Drug Repositioning
The Role of the Renin-Angiotensin System in the Cancer Stem Cell Niche
J Histochem Cytochem. 2021 Jun 24:221554211026295. doi: 10.1369/00221554211026295. Online ahead of print.
ABSTRACT
Cancer stem cells (CSCs) drive metastasis, treatment resistance, and tumor recurrence. CSCs reside within a niche, an anatomically distinct site within the tumor microenvironment (TME) that consists of malignant and non-malignant cells, including immune cells. The renin-angiotensin system (RAS), a critical regulator of stem cells and key developmental processes, plays a vital role in the TME. Non-malignant cells within the CSC niche and stem cell signaling pathways such as the Wnt, Hedgehog, and Notch pathways influence CSCs. Components of the RAS and cathepsins B and D that constitute bypass loops of the RAS are expressed on CSCs in many cancer types. There is extensive in vitro and in vivo evidence showing that RAS inhibition reduces tumor growth, cell proliferation, invasion, and metastasis. However, there is inconsistent epidemiological data on the effect of RAS inhibitors on cancer incidence and survival outcomes, attributed to different patient characteristics and methodologies used between studies. Further mechanistic studies are warranted to investigate the precise effects of the RAS on CSCs directly and/or the CSC niche. Targeting the RAS, its bypass loops, and convergent signaling pathways participating in the TME and other key stem cell pathways that regulate CSCs may be a novel approach to cancer treatment.
PMID:34165363 | DOI:10.1369/00221554211026295
Repurposing of Anticancer Stem Cell Drugs in Brain Tumors
J Histochem Cytochem. 2021 Jun 24:221554211025482. doi: 10.1369/00221554211025482. Online ahead of print.
ABSTRACT
Brain tumors in adults may be infrequent when compared with other cancer etiologies, but they remain one of the deadliest with bleak survival rates. Current treatment modalities encompass surgical resection, chemotherapy, and radiotherapy. However, increasing resistance rates are being witnessed, and this has been attributed, in part, to cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells that reside within the tumor bulk and have the capacity for self-renewal and can differentiate and proliferate into multiple cell lineages. Studying those CSCs enables an increasing understanding of carcinogenesis, and targeting CSCs may overcome existing treatment resistance. One approach to weaponize new drugs is to target these CSCs through drug repurposing which entails using drugs, which are Food and Drug Administration-approved and safe for one defined disease, for a new indication. This approach serves to save both time and money that would otherwise be spent in designing a totally new therapy. In this review, we will illustrate drug repurposing strategies that have been used in brain tumors and then further elaborate on how these approaches, specifically those that target the resident CSCs, can help take the field of drug repurposing to a new level.
PMID:34165342 | DOI:10.1369/00221554211025482
Therapeutic Targeting of Transcription Factors to Control the Cytokine Release Syndrome in COVID-19
Front Pharmacol. 2021 Jun 7;12:673485. doi: 10.3389/fphar.2021.673485. eCollection 2021.
ABSTRACT
Treatment of the cytokine release syndrome (CRS) has become an important part of rescuing hospitalized COVID-19 patients. Here, we systematically explored the transcriptional regulators of inflammatory cytokines involved in the COVID-19 CRS to identify candidate transcription factors (TFs) for therapeutic targeting using approved drugs. We integrated a resource of TF-cytokine gene interactions with single-cell RNA-seq expression data from bronchoalveolar lavage fluid cells of COVID-19 patients. We found 581 significantly correlated interactions, between 95 TFs and 16 cytokines upregulated in the COVID-19 patients, that may contribute to pathogenesis of the disease. Among these, we identified 19 TFs that are targets of FDA approved drugs. We investigated the potential therapeutic effect of 10 drugs and 25 drugs combinations on inflammatory cytokine production, which revealed two drugs that inhibited cytokine production and numerous combinations that show synergistic efficacy in downregulating cytokine production. Further studies of these candidate repurposable drugs could lead to a therapeutic regimen to treat the CRS in COVID-19 patients.
PMID:34163359 | PMC:PMC8215608 | DOI:10.3389/fphar.2021.673485
Anti-cancer potential of some commonly used drugs
Curr Pharm Des. 2021 Jun 21. doi: 10.2174/1381612827666210622104821. Online ahead of print.
ABSTRACT
Cancer is a global concern leading to millions of deaths every year. A declining trend in new drug discovery and development is becoming one of the major issues among the pharmaceutical, biotechnology industries, and regulatory agencies. New drug development is proven to be a very lengthy and costly process. The launch of a new drug takes 8-12 years and huge investments. The success rate in oncology therapeutics is also low due to toxicities at the pre-clinical and clinical trial levels. Many oncological drugs get rejected at a very promising stage, showing adverse reactions on healthy cells. Thus, exploring new therapeutic benefits of the existing, shelved drugs for their anti-cancerous action could result in a therapeutic approach preventing the toxicities which occur during clinical trials. Drug repurposing has the potential to overcome the challenges faced via conventional way of drug discovery and is becoming an area of interest for researchers and scientists. However, very few in vivo studies are conducted to prove the anti-cancerous activity of the drugs. Insufficient in vivo animal studies and a lack of human clinical trials are the lacunae in the field of drug repurposing. This review focuses on an aspect of drug repurposing for cancer therapeutics. Various studies that show that drugs approved for clinical indications other than cancer have shown promising anti-cancer activities. Some of the commonly used drugs like Benzodiazepines (Diazepam, Midzolam), Antidepressants (Imipramine, Clomipramine, and Citalopram), Antiepileptic (Valporic acid, Phenytoin), Antidiabetics (metformin), etc. have been reported to show potential activity against the cancerous cells.
PMID:34161206 | DOI:10.2174/1381612827666210622104821
Discovery of pan-ErbB inhibitors protecting from SARS-CoV-2 replication, inflammation, and lung injury by a drug repurposing screen
bioRxiv. 2021 Jun 15:2021.05.15.444128. doi: 10.1101/2021.05.15.444128. Preprint.
ABSTRACT
Effective therapies are needed to combat emerging viruses. Seventeen candidates that rescue cells from SARS-CoV-2-induced lethality and target diverse functions emerged in a screen of 4,413 compounds. Among the hits was lapatinib, an approved inhibitor of the ErbB family of receptor tyrosine kinases. Lapatinib and other pan-ErbB inhibitors suppress replication of SARS-CoV-2 and unrelated viruses with a high barrier to resistance. ErbB4, but not lapatinib's cancer targets ErbB1 and ErbB2, is required for SARS-CoV-2 entry and encephalitis alphavirus infection and is a molecular target mediating lapatinib's antiviral effect. In human lung organoids, lapatinib protects from SARS-CoV-2-induced activation of pathways implicated in non-infectious acute lung injury and fibrosis downstream of ErbBs (p38-MAPK, MEK/ERK, and AKT/mTOR), pro-inflammatory cytokine production, and epithelial barrier injury. These findings reveal regulation of viral infection, inflammation, and lung injury via ErbBs and propose approved candidates to counteract these effects with implications for pandemic coronaviruses and unrelated viruses.
PMID:34159337 | PMC:PMC8219101 | DOI:10.1101/2021.05.15.444128
Microbial and genetic-based framework identifies drug targets in inflammatory bowel disease
Theranostics. 2021 Jun 1;11(15):7491-7506. doi: 10.7150/thno.59196. eCollection 2021.
ABSTRACT
Rationale: With increasing incidence and prevalence of inflammatory bowel disease (IBD), it has become one of the major public health threats, and there is an urgent need to develop new therapeutic agents. Although the pathogenesis of IBD is still unclear, previous research has provided evidence for complex interplays between genetic, immune, microbial, and environmental factors. Here, we constructed a gene-microbiota interaction-based framework to discover IBD biomarkers and therapeutics. Methods: We identified candidate biomarkers for IBD by analyzing the publicly available transcriptomic and microbiome data from IBD cohorts. Animal models of IBD and diarrhea were established. The inflammation-correlated microbial and genetic variants in gene knockout mice were identified by 16S rRNA sequences and PCR array. We performed bioinformatic analysis of microbiome functional prediction and drug repurposing. Our validation experiments with cells and animals confirmed anti-inflammatory properties of a drug candidate. Results: We identified the DNA-sensing enzyme cyclic GMP-AMP synthase (cGAS) as a potential biomarker for IBD in both patients and murine models. cGAS knockout mice were less susceptible to DSS-induced colitis. cGAS-associated gut microbiota and host genetic factors relating to IBD pathogenesis were also identified. Using a computational drug repurposing approach, we predicted 43 candidate drugs with high potency to reverse colitis-associated gene expression and validated that brefeldin-a mitigates inflammatory response in colitis mouse model and colon cancer cell lines. Conclusions: By integrating computational screening, microbiota interference, gene knockout techniques, and in vitro and in vivo validation, we built a framework for predicting biomarkers and host-microbe interaction targets and identifying repurposing drugs for IBD, which may be tested further for clinical application. This approach may also be a tool for repurposing drugs for treating other diseases.
PMID:34158863 | PMC:PMC8210594 | DOI:10.7150/thno.59196
Transcriptome-wide association study of treatment-resistant depression and depression subtypes for drug repurposing
Neuropsychopharmacology. 2021 Jun 22. doi: 10.1038/s41386-021-01059-6. Online ahead of print.
ABSTRACT
Major depressive disorder (MDD) is the single largest contributor to global disability and up to 20-30% of patients do not respond to at least two antidepressants (treatment-resistant depression, TRD). This study leveraged imputed gene expression in TRD to perform a drug repurposing analysis. Among those with MDD, we defined TRD as having at least two antidepressant switches according to primary care records in UK Biobank (UKB). We performed a transcriptome-wide association study (TWAS) of TRD (n = 2165) vs healthy controls (n = 11,188) using FUSION and gene expression levels from 21 tissues. We identified compounds with opposite gene expression signatures (ConnectivityMap data) compared to our TWAS results using the Kolmogorov-Smirnov test, Spearman and Pearson correlation. As symptom patterns are routinely assessed in clinical practice and could be used to provide targeted treatments, we identified MDD subtypes associated with TRD in UKB and analysed them using the same pipeline described for TRD. Anxious MDD (n = 14,954) and MDD with weight gain (n = 4697) were associated with TRD. In the TWAS, two genes were significantly dysregulated (TMEM106B and ATP2A1 for anxious and weight gain MDD, respectively). A muscarinic receptor antagonist was identified as top candidate for repurposing in TRD; inhibition of heat shock protein 90 was the main mechanism of action identified for anxious MDD, while modulators of metabolism such as troglitazone showed promising results for MDD with weight gain. This was the first TWAS of TRD and associated MDD subtypes. Our results shed light on possible pharmacological approaches in individuals with difficult-to-treat depression.
PMID:34158615 | DOI:10.1038/s41386-021-01059-6
Diabetes and coronavirus (SARS-CoV-2): Molecular mechanism of Metformin intervention and the scientific basis of drug repurposing
PLoS Pathog. 2021 Jun 22;17(6):e1009634. doi: 10.1371/journal.ppat.1009634. eCollection 2021 Jun.
ABSTRACT
Coronavirus Disease 2019 (COVID-19), caused by a new strain of coronavirus called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), was declared a pandemic by WHO on March 11, 2020. Soon after its emergence in late December 2019, it was noticed that diabetic individuals were at an increased risk of COVID-19-associated complications, ICU admissions, and mortality. Maintaining proper blood glucose levels using insulin and/or other oral antidiabetic drugs (such as Metformin) reduced the detrimental effects of COVID-19. Interestingly, in diabetic COVID-19 patients, while insulin administration was associated with adverse outcomes, Metformin treatment was correlated with a significant reduction in disease severity and mortality rates among affected individuals. Metformin was extensively studied for its antioxidant, anti-inflammatory, immunomodulatory, and antiviral capabilities that would explain its ability to confer cardiopulmonary and vascular protection in COVID-19. Here, we describe the various possible molecular mechanisms that contribute to Metformin therapy's beneficial effects and lay out the scientific basis of repurposing Metformin for use in COVID-19 patients.
PMID:34157054 | DOI:10.1371/journal.ppat.1009634
Integrated docking and enhanced sampling-based selection of repurposing drugs for SARS-CoV-2 by targeting host dependent factors
J Biomol Struct Dyn. 2021 Jun 22:1-12. doi: 10.1080/07391102.2021.1937319. Online ahead of print.
ABSTRACT
Since the onset of global pandemic, the most focused research currently in progress is the development of potential drug candidates and clinical trials of existing FDA approved drugs for other relevant diseases, in order to repurpose them for the COVID-19. At the same time, several high throughput screenings of drugs have been reported to inhibit the viral components during the early course of infection but with little proven efficacies. Here, we investigate the drug repurposing strategies to counteract the coronavirus infection which involves several potential targetable host proteins involved in viral replication and disease progression. We report the high throughput analysis of literature-derived repurposing drug candidates that can be used to target the genetic regulators known to interact with viral proteins based on experimental and interactome studies. In this work we have performed integrated molecular docking followed by molecular dynamics (MD) simulations and free energy calculations through an expedite in silico process where the number of screened candidates reduces sequentially at every step based on physicochemical interactions. We elucidate that in addition to the pre-clinical and FDA approved drugs that targets specific regulatory proteins, a range of chemical compounds (Nafamostat, Chloramphenicol, Ponatinib) binds to the other gene transcription and translation regulatory proteins with higher affinity and may harbour potential for therapeutic uses. There is a rapid growing interest in the development of combination therapy for COVID-19 to target multiple enzymes/pathways. Our in silico approach would be useful in generating leads for experimental screening for rapid drug repurposing against SARS-CoV-2 interacting host proteins.Communicated by Ramaswamy H. Sarma.
PMID:34155961 | DOI:10.1080/07391102.2021.1937319
Drug repurposing: Iron in the fire for older drugs
Biomed Pharmacother. 2021 Jun 18;141:111638. doi: 10.1016/j.biopha.2021.111638. Online ahead of print.
ABSTRACT
Repositioning or "repurposing" of existing therapies for indications of alternative disease is an attractive approach that can generate lower costs and require a shorter approval time than developing a de novo drug. The development of experimental drugs is time-consuming, expensive, and limited to a fairly small number of targets. The incorporation of separate and complementary data should be used, as each type of data set exposes a specific feature of organism knowledge Drug repurposing opportunities are often focused on sporadic findings or on time-consuming pre-clinical drug tests which are often not guided by hypothesis. In comparison, repurposing in-silico drugs is a new, hypothesis-driven method that takes advantage of big-data use. Nonetheless, the widespread use of omics technology, enhanced data storage, data sense, machine learning algorithms, and computational modeling all give unparalleled knowledge of the methods of action of biological processes and drugs, providing wide availability, for both disease-related data and drug-related data. This review has taken an in-depth look at the current state, possibilities, and limitations of further progress in the field of drug repositioning.
PMID:34153846 | DOI:10.1016/j.biopha.2021.111638
Coronaviruses, cholesterol and statins: Involvement and application for Covid-19
Biochimie. 2021 Jun 18:S0300-9084(21)00151-6. doi: 10.1016/j.biochi.2021.06.005. Online ahead of print.
ABSTRACT
The infectious power of coronaviruses is dependent on cholesterol present in the membranes of their target cells. Indeed, the virus enters the infected cell either by fusion or by endocytosis, in both cases involving cholesterol-enriched membrane microdomains. These membrane domains can be disorganized in-vitro by various cholesterol-altering agents, including statins that inhibit cell cholesterol biosynthesis. As a consequence, numerous cell physiology processes, such as signaling cascades, can be compromised. Also, some examples of anti-bacterial and anti-viral effects of statins have been observed for infectious agents known to be cholesterol dependent. In-vivo, besides their widely-reported hypocholesterolemic effect, statins display various pleiotropic effects mediated, at least partially, by perturbation of membrane microdomains as a consequence of the alteration of endogenous cholesterol synthesis. It should thus be worth considering a high, but clinically well-tolerated, dose of statin to treat Covid-19 patients, in the early phase of infection, to inhibit virus entry into the target cells, in order to control the viral charge and hence avoid severe clinical complications. Based on its efficacy and favorable biodisposition, an option would be considering Atorvastatin, but randomized controlled clinical trials are required to test this hypothesis. This new therapeutic proposal takes benefit from being a drug repurposing, applied to a widely-used drug presenting a high efficiency-to-toxicity ratio. Additionally, this therapeutic strategy avoids any risk of drug resistance by viral mutation since it is host-targeted. Noteworthy, the same pharmacological approach could also be proposed to address different animal coronavirus endemic infections that are responsible for heavy economic losses.
PMID:34153377 | DOI:10.1016/j.biochi.2021.06.005
The application of artificial intelligence and data integration in COVID-19 studies: a scoping review
J Am Med Inform Assoc. 2021 Jun 21:ocab098. doi: 10.1093/jamia/ocab098. Online ahead of print.
ABSTRACT
OBJECTIVE: To summarize how artificial intelligence (AI) is being applied in COVID-19 research and determine whether these AI applications integrated heterogenous data from different sources for modeling.
MATERIALS AND METHODS: We searched 2 major COVID-19 literature databases, the National Institutes of Health's LitCovid and the World Health Organization's COVID-19 database on March 9, 2021. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline, 2 reviewers independently reviewed all the articles in 2 rounds of screening.
RESULTS: In the 794 studies included in the final qualitative analysis, we identified 7 key COVID-19 research areas in which AI was applied, including disease forecasting, medical imaging-based diagnosis and prognosis, early detection and prognosis (non-imaging), drug repurposing and early drug discovery, social media data analysis, genomic, transcriptomic, and proteomic data analysis, and other COVID-19 research topics. We also found that there was a lack of heterogenous data integration in these AI applications.
DISCUSSION: Risk factors relevant to COVID-19 outcomes exist in heterogeneous data sources, including electronic health records, surveillance systems, sociodemographic datasets, and many more. However, most AI applications in COVID-19 research adopted a single-sourced approach that could omit important risk factors and thus lead to biased algorithms. Integrating heterogeneous data for modeling will help realize the full potential of AI algorithms, improve precision, and reduce bias.
CONCLUSION: There is a lack of data integration in the AI applications in COVID-19 research and a need for a multilevel AI framework that supports the analysis of heterogeneous data from different sources.
PMID:34151987 | DOI:10.1093/jamia/ocab098
Drug repurposing strategies in the development of potential antifungal agents
Appl Microbiol Biotechnol. 2021 Jun 21. doi: 10.1007/s00253-021-11407-7. Online ahead of print.
ABSTRACT
The morbidity and mortality caused by invasive fungal infections are increasing across the globe due to developments in transplant surgery, the use of immunosuppressive agents, and the emergence of drug-resistant fungal strains, which has led to a challenge in terms of treatment due to the limitations of three classes of drugs. Hence, it is imperative to establish effective strategies to identify and design new antifungal drugs. Drug repurposing is a potential way of expanding the application of existing drugs. Recently, various existing drugs have been shown to be useful in the prevention and treatment of invasive fungi. In this review, we summarize the currently used antifungal agents. In addition, the most up-to-date information on the effectiveness of existing drugs with antifungal activity is discussed. Moreover, the antifungal mechanisms of existing drugs are highlighted. These data will provide valuable knowledge to stimulate further investigation and clinical application in this field. KEY POINTS: • Conventional antifungal agents have limitations due to the occurrence of drug-resistant strains. • Non-antifungal drugs act as antifungal agents in various ways toward different targets. • Non-antifungal drugs with antifungal activity are demonstrated as effective antifungal strategies.
PMID:34151414 | DOI:10.1007/s00253-021-11407-7
Primaquine Diphosphate, a Known Antimalarial Drug, Blocks Vascular Leakage Acting Through Junction Stabilization
Front Pharmacol. 2021 Jun 4;12:695009. doi: 10.3389/fphar.2021.695009. eCollection 2021.
ABSTRACT
Endothelial barrier integrity is important for vascular homeostasis, and hyperpermeability participates in the progression of many pathological states, such as diabetic retinopathy, ischemic stroke, chronic bowel disease, and inflammatory disease. Here, using drug repositioning, we discovered that primaquine diphosphate (PD), previously known as an antimalarial drug, was a potential blocker of vascular leakage. PD inhibited the linear pattern of vascular endothelial growth factors (VEGF)-induced disruption at the cell boundaries, blocked the formation of VEGF-induced actin stress fibers, and stabilized the cortactin actin rings in endothelial cells. PD significantly reduced leakage in the Miles assay and mouse model of streptozotocin (STZ)-induced diabetic retinopathy. Targeted prediction programs and deubiquitinating enzyme activity assays identified a potential mechanism of action for PD and demonstrated that this operates via ubiquitin specific protease 1 (USP1). USP1 inhibition demonstrated a conserved barrier function by inhibiting VEGF-induced leakage in endothelial permeability assays. Taken together, these findings suggest that PD could be used as a novel drug for vascular leakage by maintaining endothelial integrity.
PMID:34149436 | PMC:PMC8211987 | DOI:10.3389/fphar.2021.695009
Chloroquine attenuates thymic stromal lymphopoietin production via suppressing caspase-1 signaling in mast cells
Biomed Pharmacother. 2021 Jun 16;141:111835. doi: 10.1016/j.biopha.2021.111835. Online ahead of print.
ABSTRACT
Thymic stromal lymphopoietin (TSLP) produced by mast cells is involved in allergic inflammation pathogenesis. Chloroquine (CQ) is known to be an anti-malarial drug; however, additional protective functions of CQ have been discovered. This study aims to clarify an anti-inflammatory effect of CQ through modulating TSLP levels using an in vitro model of phorbol myristate acetate (PMA) + A23187-activated human mast cell line (HMC-1) and an in vivo model of PMA-irritated ear edema. CQ treatment reduced the production and mRNA expression levels of TSLP in activated HMC-1 cells. CQ down-regulated caspase-1 (CASP1), MAPKs, and NF-κB levels enhanced by stimulation with PMA + A23187. Moreover, ear thickness in ear edema was suppressed following CQ treatment. CQ decreased CASP1 and NF-κB levels in the ear tissue. TSLP levels in the ear tissue and serum were reduced following CQ treatment. Collectively, the above findings elucidate that CQ inhibits the pro-inflammatory mechanisms of TSLP via the down-regulation of distinct intracellular signaling cascade in mast cells. Therefore, CQ may have protective roles against TSLP-mediated inflammatory disorders.
PMID:34146852 | DOI:10.1016/j.biopha.2021.111835
Comprehensive Cardiotoxicity Assessment of COVID-19 Treatments Using Human Induced Pluripotent Stem Cell-derived Cardiomyocytes
Toxicol Sci. 2021 Jun 17:kfab079. doi: 10.1093/toxsci/kfab079. Online ahead of print.
ABSTRACT
Coronavirus disease 2019 (COVID-19) continues to spread across the globe, with numerous clinical trials underway seeking to develop and test effective COVID-19 therapies, including remdesivir. Several ongoing studies have reported hydroxychloroquine-induced cardiotoxicity, including development of torsade de pointes (TdP). Meanwhile, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are expected to serve as a tool for assessing drug-induced cardiotoxicity, such as TdP and contraction impairment. However, the cardiotoxicity of COVID-19 treatments has not been fully assessed using hiPSC-CMs. In the present study, we focused on drug repurposing with various modes of actions and examined the TdP risk associated with COVID-19 treatments using field potential using multi-electrode array (MEA) system and motion analysis with hiPSC-CMs. Hydroxychloroquine induced early after depolarization, while remdesivir, favipiravir, camostat and ivermectin had little effect on field potentials. We then analyzed electromechanical window (EMw), which is defined as the difference between field potential and contraction-relaxation durations. Hydroxychloroquine decreased EMw of hiPSC-CMs in a concentration-dependent manner. In contrast, other drugs have little effect. Our data suggest that hydroxychloroquine has proarrhythmic risk and other drugs have low proarrhythmic risk. Thus, hiPSC-CMs represent a useful tool for assessing the comprehensive cardiotoxicity caused by COVID-19 treatments in non-clinical settings.
PMID:34142159 | DOI:10.1093/toxsci/kfab079
Prediction of drug efficacy from transcriptional profiles with deep learning
Nat Biotechnol. 2021 Jun 17. doi: 10.1038/s41587-021-00946-z. Online ahead of print.
ABSTRACT
Drug discovery focused on target proteins has been a successful strategy, but many diseases and biological processes lack obvious targets to enable such approaches. Here, to overcome this challenge, we describe a deep learning-based efficacy prediction system (DLEPS) that identifies drug candidates using a change in the gene expression profile in the diseased state as input. DLEPS was trained using chemically induced changes in transcriptional profiles from the L1000 project. We found that the changes in transcriptional profiles for previously unexamined molecules were predicted with a Pearson correlation coefficient of 0.74. We examined three disorders and experimentally tested the top drug candidates in mouse disease models. Validation showed that perillen, chikusetsusaponin IV and trametinib confer disease-relevant impacts against obesity, hyperuricemia and nonalcoholic steatohepatitis, respectively. DLEPS can generate insights into pathogenic mechanisms, and we demonstrate that the MEK-ERK signaling pathway is a target for developing agents against nonalcoholic steatohepatitis. Our findings suggest that DLEPS is an effective tool for drug repurposing and discovery.
PMID:34140681 | DOI:10.1038/s41587-021-00946-z
Potential repositioning of anti-cancer EGFR inhibitors in Alzheimer's disease: Current perspectives and challenging prospects
Neuroscience. 2021 Jun 14:S0306-4522(21)00305-5. doi: 10.1016/j.neuroscience.2021.06.013. Online ahead of print.
ABSTRACT
Clinical trials of new drugs for Alzheimer's disease (AD) have ended with disappointing results with tremendous resources and time. Repositioning of existing anti-cancer EGFR inhibitors in various preclinical AD models has gained growing attention in recent years because hyperactivation of epidermal growth factor receptors (EGFR) has been implicated in many neurodegenerative disorders, including AD. Many recent studies have established that EGFR inhibition suppresses reactive astrocytes, enhances autophagy, ameliorates Aβ toxicity, neuroinflammation, and regenerates axonal degradation. However, there is no incontrovertible neuroprotective proof using EGFR inhibitors due to many under-explored signaling transductions, poor blood-brain barrier permeability of the most tested drugs, and disappointing outcomes of most clinical trials. This has caused debate about the possible involvement of EGFR inhibitors in future clinical trials. In this perspective article, we recap recent studies to merge data on the neuroprotective effects of EGFR inhibition. By consequent analysis of previous data, we notably find the under-investigated neuroprotective pathways that highlighting the importance of additional research of EGFR inhibitors in attempts to be repurposed as burgeoning therapeutic strategies AD. Finally, we will discuss future prospective challenges in the repositioning of EGFR inhibitors in AD.
PMID:34139302 | DOI:10.1016/j.neuroscience.2021.06.013
Artificial Intelligence and Precision Medicine: A Perspective
Adv Exp Med Biol. 2021 Jun 18. doi: 10.1007/5584_2021_652. Online ahead of print.
ABSTRACT
This article aims to present how the advanced solutions of artificial intelligence and precision medicine work together to refine medical management. Multi-omics seems the most suitable approach for biological analysis of data on precision medicine and artificial intelligence. We searched PubMed and Google Scholar databases to collect pertinent articles appearing up to 5 March 2021. Genetics, oncology, radiology, and the recent coronavirus disease (COVID-19) pandemic were chosen as representative fields addressing the cross-compliance of artificial intelligence (AI) and precision medicine based on the highest number of articles, topicality, and interconnectedness of the issue. Overall, we identified and perused 1572 articles. AI is a breakthrough that takes part in shaping the Fourth Industrial Revolution in medicine and health care, changing the long-time accepted diagnostic and treatment regimens and approaches. AI-based link prediction models may be outstandingly helpful in the literature search for drug repurposing or finding new therapeutical modalities in rapidly erupting wide-scale diseases such as the recent COVID-19.
PMID:34138457 | DOI:10.1007/5584_2021_652
Computational drug repositioning for ischemic stroke: neuroprotective drug discovery
Future Med Chem. 2021 Jun 17. doi: 10.4155/fmc-2021-0022. Online ahead of print.
ABSTRACT
Background: A comprehensive approach to drug repositioning will be required to overcome translational hurdles and identify more neuroprotective drugs. Results & methods: Gene Set Enrichment Analysis was applied to identify related pathways and enriched genes. Candidate genes were optimized using ToppGene, ToppGenet and pBRIT. From the perspective of the local structures, gene-domain-substructure-drug relationships were constructed. Using the MCODE algorithm and K-means clustering, 31 functional subnetworks were obtained, and 252 drugs with proposed neuroprotective function were identified. Using computational analysis, 72 substructures with different scores were found to correspond to neuroprotective functions. The protective effects of benidipine and barnidipine were confirmed in vitro. Conclusion: The authors' research has great potential to discover more neuroprotective drugs and obtain more information regarding mechanisms of action and functional substructures.
PMID:34137272 | DOI:10.4155/fmc-2021-0022