Drug Repositioning

Publisher Correction: A SARS-CoV-2 (COVID-19) biological network to find targets for drug repurposing

Tue, 2021-07-27 06:00

Sci Rep. 2021 Jul 26;11(1):15550. doi: 10.1038/s41598-021-94440-w.

NO ABSTRACT

PMID:34312434 | DOI:10.1038/s41598-021-94440-w

Categories: Literature Watch

Identification of FDA approved drugs against SARS-CoV-2 RNA dependent RNA polymerase (RdRp) and 3-chymotrypsin-like protease (3CLpro), drug repurposing approach

Tue, 2021-07-27 06:00

Biomed Pharmacother. 2021 Jun;138:111544. doi: 10.1016/j.biopha.2021.111544. Epub 2021 Mar 31.

ABSTRACT

The RNA-dependent RNA polymerase (RdRp) and 3C-like protease (3CLpro) from SARS-CoV-2 play crucial roles in the viral life cycle and are considered the most promising targets for drug discovery against SARS-CoV-2. In this study, FDA-approved drugs were screened to identify the probable anti-RdRp and 3CLpro inhibitors by molecular docking approach. The number of ligands selected from the PubChem database of NCBI for screening was 1760. Ligands were energy minimized using Open Babel. The RdRp and 3CLpro protein sequences were retrieved from the NCBI database. For Homology Modeling predictions, we used the Swiss model server. Their structure was then energetically minimized using SPDB viewer software and visualized in the CHIMERA UCSF software. Molecular dockings were performed using AutoDock Vina, and candidate drugs were selected based on binding affinity (∆G). Hydrogen bonding and hydrophobic interactions between ligands and proteins were visualized using Ligplot and the Discovery Studio Visualizer v3.0 software. Our results showed 58 drugs against RdRp, which had binding energy of - 8.5 or less, and 69 drugs to inhibit the 3CLpro enzyme with a binding energy of - 8.1 or less. Six drugs based on binding energy and number of hydrogen bonds were chosen for the next step of molecular dynamics (MD) simulations to investigate drug-protein interactions (including Nilotinib, Imatinib and dihydroergotamine for 3clpro and Lapatinib, Dexasone and Relategravir for RdRp). Except for Lapatinib, other drugs-complexes were stable during MD simulation. Raltegravir, an anti-HIV drug, was observed to be the best compound against RdRp based on docking binding energy (-9.5 kcal/mole) and MD results. According to the MD results and binding energy, dihydroergotamine is a suitable candidate for 3clpro inhibition (-9.6 kcal/mol). These drugs were classified into several categories, including antiviral, antibacterial, anti-inflammatory, anti-allergic, cardiovascular, anticoagulant, BPH and impotence, antipsychotic, antimigraine, anticancer, and so on. The common prescription-indications for some of these medication categories appeared somewhat in line with manifestations of COVID-19. We hope that they can be beneficial for patients with certain specific symptoms of SARS-CoV-2 infection, but they can also probably inhibit viral enzymes. We recommend further experimental evaluations in vitro and in vivo on these FDA-approved drugs to assess their potential antiviral effect on SARS-CoV-2.

PMID:34311539 | DOI:10.1016/j.biopha.2021.111544

Categories: Literature Watch

Drug repurposing strategies of relevance for Parkinson's disease

Mon, 2021-07-26 06:00

Pharmacol Res Perspect. 2021 Aug;9(4):e00841. doi: 10.1002/prp2.841.

ABSTRACT

Parkinson's disease is a highly disabling, progressive neurodegenerative disease that manifests as a mix of motor and non-motor signs. Although we are equipped with some symptomatic treatments, especially for the motor signs of the disease, there are still no established disease-modifying drugs so the disease progresses unchecked. Standard drug discovery programs for disease-modifying therapies have provided key insights into the pathogenesis of Parkinson's disease but, of the many positive candidates identified in pre-clinical studies, none has yet translated into a successful clinically efficacious drug. Given the huge cost of drug discovery programs, it is not surprising that much attention has turned toward repurposing strategies. The trialing of an established therapeutic has the advantage of bypassing the need for preclinical safety testing and formulation optimization, thereby cutting both time and costs involved in getting a treatment to the clinic. Additional reduced failure rates for repurposed drugs are also a potential bonus. Many different strategies for drug repurposing are open to researchers in the Parkinson's disease field. Some of these have already proven effective in identifying suitable drugs for clinical trials, lending support to such approaches. In this review, we present a summary of the different strategies for drug repurposing, from large-scale epidemiological correlation analysis through to single-gene transcriptional approaches. We provide examples of past or ongoing studies adopting each strategy, where these exist. For strategies that have yet to be applied to Parkinson's disease, their utility is illustrated using examples taken from other disorders.

PMID:34309236 | DOI:10.1002/prp2.841

Categories: Literature Watch

Design and <em>in silico</em> investigation of novel Maraviroc analogues as dual inhibition of CCR-5/SARS-CoV-2 M<sup>pro</sup>

Mon, 2021-07-26 06:00

J Biomol Struct Dyn. 2021 Jul 26:1-16. doi: 10.1080/07391102.2021.1955742. Online ahead of print.

ABSTRACT

A sudden increase in life-threatening COVID-19 infections around the world inflicts global crisis and emotional trauma. In current study two druggable targets, namely SARS-COV-2 Mpro and CCR-5 were selected due to their significant nature in the viral life cycle and cytokine molecular storm respectively. The systematic drug repurposing strategy has been utilized to recognize inhibitory mechanism through extensive in silico investigation of novel Maraviroc analogues as promising inhibitors against SARS-CoV-2 Mpro and CCR-5. The dual inhibition specificity approach implemented in present study using molecular docking, molecular dynamics (MD), principal component analysis (PCA), free energy landscape (FEL) and MM/PBSA binding energy studies. The proposed Maraviroc analogues obtained from in silico investigation could be easily synthesized and constructive in developing significant drug against COVID-19 pandemic, with essentiality of their in vivo/in vitro evaluation to affirm the conclusions of this study. This will further fortify the concept of single drug targeting dual inhibition mechanism for treatment of COVID-19 infection and complications.

PMID:34308790 | DOI:10.1080/07391102.2021.1955742

Categories: Literature Watch

Repurposing FDA-approved drugs against multiple proteins of SARS-CoV-2: An in silico study

Mon, 2021-07-26 06:00

Sci Afr. 2021 Sep;13:e00845. doi: 10.1016/j.sciaf.2021.e00845. Epub 2021 Jul 11.

ABSTRACT

The current crisis of the COVID-19 pandemic around the world has been devastating as many lives have been lost to the novel SARS CoV-2 virus. Thus, there is an urgent need for the right therapeutic drug to curb the disease. However, there is time constraint in drug development, hence the need for drug repurposing approach, a relatively fast and less expensive alternative. In this study, 1,100 Food and Drug Administration (FDA) approved drugs were obtained from DrugBank and trimmed to 791 ligands based on illicitness, withdrawal from the market, being chemical agents rather than drugs, being investigational drugs and having molecular weight greater than 500 (Kg/mol). The ligands were docked against six drug targets of the novel SARS CoV-2 - 3-chymotrypsin-like protease (3CLpro), Angiotensin-converting enzyme (ACE2), ADP ribose phosphatase of NSP3 (NSP3), NSP9 RNA binding protein (NSP9), RNA dependent RNA polymerase (RdRp) and Replicase Polyprotein 1a (RP1a). UCSF Chimera, PyRx and Discovery Studio, were used to prepare the proteins, dock the ligands and visualize the complexes, respectively. Remdesivir, Lopinavir and Hydroxychloroquine were used as reference drugs. Pharmacokinetic properties of the ligands were obtained using AdmetSAR. The binding energies of the standard drugs ranged from -5.4 to -8.7 kcal/mol while over 400 of the ligands screened showed binding energy lower than -5.4 kcal/mol. Out of the 791 number of compounds docked, 10, 91, 132, 92, 54 and 96 compounds showed lower binding energies than all the controls against 3CLPro, ACE2, NSP3, NSP9, RP1a and RdRp, respectively. Ligands that bound all target proteins, and showed the lowest binding energies with good ADMET properties and particularly showed the lowest binding against ACE2 are ethynodiol diacetate (-15.6 kcal/mol), methylnaltrexone (-15.5 kcal/mol), ketazolam (-14.5 kcal/mol) and naloxone (-13.6 kcal/mol). Further investigations are recommended for ethynodiol diacetate, methylnaltrexone, ketazolam and naloxone through preclinical and clinical studies to ascertain their effectiveness.

PMID:34308004 | PMC:PMC8272888 | DOI:10.1016/j.sciaf.2021.e00845

Categories: Literature Watch

Mutational analysis in international isolates and drug repurposing against SARS-CoV-2 spike protein: molecular docking and simulation approach

Mon, 2021-07-26 06:00

Virusdisease. 2021 Jul 15:1-13. doi: 10.1007/s13337-021-00720-4. Online ahead of print.

ABSTRACT

The novel SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) is spreading, as the causative pathogen of coronavirus disease-19 (COVID-19). It has infected more than 1.65 billion people all over the world since it was discovered and reported 3.43 million deaths by mid of May 2021. SARS-CoV-2 enters the host cell by binding to viral surface glycoprotein (S protein) with human ACE2 (angiotensin-converting enzyme2). Spike protein (contains S1 and S2 sub-domains) molecular interaction with the host cells is considered as a major step in the viral entry and disease initiation and progression and this identifies spike protein as a promising therapeutic target against antiviral drugs. Currently, there are no efficient antiviral drugs for the prevention of COVID-19 infection. In this study, we have analyzed global 8719 spike protein sequences from patients infected with SAR-CoV-2. These SAR-CoV-2 genome sequences were downloaded from the GISAID database. By using an open reading frame (ORF) tool we have identified the spike protein sequence. With these, all spike protein amino acid sequences are subjected to multiple sequence alignment (MSA) with Wuhan strain spike protein sequence as a query sequence, and it shows all SAR-CoV strain spike proteins are 99.8% identical. In the mutational analysis, we found 639 mutations in the spike protein sequence of SARS-CoV-2 and identified/highlighted 20 common mutations L5F, T22I, T29I, H49Y, L54F, V90F, S98F, S221L, S254F, V367F, A520S, T572I, D614G, H655Y, P809S, A879S, D936Y, A1020S, A1078S, and H1101Y. Further, we have analyzed the crystal structure of the 2019-nCoV chimeric receptor-binding complex with ACE2 (PDB ID: 6VW1) as a major target protein. The spike receptor binding protein (RBD) used as target region for our studies with FDA-approved drugs for repurposing, and identified few anti-SARS-CoV2 potential drugs (Silmitasertib, AC-55541, Merimepodib, XL413, AZ3451) based on their docking score and binding mode calculations expected to strongly bind to motifs of ACE2 receptor and may show impart relief in COVID-19 patients.

PMID:34307771 | PMC:PMC8282177 | DOI:10.1007/s13337-021-00720-4

Categories: Literature Watch

Drug Repurposing of Pantoprazole and Vitamin C Targeting Tumor Microenvironment Conditions Improves Anticancer Effect in Metastatic Castration-Resistant Prostate Cancer

Mon, 2021-07-26 06:00

Front Oncol. 2021 Jul 7;11:660320. doi: 10.3389/fonc.2021.660320. eCollection 2021.

ABSTRACT

The effective and economical therapeutic strategy for metastatic castration-resistant prostate cancer (mCRPC) is still requested from patients, who are not available for Lu-177 or Ra-223 treatment. Drug repurposing as a cost-effective and time-saving alternative to traditional drug development has been increasingly discussed. Proton pump inhibitors (PPIs) such as pantroprazole, which are commonly used as antacids, have also been shown to be effective in cancer chemoprevention via induction of apoptosis in multiple cancer cell lines. Vitamin C is an essential micronutrient for human body, has been proposed as a potential anti-cancer agent. In this context, have we investigated the combination of vitamin C and pantoprazole for the management of metastatic castration-resistant prostate cancer (mCRPC). Six chosen human adenocarcinoma cell lines were used to investigate the influence of pantoprazole on the microenvironment of cancer cells (extracellular pH and production of exosomes). Tumor growth and tumor 18F-FDG uptake in PC3 xenografts were analyzed following varied treatment. Our in vitro Results have suggested that pantoprazole enhanced the cytotoxic activity of vitamin C by regulating pH values and production of exosomes in cancer cells. Moreover, the synergistic effect of pantoprazole and vitamin C was pH-dependent since pantoprazole was more effective at a slightly acidic pH. In vivo, the combined treatment using pantoprazole and vitamin C produced better therapeutic outcomes than treatment with vitamin C or pantoprazole alone, as demonstrated via tumor growth and uptake of 18F-FDG. Therefore, we suggest that pantoprazole combined with vitamin C could be as a possible strategy to manage mCRPC.

PMID:34307134 | PMC:PMC8294332 | DOI:10.3389/fonc.2021.660320

Categories: Literature Watch

Drug repositioning based on network-specific core genes identifies potential drugs for the treatment of autism spectrum disorder in children

Mon, 2021-07-26 06:00

Comput Struct Biotechnol J. 2021 Jul 1;19:3908-3921. doi: 10.1016/j.csbj.2021.06.046. eCollection 2021.

ABSTRACT

Identification of exact causative genes is important for in silico drug repositioning based on drug-gene-disease relationships. However, the complex polygenic etiology of the autism spectrum disorder (ASD) is a challenge in the identification of etiological genes. The network-based core gene identification method can effectively use the interactions between genes and accurately identify the pathogenic genes of ASD. We developed a novel network-based drug repositioning framework that contains three steps: network-specific core gene (NCG) identification, potential therapeutic drug repositioning, and candidate drug validation. First, through the analysis of transcriptome data for 178 brain tissues, gene network analysis identified 365 NCGs in 18 coexpression modules that were significantly correlated with ASD. Second, we evaluated two proposed drug repositioning methods. In one novel approach (dtGSEA), we used the NCGs to probe drug-gene interaction data and identified 35 candidate drugs. In another approach, we compared NCG expression patterns with drug-induced transcriptome data from the Connectivity Map database and found 46 candidate drugs. Third, we validated the candidate drugs using an in-house mental diseases and compounds knowledge graph (MCKG) that contained 7509 compounds, 505 mental diseases, and 123,890 edges. We found a total of 42 candidate drugs that were associated with mental illness, among which 10 drugs (baclofen, sulpiride, estradiol, entinostat, everolimus, fluvoxamine, curcumin, calcitriol, metronidazole, and zinc) were postulated to be associated with ASD. This study proposes a powerful network-based drug repositioning framework and also provides candidate drugs as well as potential drug targets for the subsequent development of ASD therapeutic drugs.

PMID:34306572 | PMC:PMC8280514 | DOI:10.1016/j.csbj.2021.06.046

Categories: Literature Watch

Statins: a repurposed drug to fight cancer

Sun, 2021-07-25 06:00

J Exp Clin Cancer Res. 2021 Jul 24;40(1):241. doi: 10.1186/s13046-021-02041-2.

ABSTRACT

As competitive HMG-CoA reductase (HMGCR) inhibitors, statins not only reduce cholesterol and improve cardiovascular risk, but also exhibit pleiotropic effects that are independent of their lipid-lowering effects. Among them, the anti-cancer properties of statins have attracted much attention and indicated the potential of statins as repurposed drugs for the treatment of cancer. A large number of clinical and epidemiological studies have described the anticancer properties of statins, but the evidence for anticancer effectiveness of statins is inconsistent. It may be that certain molecular subtypes of cancer are more vulnerable to statin therapy than others. Whether statins have clinical anticancer effects is still an active area of research. Statins appear to enhance the efficacy and address the shortcomings associated with conventional cancer treatments, suggesting that statins should be considered in the context of combined therapies for cancer. Here, we present a comprehensive review of the potential of statins in anti-cancer treatments. We discuss the current understanding of the mechanisms underlying the anti-cancer properties of statins and their effects on different malignancies. We also provide recommendations for the design of future well-designed clinical trials of the anti-cancer efficacy of statins.

PMID:34303383 | DOI:10.1186/s13046-021-02041-2

Categories: Literature Watch

Repurposing nonnucleoside antivirals against SARS-CoV2 NSP12 (RNA dependent RNA polymerase): In silico-molecular insight

Sat, 2021-07-24 06:00

Biochem Biophys Res Commun. 2021 Jul 16;571:26-31. doi: 10.1016/j.bbrc.2021.07.050. Online ahead of print.

ABSTRACT

The pandemic of SARS-CoV-2 has necessitated expedited research efforts towards finding potential antiviral targets and drug development measures. While new drug discovery is time consuming, drug repurposing has been a promising area for elaborate virtual screening and identification of existing FDA approved drugs that could possibly be used for targeting against functions of various proteins of SARS-CoV-2 virus. RNA dependent RNA polymerase (RdRp) is an important enzyme for the virus that mediates replication of the viral RNA. Inhibition of RdRp could inhibit viral RNA replication and thus new virus particle production. Here, we screened non-nucleoside antivirals and found three out of them to be strongest in binding to RdRp out of which two retained binding even using molecular dynamic simulations. We propose these two drugs as potential RdRp inhibitors which need further in-depth testing.

PMID:34303192 | DOI:10.1016/j.bbrc.2021.07.050

Categories: Literature Watch

Identification of novel anti-cancer agents by the synthesis and cellular screening of a noscapine-based library

Sat, 2021-07-24 06:00

Bioorg Chem. 2021 Jun 30;115:105135. doi: 10.1016/j.bioorg.2021.105135. Online ahead of print.

ABSTRACT

Noscapine is a natural product first isolated from the opium poppy (Papaver somniferum L.) with anticancer properties. In this work, we report the synthesis and cellular screening of a noscapine-based library. A library of novel noscapine derivatives was synthesized with modifications in the isoquinoline and phthalide scaffolds. The so generated library, consisting of fifty-seven derivatives of the natural product noscapine, was tested against MDA-MB-231 breast cancer cells in a cellular proliferation assay (with a Z' > 0.7). The screening resulted in the identification of two novel noscapine derivatives as inhibitors of MDA cell growth with IC50 values of 5 µM and 1.5 µM, respectively. Both hit molecules have a five-fold and seventeen-fold higher potency, compared with that of lead compound noscapine (IC50 26 µM). The identified active derivatives retain the tubulin-binding ability of noscapine. Further testing of both hit molecules, alongside the natural product against additional cancer cell lines (HepG2, HeLa and PC3 cells) confirmed our initial findings. Both molecules have improved anti-proliferative properties when compared to the initial natural product, noscapine.

PMID:34303039 | DOI:10.1016/j.bioorg.2021.105135

Categories: Literature Watch

Advancing the use of genome-wide association studies for drug repurposing

Sat, 2021-07-24 06:00

Nat Rev Genet. 2021 Jul 23. doi: 10.1038/s41576-021-00387-z. Online ahead of print.

ABSTRACT

Genome-wide association studies (GWAS) have revealed important biological insights into complex diseases, which are broadly expected to lead to the identification of new drug targets and opportunities for treatment. Drug development, however, remains hampered by the time taken and costs expended to achieve regulatory approval, leading many clinicians and researchers to consider alternative paths to more immediate clinical outcomes. In this Review, we explore approaches that leverage common variant genetics to identify opportunities for repurposing existing drugs, also known as drug repositioning. These approaches include the identification of compounds by linking individual loci to genes and pathways that can be pharmacologically modulated, transcriptome-wide association studies, gene-set association, causal inference by Mendelian randomization, and polygenic scoring.

PMID:34302145 | DOI:10.1038/s41576-021-00387-z

Categories: Literature Watch

Integration of RNA-Seq and proteomics data identifies glioblastoma multiforme surfaceome signature

Sat, 2021-07-24 06:00

BMC Cancer. 2021 Jul 23;21(1):850. doi: 10.1186/s12885-021-08591-0.

ABSTRACT

BACKGROUND: Glioblastoma multiforme (GBM) is a highly lethal, stage IV brain tumour with a prevalence of approximately 2 per 10,000 people globally. The cell surface proteins or surfaceome serve as information gateway in many oncogenic signalling pathways and are important in modulating cancer phenotypes. Dysregulation in surfaceome expression and activity have been shown to promote tumorigenesis. The expression of GBM surfaceome is a case in point; OMICS screening in a cell-based system identified that this sub-proteome is largely perturbed in GBM. Additionally, since these cell surface proteins have 'direct' access to drugs, they are appealing targets for cancer therapy. However, a comprehensive GBM surfaceome landscape has not been fully defined yet. Thus, this study aimed to define GBM-associated surfaceome genes and identify key cell-surface genes that could potentially be developed as novel GBM biomarkers for therapeutic purposes.

METHODS: We integrated the RNA-Seq data from TCGA GBM (n = 166) and GTEx normal brain cortex (n = 408) databases to identify the significantly dysregulated surfaceome in GBM. This was followed by an integrative analysis that combines transcriptomics, proteomics and protein-protein interaction network data to prioritize the high-confidence GBM surfaceome signature.

RESULTS: Of the 2381 significantly dysregulated genes in GBM, 395 genes were classified as surfaceome. Via the integrative analysis, we identified 6 high-confidence GBM molecular signature, HLA-DRA, CD44, SLC1A5, EGFR, ITGB2, PTPRJ, which were significantly upregulated in GBM. The expression of these genes was validated in an independent transcriptomics database, which confirmed their upregulated expression in GBM. Importantly, high expression of CD44, PTPRJ and HLA-DRA is significantly associated with poor disease-free survival. Last, using the Drugbank database, we identified several clinically-approved drugs targeting the GBM molecular signature suggesting potential drug repurposing.

CONCLUSIONS: In summary, we identified and highlighted the key GBM surface-enriched repertoires that could be biologically relevant in supporting GBM pathogenesis. These genes could be further interrogated experimentally in future studies that could lead to efficient diagnostic/prognostic markers or potential treatment options for GBM.

PMID:34301218 | DOI:10.1186/s12885-021-08591-0

Categories: Literature Watch

Search for Novel Lead Inhibitors of Yeast Cytochrome bc1, from Drugbank and COCONUT

Sat, 2021-07-24 06:00

Molecules. 2021 Jul 16;26(14):4323. doi: 10.3390/molecules26144323.

ABSTRACT

In this work we introduce a novel filtering and molecular modeling pipeline based on a fingerprint and descriptor similarity procedure, coupled with molecular docking and molecular dynamics (MD), to select potential novel quoinone outside inhibitors (QoI) of cytochrome bc1 with the aim of determining the same or different chromophores to usual. The study was carried out using the yeast cytochrome bc1 complex with its docked ligand (stigmatellin), using all the fungicides from FRAC code C3 mode of action, 8617 Drugbank compounds and 401,624 COCONUT compounds. The introduced drug repurposing pipeline consists of compound similarity with C3 fungicides and molecular docking (MD) simulations with final QM/MM binding energy determination, while aiming for potential novel chromophores and perserving at least an amide (R1HN(C=O)R2) or ester functional group of almost all up to date C3 fungicides. 3D descriptors used for a similarity test were based on the 280 most stable Padel descriptors. Hit compounds that passed fingerprint and 3D descriptor similarity condition and had either an amide or an ester group were submitted to docking where they further had to satisfy both Chemscore fitness and specific conformation constraints. This rigorous selection resulted in a very limited number of candidates that were forwarded to MD simulations and QM/MM binding affinity estimations by the ORCA DFT program. In this final step, stringent criteria based on (a) sufficiently high frequency of H-bonds; (b) high interaction energy between protein and ligand through the whole MD trajectory; and (c) high enough QM/MM binding energy scores were applied to further filter candidate inhibitors. This elaborate search pipeline led finaly to four Drugbank synthetic lead compounds (DrugBank) and seven natural (COCONUT database) lead compounds-tentative new inhibitors of cytochrome bc1. These eleven lead compounds were additionally validated through a comparison of MM/PBSA free binding energy for new leads against those obtatined for 19 QoIs.

PMID:34299598 | DOI:10.3390/molecules26144323

Categories: Literature Watch

New In Vitro-In Silico Approach for the Prediction of In Vivo Performance of Drug Combinations

Sat, 2021-07-24 06:00

Molecules. 2021 Jul 13;26(14):4257. doi: 10.3390/molecules26144257.

ABSTRACT

Pharmacokinetic (PK) studies improve the design of dosing regimens in preclinical and clinical settings. In complex diseases like cancer, single-agent approaches are often insufficient for an effective treatment, and drug combination therapies can be implemented. In this work, in silico PK models were developed based on in vitro assays results, with the goal of predicting the in vivo performance of drug combinations in the context of cancer therapy. Combinations of reference drugs for cancer treatment, gemcitabine and 5-fluorouracil (5-FU), and repurposed drugs itraconazole, verapamil or tacrine, were evaluated in vitro. Then, two-compartment PK models were developed based on the previous in vitro studies and on the PK profile reported in the literature for human patients. Considering the quantification parameter area under the dose-response-time curve (AUCeffect) for the combinations effect, itraconazole was the most effective in combination with either reference anticancer drugs. In addition, cell growth inhibition was itraconazole-dose dependent and an increase in effect was predicted if itraconazole administration was continued (24-h dosing interval). This work demonstrates that in silico methods and AUCeffect are powerful tools to study relationships between tissue drug concentration and the percentage of cell growth inhibition over time.

PMID:34299532 | DOI:10.3390/molecules26144257

Categories: Literature Watch

Anti-Allergic Drug Suppressed Pancreatic Carcinogenesis via Down-Regulation of Cellular Proliferation

Sat, 2021-07-24 06:00

Int J Mol Sci. 2021 Jul 12;22(14):7444. doi: 10.3390/ijms22147444.

ABSTRACT

Pancreatic cancer is a fatal disease, and thus its chemoprevention is an important issue. Based on the recent report that patients with allergic diseases have a low risk for pancreatic cancer, we examined the potential chemopreventive effect of anti-allergic agents using a hamster pancreatic carcinogenesis model. Among the three anti-allergic drugs administered, montelukast showed a tendency to suppress the incidence of pancreatic cancer. Further animal study revealed a significantly decreased incidence of pancreatic cancer in the high-dose montelukast group compared with controls. The development of the pancreatic intraepithelial neoplasia lesions was also significantly suppressed. The Ki-67 labeling index was significantly lower in pancreatic carcinomas in the high-dose montelukast group than in controls. In vitro experiments revealed that montelukast suppressed proliferation of pancreatic cancer cells in a dose-dependent manner with decreased expression of phospho-ERK1/2. Montelukast induced G1 phase arrest. Conversely, leukotriene D4 (LTD4), an agonist of CYSLTR1, increased cellular proliferation of pancreatic cancer cells with an accumulation of phospho-ERK1/2. In our cohort, pancreatic ductal adenocarcinoma patients with high CYSLTR1 expression showed a significantly unfavorable clinical outcome compared with those with low expression. Our results indicate that montelukast exerts a chemopreventive effect on pancreatic cancer via the LTD4-CYSLTR1 axis and has potential for treatment of pancreatic carcinogenesis.

PMID:34299067 | DOI:10.3390/ijms22147444

Categories: Literature Watch

Synergistic Growth Inhibition of HT-29 Colon and MCF-7 Breast Cancer Cells with Simultaneous and Sequential Combinations of Antineoplastics and CNS Drugs

Sat, 2021-07-24 06:00

Int J Mol Sci. 2021 Jul 10;22(14):7408. doi: 10.3390/ijms22147408.

ABSTRACT

Several central nervous system (CNS) drugs exhibit potent anti-cancer activities. This study aimed to design a novel model of combination that combines different CNS agents and antineoplastic drugs (5-fluorouracil (5-FU) and paclitaxel (PTX)) for colorectal and breast cancer therapy, respectively. Cytotoxic effects of 5-FU and PTX alone and in combination with different CNS agents were evaluated on HT-29 colon and MCF-7 breast cancer cells, respectively. Three antimalarials alone and in combination with 5-FU were also evaluated in HT-29 cells. Different schedules and concentrations in a fixed ratio were added to the cultured cells and incubated for 48 h. Cell viability was evaluated using MTT and SRB assays. Synergism was evaluated using the Chou-Talalay, Bliss Independence and HSA methods. Our results demonstrate that fluphenazine, fluoxetine and benztropine have enhanced anticancer activity when used alone as compared to being used in combination, making them ideal candidates for drug repurposing in colorectal cancer (CRC). Regarding MCF-7 cells, sertraline was the most promising candidate alone for drug repurposing, with the lowest IC50 value. For HT-29 cells, the CNS drugs sertraline and thioridazine in simultaneous combination with 5-FU demonstrated the strongest synergism among all combinations. In MCF-7 breast cancer cells, the combination of fluoxetine, fluphenazine and benztropine with PTX resulted in synergism for all concentrations below IC50. We also found that the antimalarial artesunate administration prior to 5-FU produces better results in reducing HT-29 cell viability than the inverse drug schedule or the simultaneous combination. These results demonstrate that CNS drugs activity differs between the two selected cell lines, both alone and in combination, and support that some CNS agents may be promising candidates for drug repurposing in these types of cancers. Additionally, these results demonstrate that 5-FU or a combination of PTX with CNS drugs should be further evaluated. These results also demonstrate that antimalarial drugs may also be used as antitumor agents in colorectal cancer, besides breast cancer.

PMID:34299028 | DOI:10.3390/ijms22147408

Categories: Literature Watch

FTY720 Inhibits Expansion of Breast Cancer Stem Cells via PP2A Activation

Sat, 2021-07-24 06:00

Int J Mol Sci. 2021 Jul 6;22(14):7259. doi: 10.3390/ijms22147259.

ABSTRACT

Growing evidence suggests that breast cancer originates from a minor population of cancer cells termed cancer stem cells (CSCs), which can be identified by aldehyde dehydrogenase (ALDH) activity-based flow cytometry analysis. However, novel therapeutic drugs for the eradication of CSCs have not been discovered yet. Recently, drug repositioning, which finds new medical uses from existing drugs, has been expected to facilitate drug discovery. We have previously reported that sphingosine kinase 1 (SphK1) induced proliferation of breast CSCs. In the present study, we focused on the immunosuppressive agent FTY720 (also known as fingolimod or Gilenya), since FTY720 is known to be an inhibitor of SphK1. We found that FTY720 blocked both proliferation of ALDH-positive cells and formation of mammospheres. In addition, we showed that FTY720 reduced the expression of stem cell markers such as Oct3/4, Sox2 and Nanog via upregulation of protein phosphatase 2A (PP2A). These results suggest that FTY720 is an effective drug for breast CSCs in vitro.

PMID:34298877 | DOI:10.3390/ijms22147259

Categories: Literature Watch

Repurposing DPP-4 Inhibitors for Colorectal Cancer: A Retrospective and Single Center Study

Sat, 2021-07-24 06:00

Cancers (Basel). 2021 Jul 17;13(14):3588. doi: 10.3390/cancers13143588.

ABSTRACT

BACKGROUND: There have been studies reporting the crucial roles of Dipeptidyl-peptidase 4 (DPP4) in colorectal cancer (CRC) initiation and progression, whereas DPP4-inhibitors are safe Food and Drug Association (FDA)-approved drugs for treating diabetes. This study aims to investigate the association between DPP4-inhibitor treatment and the prognosis of CRC patients.

METHODS: Clinical data of CRC patients with diabetes and the prescription of DPP4-inhibitors who had undergone curative surgery in our hospital between January 2006 and December 2015 were retrieved. Their survival data and immune cell population in circulatory blood were compared to those treated with metformin.

RESULTS: The DPP4-inhibitor patient group showed a significantly better 5-year disease-free survival (median DFS = 1733 days, 95% CI = 1596 to 1870 days) when compared to the metformin group (p = 0.030, median DFS = 1382 days, 95% CI = 1246 to 1518 days). 33 out of the 92 patients in the metformin group showed recurrence whereas only 3 of the 26 patients in the DPP4-inhibitor group showed recurrence (p = 0.033). Cox regression analysis demonstrated that DPP4-inhibitor application is a favorable factor associated with a lower risk of recurrence (Hazard ratio = 0.200, p = 0.035). Furthermore, our results suggested that the immune cell profile of CRC patients is a potential biomarker for response to DPP4-inhibitor treatment.

CONCLUSION: This study demonstrated the association of DPP4-inhibitor treatment with a better prognosis of CRC patients.

PMID:34298800 | DOI:10.3390/cancers13143588

Categories: Literature Watch

Proteomics and Drug Repurposing in CLL towards Precision Medicine

Sat, 2021-07-24 06:00

Cancers (Basel). 2021 Jul 6;13(14):3391. doi: 10.3390/cancers13143391.

ABSTRACT

CLL is a hematological malignancy considered as the most frequent lymphoproliferative disease in the western world. It is characterized by high molecular heterogeneity and despite the available therapeutic options, there are many patient subgroups showing the insufficient effectiveness of disease treatment. The challenge is to investigate the individual molecular characteristics and heterogeneity of these patients. Proteomics analysis is a powerful approach that monitors the constant state of flux operators of genetic information and can unravel the proteome heterogeneity and rewiring into protein pathways in CLL patients. This review essences all the available proteomics studies in CLL and suggests the way these studies can be exploited to find effective therapeutic options combined with drug repurposing approaches. Drug repurposing utilizes all the existing knowledge of the safety and efficacy of FDA-approved or investigational drugs and anticipates drug alignment to crucial CLL therapeutic targets, leading to a better disease outcome. The drug repurposing studies in CLL are also discussed in this review. The next goal involves the integration of proteomics-based drug repurposing in precision medicine, as well as the application of this procedure into clinical practice to predict the most appropriate drugs combination that could ensure therapy and the long-term survival of each CLL patient.

PMID:34298607 | DOI:10.3390/cancers13143391

Categories: Literature Watch

Pages