberine is a promising treatment for lowering cholesterol. Berberine did not lower testosterone but instead may increase testosterone in men, suggesting sex-specific effects of berberine. Exploring other pathways and assessing sex differences would be worthwhile, with relevance to drug repositioning and healthcare.
PMID:34444711 | DOI:10.3390/nu13082550
Chemoinformatics Analyses of Tau Ligands Reveal Key Molecular Requirements for the Identification of Potential Drug Candidates against Tauopathies
Molecules. 2021 Aug 20;26(16):5039. doi: 10.3390/molecules26165039.
ABSTRACT
Tau is a highly soluble protein mainly localized at a cytoplasmic level in the neuronal cells, which plays a crucial role in the regulation of microtubule dynamic stability. Recent studies have demonstrated that several factors, such as hyperphosphorylation or alterations of Tau metabolism, may contribute to the pathological accumulation of protein aggregates, which can result in neuronal death and the onset of a number of neurological disorders called Tauopathies. At present, there are no available therapeutic remedies able to reduce Tau aggregation, nor are there any structural clues or guidelines for the rational identification of compounds preventing the accumulation of protein aggregates. To help identify the structural properties required for anti-Tau aggregation activity, we performed extensive chemoinformatics analyses on a dataset of Tau ligands reported in ChEMBL. The performed analyses allowed us to identify a set of molecular properties that are in common between known active ligands. Moreover, extensive analyses of the fragment composition of reported ligands led to the identification of chemical moieties and fragment combinations prevalent in the more active compounds. Interestingly, many of these fragments were arranged in recurring frameworks, some of which were clearly present in compounds currently under clinical investigation. This work represents the first in-depth chemoinformatics study of the molecular properties, constituting fragments and similarity profiles, of known Tau aggregation inhibitors. The datasets of compounds employed for the analyses, the identified molecular fragments and their combinations are made publicly available as supplementary material.
PMID:34443629 | DOI:10.3390/molecules26165039
Antiviral fungal metabolites and some insights into their contribution to the current COVID-19 pandemic
Bioorg Med Chem. 2021 Aug 13;46:116366. doi: 10.1016/j.bmc.2021.116366. Online ahead of print.
ABSTRACT
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak, which started in late 2019, drove the scientific community to conduct innovative research to contain the spread of the pandemic and to care for those already affected. Since then, the search for new drugs that are effective against the virus has been strengthened. Featuring a relatively low cost of production under well-defined methods of cultivation, fungi have been providing a diversity of antiviral metabolites with unprecedented chemical structures. In this review, we present viral RNA infections highlighting SARS-CoV-2 morphogenesis and the infectious cycle, the targets of known antiviral drugs, and current developments in this area such as drug repurposing. We also explored the metabolic adaptability of fungi during fermentation to produce metabolites active against RNA viruses, along with their chemical structures, and mechanisms of action. Finally, the state of the art of research on SARS-CoV-2 inhibitors of fungal origin is reported, highlighting the metabolites selected by docking studies.
PMID:34438338 | DOI:10.1016/j.bmc.2021.116366
Cytoprotective agent troxipide-cyanine dye conjugate with cytotoxic and antiproliferative activity in patient-derived glioblastoma cell lines
Bioorg Med Chem Lett. 2021 Aug 23:128336. doi: 10.1016/j.bmcl.2021.128336. Online ahead of print.
ABSTRACT
Cytoprotective agents are mainly used to protect the gastrointestinal tract linings and in the treatment of gastric ulcers. These agents are devoid of appreciable cytotoxic or cytostatic effects, and medicinal chemistry efforts to modify them into anticancer agents are rare. A drug repurposing campaign initiated in our laboratory with the primary focus of discovering brain cancer drugs resulted in drug-dye conjugate 1, a combination of the cytoprotective agent troxipide and heptamethine cyanine dye MHI 148. The drug-dye conjugate 1 was evaluated in three different patient-derived adult glioblastoma cell lines, commercially available U87 glioblastoma, and one paediatric glioblastoma cell line. In all cases, the conjugate 1 showed potent cytotoxic activity with nanomolar potency (EC50: 267 nM). Interestingly, troxipide alone does not show any cytotoxic and cytostatic activity in the above cell lines. We also observe a synergistic effect of 1 with temozolomide (TMZ), the standard drug used for glioblastoma treatment, even though the cell lines we used in this study were resistant to TMZ treatment. Herein we disclose the synthesis and in vitro activity of drug-dye conjugate 1 for treatment of difficult-to-treat brain cancers such as glioblastoma.
PMID:34438012 | DOI:10.1016/j.bmcl.2021.128336
Exposure to Environmental Arsenic and Emerging Risk of Alzheimer's Disease: Perspective Mechanisms, Management Strategy, and Future Directions
Toxics. 2021 Aug 14;9(8):188. doi: 10.3390/toxics9080188.
ABSTRACT
Alzheimer's disease (AD) is one of the most prevailing neurodegenerative diseases, characterized by memory dysfunction and the presence of hyperphosphorylated tau and amyloid β (Aβ) aggregates in multiple brain regions, including the hippocampus and cortex. The exact etiology of AD has not yet been confirmed. However, epidemiological reports suggest that populations who were exposed to environmental hazards are more likely to develop AD than those who were not. Arsenic (As) is a naturally occurring environmental risk factor abundant in the Earth's crust, and human exposure to As predominantly occurs through drinking water. Convincing evidence suggests that As causes neurotoxicity and impairs memory and cognition, although the hypothesis and molecular mechanism of As-associated pathobiology in AD are not yet clear. However, exposure to As and its metabolites leads to various pathogenic events such as oxidative stress, inflammation, mitochondrial dysfunctions, ER stress, apoptosis, impaired protein homeostasis, and abnormal calcium signaling. Evidence has indicated that As exposure induces alterations that coincide with most of the biochemical, pathological, and clinical developments of AD. Here, we overview existing literature to gain insights into the plausible mechanisms that underlie As-induced neurotoxicity and the subsequent neurological deficits in AD. Prospective strategies for the prevention and management of arsenic exposure and neurotoxicity have also been discussed.
PMID:34437506 | DOI:10.3390/toxics9080188
Benzimidazoles induce concurrent apoptosis and pyroptosis of human glioblastoma cells via arresting cell cycle
Acta Pharmacol Sin. 2021 Aug 25. doi: 10.1038/s41401-021-00752-y. Online ahead of print.
ABSTRACT
Glioblastoma multiforme (GBM) is the most malignant and lethal primary brain tumor in adults accounting for about 50% of all gliomas. The only treatment available for GBM is the drug temozolomide, which unfortunately has frequent drug resistance issue. By analyzing the hub genes of GBM via weighted gene co-expression network analysis (WGCNA) of the cancer genome atlas (TCGA) dataset, and using the connectivity map (CMAP) platform for drug repurposing, we found that multiple azole compounds had potential anti-GBM activity. When their anti-GBM activity was examined, however, only three benzimidazole compounds, i.e. flubendazole, mebendazole and fenbendazole, potently and dose-dependently inhibited proliferation of U87 and U251 cells with IC50 values below 0.26 μM. Benzimidazoles (0.125-0.5 μM) dose-dependently suppressed DNA synthesis, cell migration and invasion, and regulated the expression of key epithelial-mesenchymal transition (EMT) markers in U87 and U251 cells. Benzimidazoles treatment also dose-dependently induced the GBM cell cycle arrest at the G2/M phase via the P53/P21/cyclin B1 pathway. Furthermore, the drugs triggered pyroptosis of GBM cells through the NF-κB/NLRP3/GSDMD pathway, and might also concurrently induced mitochondria-dependent apoptosis. In a nude mouse U87 cell xenograft model, administration of flubendazole (12.5, 25, and 50 mg · kg-1 · d-1, i.p, for 3 weeks) dose-dependently suppressed the tumor growth without obvious adverse effects. Taken together, our results demonstrated that benzimidazoles might be promising candidates for the treatment of GBM.
PMID:34433903 | DOI:10.1038/s41401-021-00752-y
HeTDR: Drug repositioning based on heterogeneous networks and text mining
Patterns (N Y). 2021 Jul 13;2(8):100307. doi: 10.1016/j.patter.2021.100307. eCollection 2021 Aug 13.
ABSTRACT
Using existing knowledge to carry out drug-disease associations prediction is a vital method for drug repositioning. However, effectively fusing the biomedical text and biological network information is one of the great challenges for most current drug repositioning methods. In this study, we propose a drug repositioning method based on heterogeneous networks and text mining (HeTDR). This model can combine drug features from multiple drug-related networks, disease features from biomedical corpora with the known drug-disease associations network to predict the correlation scores between drug and disease. Experiments demonstrate that HeTDR has excellent performance that is superior to that of state-of-the-art models. We present the top 10 novel HeTDR-predicted approved drugs for five diseases and prove our model is capable of discovering potential candidate drugs for disease indications.
PMID:34430926 | PMC:PMC8369234 | DOI:10.1016/j.patter.2021.100307