Drug Repositioning
High-Content Analysis-Based Sensitivity Prediction and Novel Therapeutics Screening for c-Met-Addicted Glioblastoma.
High-Content Analysis-Based Sensitivity Prediction and Novel Therapeutics Screening for c-Met-Addicted Glioblastoma.
Cancers (Basel). 2021 Jan 20;13(3):
Authors: Oh JW, Oh YJ, Han S, Her NG, Nam DH
Abstract
(1) Background: Recent advances in precision oncology research rely on indicating specific genetic alterations associated with treatment sensitivity. Developing ex vivo systems to identify cancer patients who will respond to a specific drug remains important. (2) Methods: cells from 12 patients with glioblastoma were isolated, cultured, and subjected to high-content screening. Multi-parameter analyses assessed the c-Met level, cell viability, apoptosis, cell motility, and migration. A drug repurposing screen and large-scale drug sensitivity screening data across 59 cancer cell lines and patient-derived cells were obtained from 125 glioblastoma samples. (3) Results: High-content analysis of patient-derived cells provided robust and accurate drug responses to c-Met-targeted agents. Only the cells of one glioblastoma patient (PDC6) showed elevated c-Met level and high susceptibility to the c-Met inhibitors. Multi-parameter image analysis also reflected a decreased c-Met expression and reduced cell growth and motility by a c-Met-targeting antibody. In addition, a drug repurposing screen identified Abemaciclib as a distinct CDK4/6 inhibitor with a potent c-Met-inhibitory function. Consistent with this, we present large-scale drug sensitivity screening data showing that the Abemaciclib response correlates with the response to c-Met inhibitors. (4) Conclusions: Our study provides a new insight into high-content screening platforms supporting drug sensitivity prediction and novel therapeutics screening.
PMID: 33498427 [PubMed]
Antibodies to watch in 2021.
Antibodies to watch in 2021.
MAbs. 2021 Jan-Dec;13(1):1860476
Authors: Kaplon H, Reichert JM
Abstract
In this 12th annual installment of the Antibodies to Watch article series, we discuss key events in antibody therapeutics development that occurred in 2020 and forecast events that might occur in 2021. The coronavirus disease 2019 (COVID-19) pandemic posed an array of challenges and opportunities to the healthcare system in 2020, and it will continue to do so in 2021. Remarkably, by late November 2020, two anti-SARS-CoV antibody products, bamlanivimab and the casirivimab and imdevimab cocktail, were authorized for emergency use by the US Food and Drug Administration (FDA) and the repurposed antibodies levilimab and itolizumab had been registered for emergency use as treatments for COVID-19 in Russia and India, respectively. Despite the pandemic, 10 antibody therapeutics had been granted the first approval in the US or EU in 2020, as of November, and 2 more (tanezumab and margetuximab) may be granted approvals in December 2020.* In addition, prolgolimab and olokizumab had been granted first approvals in Russia and cetuximab saratolacan sodium was first approved in Japan. The number of approvals in 2021 may set a record, as marketing applications for 16 investigational antibody therapeutics are already undergoing regulatory review by either the FDA or the European Medicines Agency. Of these 16 mAbs, 11 are possible treatments for non-cancer indications and 5 are potential treatments for cancer. Based on the information publicly available as of November 2020, 44 antibody therapeutics are in late-stage clinical studies for non-cancer indications, including 6 for COVID-19, and marketing applications for at least 6 (leronlimab, tezepelumab, faricimab, ligelizumab, garetosmab, and fasinumab) are planned in 2021. In addition, 44 antibody therapeutics are in late-stage clinical studies for cancer indications. Of these 44, marketing application submissions for 13 may be submitted by the end of 2021. *Note added in proof on key events announced during December 1-21, 2020: margetuximab-cmkb and ansuvimab-zykl were approved by FDA on December 16 and 21, 2020, respectively; biologics license applications were submitted for ublituximab and amivantamab.
PMID: 33459118 [PubMed - indexed for MEDLINE]
Glucagon-like peptide-1 (GLP-1)-based receptor agonists as a treatment for Parkinson's disease.
Glucagon-like peptide-1 (GLP-1)-based receptor agonists as a treatment for Parkinson's disease.
Expert Opin Investig Drugs. 2020 Jun;29(6):595-602
Authors: Glotfelty EJ, Olson L, Karlsson TE, Li Y, Greig NH
Abstract
INTRODUCTION: Accumulating evidence supports the evaluation of glucagon-like peptide-1 (GLP-1) receptor (R) agonists for the treatment of the underlying pathology causing Parkinson's Disease (PD). Not only are these effects evident in models of PD and other neurodegenerative disorders but recently in a randomized, double-blind, placebo-controlled clinical trial, a GLP-1R agonist has provided improved cognition motor functions in humans with moderate PD.
AREAS COVERED: In this mini-review, we describe the development of GLP-1R agonists and their potential therapeutic value in treating PD. Many GLP-1R agonists are FDA approved for the treatment of metabolic disorders, and hence can be rapidly repositioned for PD. Furthermore, we present preclinical data offering insights into the use of monomeric dual- and tri-agonist incretin-based mimetics for neurodegenerative disorders. These drugs combine active regions of GLP-1 with those of glucose-dependent insulinotropic peptide (GIP) and/or glucagon (Gcg).
EXPERT OPINION: GLP-1Ragonists offer a complementary and enhanced therapeutic value to other drugs used to treat PD. Moreover, the use of the dual- or tri-agonist GLP-1-based mimetics may provide combinatory effects that are even more powerful than GLP-1R agonism alone. We advocate for further investigations into the repurposing of GLP-1R agonists and the development of classes of multi-agonists for PD treatment.
PMID: 32412796 [PubMed - indexed for MEDLINE]
Repositioning of histamine H1 receptor antagonist: Doxepin inhibits viropexis of SARS-CoV-2 Spike pseudovirus by blocking ACE2.
Repositioning of histamine H1 receptor antagonist: Doxepin inhibits viropexis of SARS-CoV-2 Spike pseudovirus by blocking ACE2.
Eur J Pharmacol. 2021 Jan 23;:173897
Authors: Ge S, Wang X, Hou Y, Lv Y, Wang C, He H
Abstract
The spread of the corona virus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been intensifying in the past year, posing a huge threat to global health. There is an urgent need for effective drugs and vaccines to fight the COVID-19, but their advent may not be quite fast. Drug repurposing is a feasible strategy in the current situation, which could greatly shorten drug development time and help to response quickly to the novel virus outbreak. It has been reported that histamine H1 receptor antagonists have broad-spectrum antiviral effects. Therefore, in this study, we aim to screen potential drugs among histamine H1 receptor antagonists that may inhibit SARS-CoV-2 infection. Based on the model of angiotensin-converting enzyme 2 (ACE2) overexpressing HEK293T cell membrane chromatography (CMC), five FDA-approved histamine H1 receptor antagonists were found to have bioaffinity to ACE2. Then we determined the interaction between these drugs and ACE2 by frontal analysis and surface plasmon resonance (SPR), which consistently demonstrated that these hits bind to ACE2 at micromolar levels of affinity. Through the pseudovirus assay, we finally identified that doxepin could inhibit SARS-CoV-2 spike pseudovirus from entering the ACE2-expressing cell, reducing the infection rate to 25.82%. These preliminary results indicate that the histamine H1 receptor antagonist, doxepin, is a viable drug candidate for clinical trials. Therefore, we hope the work timely provides rational help for developing anti-SARS-CoV-2 drugs to control the rapid spread of SARS-CoV-2.
PMID: 33497607 [PubMed - as supplied by publisher]
Autophagy modulation as a potential targeted cancer therapy: From drug repurposing to new drug development.
Autophagy modulation as a potential targeted cancer therapy: From drug repurposing to new drug development.
Kaohsiung J Med Sci. 2021 Jan 26;:
Authors: Lin CJ, Tsao YN, Shu CW
Abstract
Autophagy is an evolutionarily conserved signaling pathway to deliver dysfunctional proteins or organelles into lysosomes for degradation and recycling, which is an important pathway for normal homeostasis. Autophagy dysfunction can lead to various diseases, particularly cancer. Autophagy not only plays a role in tumor suppression, but it also serves as a tumor promoter in cancer malignancy. In this review, we summarize the involvement of autophagy-related (ATG) proteins in autophagy signaling and the role of autophagy in cancer progression. The effectiveness of US Food and Drug Administration-approved drugs in regulating autophagic flux and suppressing cancer cells is also discussed. Moreover, since clinically available drugs do not specifically target ATG proteins, there is little doubt that their cancer suppression function is autophagy dependent. Therefore, this review also discusses several inhibitors against ATG proteins, such as ULK1/2, ATG4, and VPS34 to suppress cancer cells. Autophagy modulators can be either used alone or combined with chemotherapy or radiation therapy to enhance the efficacy of current treatments for certain types of cancer. This review summarizes current autophagy modulation used as a potential strategy for targeted cancer therapy.
PMID: 33496377 [PubMed - as supplied by publisher]
[Potential therapies for COVID-19 cardiovascular complications using artemisinin and its derivatives intervene based on its cardiovascular protection].
[Potential therapies for COVID-19 cardiovascular complications using artemisinin and its derivatives intervene based on its cardiovascular protection].
Zhongguo Zhong Yao Za Zhi. 2020 Dec;45(24):6053-6064
Authors: Yang YM, Chen LN, Qu SQ, Deng SQ, Liu H, Wang X, Weng XG, Wang YJ, Zhu XX, Li YJ
Abstract
Corona virus disease 2019(COVID-19) has brought untold human sufferings and economic tragedy worldwide. It causes acute myocardial injury and chronic damage of cardiovascular system, which has attracted much attention from researchers. For the immediate strategy for COVID-19, "drug repurposing" is a new opportunity for developing drugs to fight COVID-19. Artemisinin and its derivatives have a wide range of pharmacological activities. Recent studies have shown that artemisinin has clear cardiovascular protective effects. This paper summarizes the research progress on the pathogenesis the pathogenesis of COVID-19 in cardiovascular damage by 2019 novel coronavirus(2019-nCoV) virus from myocardial cell injury directly by 2019-nCoV virus,viral ligands competitively bind to ACE2 and then reduce the protective effect of ACE2 on cardiovascular disease, "cytokine storm" related myocardial damage, arrhythmia and sudden cardiac death induced by the infection and stress, myocardial injury by hypoxemia, heart damage side effects from COVID-19 drugs and summarizing the cardiovascular protective effects of artemisinin and its derivatives have activities of anti-arrhythmia, anti-myocardial ischemia, anti-atherosclerosis and plaque stabilization. Then analyzed the possible multi-pathway intervention effects of artemisinin-based drugs on multiple complications of COVID-19 based on its specific immunomodulatory effects, protective effects of tissue and organ damage and broad-spectrum antiviral effect, to provide clues for the treatment of cardiovascular complications of COVID-19, and give a new basis for the therapy of COVID-19 through "drug repurposing".
PMID: 33496147 [PubMed - in process]
COVID-19: Characteristics and Therapeutics.
COVID-19: Characteristics and Therapeutics.
Cells. 2021 Jan 21;10(2):
Authors: Chilamakuri R, Agarwal S
Abstract
Novel coronavirus (COVID-19 or 2019-nCoV or SARS-CoV-2), which suddenly emerged in December 2019 is still haunting the entire human race and has affected not only the healthcare system but also the global socioeconomic balances. COVID-19 was quickly designated as a global pandemic by the World Health Organization as there have been about 98.0 million confirmed cases and about 2.0 million confirmed deaths, as of January 2021. Although, our understanding of COVID-19 has significantly increased since its outbreak, and multiple treatment approaches and pharmacological interventions have been tested or are currently under development to mitigate its risk-factors. Recently, some vaccine candidates showed around 95% clinical efficacy, and now receiving emergency use approvals in different countries. US FDA recently approved BNT162 and mRNA-1273 vaccines developed by Pfizer/BioNTech and Moderna Inc. for emergency use and vaccination in the USA. In this review, we present a succinct overview of the SARS-CoV-2 virus structure, molecular mechanisms of infection, COVID-19 epidemiology, diagnosis, and clinical manifestations. We also systematize different treatment strategies and clinical trials initiated after the pandemic outbreak, based on viral infection and replication mechanisms. Additionally, we reviewed the novel pharmacological intervention approaches and vaccine development strategies against COVID-19. We speculate that the current pandemic emergency will trigger detailed studies of coronaviruses, their mechanism of infection, development of systematic drug repurposing approaches, and novel drug discoveries for current and future pandemic outbreaks.
PMID: 33494237 [PubMed - in process]
Potential anti-TB investigational compounds and drugs with repurposing potential in TB therapy: a conspectus.
Potential anti-TB investigational compounds and drugs with repurposing potential in TB therapy: a conspectus.
Appl Microbiol Biotechnol. 2020 Jul;104(13):5633-5662
Authors: Adeniji AA, Knoll KE, Loots DT
Abstract
The latest WHO report estimates about 1.6 million global deaths annually from TB, which is further exacerbated by drug-resistant (DR) TB and comorbidities with diabetes and HIV. Exiguous dosing, incomplete treatment course, and the ability of the tuberculosis bacilli to tolerate and survive current first-line and second-line anti-TB drugs, in either their latent state or active state, has resulted in an increased prevalence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant TB (TDR-TB). Although a better understanding of the TB microanatomy, genome, transcriptome, proteome, and metabolome, has resulted in the discovery of a few novel promising anti-TB drug targets and diagnostic biomarkers of late, no new anti-TB drug candidates have been approved for routine therapy in over 50 years, with only bedaquiline, delamanid, and pretomanid recently receiving tentative regulatory approval. Considering this, alternative approaches for identifying possible new anti-TB drug candidates, for effectively eradicating both replicating and non-replicating Mycobacterium tuberculosis, are still urgently required. Subsequently, several antibiotic and non-antibiotic drugs with known treatment indications (TB targeted and non-TB targeted) are now being repurposed and/or derivatized as novel antibiotics for possible use in TB therapy. Insights gathered here reveal that more studies focused on drug-drug interactions between licensed and potential lead anti-TB drug candidates need to be prioritized. This write-up encapsulates the most recent findings regarding investigational compounds with promising anti-TB potential and drugs with repurposing potential in TB therapy.
PMID: 32372202 [PubMed - indexed for MEDLINE]
"drug repositioning" OR "drug repurposing"; +13 new citations
13 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
"drug repositioning" OR "drug repurposing"
These pubmed results were generated on 2021/01/26
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
Targeting YAP-p62 signaling axis suppresses the EGFR-TKI-resistant lung adenocarcinoma.
Targeting YAP-p62 signaling axis suppresses the EGFR-TKI-resistant lung adenocarcinoma.
Cancer Med. 2021 Jan 23;:
Authors: Park HS, Lee DH, Kang DH, Yeo MK, Bae G, Lee D, Yoo G, Kim JO, Moon E, Huh YH, Lee SH, Jo EK, Cho SY, Lee JE, Chung C
Abstract
BACKGROUND: Despite the progress of advanced target therapeutic agents and immune checkpoint inhibitors, EGFR-TKI resistance is still one of the biggest obstacles in treating lung cancer. Clinical studies with autophagy inhibitors are actively underway to overcome drug resistance.
METHODS: We used PC9, PC9/GR, and HCC827/GR cell lines to evaluate the activation of autophagy and EGFR-TKI resistance. Chloroquine was applied as an autophagic blocker and verteporfin was utilized as a YAP inhibitor.
RESULTS: In this study, we tried to reveal the effect of autophagy adaptor p62 which is accumulated by autophagy inhibitor in EGFR-TKI-resistant lung adenocarcinoma. We identified that p62 has oncogenic functions that induce cell proliferation and invasion of EGFR-TKI-resistant lung adenocarcinoma. Interestingly, we found for the first time that YAP regulates p62 transcription through ERK, and YAP inhibition can suppress the expression of oncogenic p62. We also confirmed that the expressions of p62 and YAP have a positive correlation in EGFR-mutant lung adenocarcinoma patients. To block cell survival via perturbing YAP-p62 axis, we treated EGFR-TKI-resistant lung cancer cells with YAP inhibitor verteporfin. Remarkably, verteporfin effectively caused the death of EGFR-TKI-resistant lung cancer cells by decreasing the expressions of p62 with oncogenic function, YAP, and its target PD-L1. So, the cumulative effect of oncogenic p62 should be considered when using autophagy inhibitors, especially drugs that act at the last stage of autophagy such as chloroquine and bafilomycin A1.
CONCLUSION: Finally, we suggest that targeting YAP-p62 signaling axis can be useful to suppress the EGFR-TKI-resistant lung cancer. Therefore, drug repurposing of verteporfin for lung cancer treatment may be valuable to consider because it can inhibit critical targets: p62, YAP, and PD-L1 at the same time.
PMID: 33486901 [PubMed - as supplied by publisher]
Human endeavor for anti-SARS-CoV-2 pharmacotherapy: A major strategy to fight the pandemic.
Human endeavor for anti-SARS-CoV-2 pharmacotherapy: A major strategy to fight the pandemic.
Biomed Pharmacother. 2021 Jan 13;137:111232
Authors: Wang R, Stephen P, Tao Y, Zhang W, Lin SX
Abstract
The global spread of COVID-19 constitutes the most dangerous pandemic to emerge during the last one hundred years. About seventy-nine million infections and more than 1.7 million death have been reported to date, along with destruction of the global economy. With the uncertainty evolved by alarming level of genome mutations, coupled with likelihood of generating only a short lived immune response by the vaccine injections, the identification of antiviral drugs for direct therapy is the need of the hour. Strategies to inhibit virus infection and replication focus on targets such as the spike protein and non-structural proteins including the highly conserved RNA-dependent-RNA-polymerase, nucleotidyl-transferases, main protease and papain-like proteases. There is also an indirect option to target the host cell recognition systems such as angiotensin-converting enzyme 2 (ACE2), transmembrane protease, serine 2, host cell expressed CD147, and the host furin. A drug search strategy consensus in tandem with analysis of currently available information is extremely important for the rapid identification of anti-viral. An unprecedented display of cooperation among the scientific community regarding SARS-CoV-2 research has resulted in the accumulation of an enormous amount of literature that requires curation. Drug repurposing and drug combinations have drawn tremendous attention for rapid therapeutic application, while high throughput screening and virtual searches support de novo drug identification. Here, we examine how certain approved drugs targeting different viruses can play a role in combating this new virus and analyze how they demonstrate efficacy under clinical assessment. Suggestions on repurposing and de novo strategies are proposed to facilitate the fight against the COVID-19 pandemic.
PMID: 33486202 [PubMed - as supplied by publisher]
Repurposing of existing therapeutics to combat drug-resistant malaria.
Repurposing of existing therapeutics to combat drug-resistant malaria.
Biomed Pharmacother. 2021 Jan 20;136:111275
Authors: Yadav K, Shivahare R, Shaham SH, Joshi P, Sharma A, Tripathi R
Abstract
In the era of drug repurposing, speedy discovery of new therapeutic options for the drug-resistant malaria is the best available tactic to reduce the financial load and time in the drug discovery process. Six anticancer drugs, three immunomodulators and four antibiotics were selected for the repositioning against experimental malaria owing to their mode of action and published literature. The efficacy of existing therapeutics was evaluated against chloroquine-resistant in vitro and in vivo strains of Plasmodium falciparum and P. yoelii, respectively. All the pre-existing FDA-approved drugs along with leptin were primarily screened against chloroquine-resistant (PfK1) and drug-sensitive (Pf3D7) strains of P. falciparum using SYBR green-based antiplasmodial assay. Cytotoxic profiling of these therapeutics was achieved on Vero and HepG2 cell lines, and human erythrocytes. Percent blood parasitemia and host survival was determined in chloroquine-resistant P. yoelii N67-infected Swiss mice using appropriate doses of these drugs/immunomodulators. Antimalarial screening together with cytotoxicity data revealed that anticancer drugs, idelalisib and 5-fluorouracil acquired superiority over their counterparts, regorafenib, and tamoxifen, respectively. ROS-inducer anticancer drugs, epirubicin and bleomycin were found toxic for the host. Immunomodulators (imiquimod, lenalidomide and leptin) were safest but less active in in vitro system, however, in P. yoelii-infected mice, they exhibited modest parasite suppression at their respective doses. Among antibiotics, moxifloxacin exhibited better antimalarial prospective than levofloxacin, roxithromycin and erythromycin. 5-Fluorouracil, imiquimod and moxifloxacin displayed 97.64, 81.18 and 91.77 % parasite inhibition in treated animals and attained superiority in their respective groups thus could be exploited further in combination with suitable antimalarials.
PMID: 33485067 [PubMed - as supplied by publisher]
Cognitive analysis of metabolomics data for systems biology.
Cognitive analysis of metabolomics data for systems biology.
Nat Protoc. 2021 Jan 22;:
Authors: Majumder EL, Billings EM, Benton HP, Martin RL, Palermo A, Guijas C, Rinschen MM, Domingo-Almenara X, Montenegro-Burke JR, Tagtow BA, Plumb RS, Siuzdak G
Abstract
Cognitive computing is revolutionizing the way big data are processed and integrated, with artificial intelligence (AI) natural language processing (NLP) platforms helping researchers to efficiently search and digest the vast scientific literature. Most available platforms have been developed for biomedical researchers, but new NLP tools are emerging for biologists in other fields and an important example is metabolomics. NLP provides literature-based contextualization of metabolic features that decreases the time and expert-level subject knowledge required during the prioritization, identification and interpretation steps in the metabolomics data analysis pipeline. Here, we describe and demonstrate four workflows that combine metabolomics data with NLP-based literature searches of scientific databases to aid in the analysis of metabolomics data and their biological interpretation. The four procedures can be used in isolation or consecutively, depending on the research questions. The first, used for initial metabolite annotation and prioritization, creates a list of metabolites that would be interesting for follow-up. The second workflow finds literature evidence of the activity of metabolites and metabolic pathways in governing the biological condition on a systems biology level. The third is used to identify candidate biomarkers, and the fourth looks for metabolic conditions or drug-repurposing targets that the two diseases have in common. The protocol can take 1-4 h or more to complete, depending on the processing time of the various software used.
PMID: 33483720 [PubMed - as supplied by publisher]
Impact of the repurposed drug thonzonium bromide on host oral-gut microbiomes.
Impact of the repurposed drug thonzonium bromide on host oral-gut microbiomes.
NPJ Biofilms Microbiomes. 2021 Jan 22;7(1):7
Authors: Simon-Soro A, Kim D, Li Y, Liu Y, Ito T, Sims KR, Benoit DSW, Bittinger K, Koo H
Abstract
Drug repurposing is a feasible strategy for the development of novel therapeutic applications. However, its potential use for oral treatments and impact on host microbiota remain underexplored. Here, we assessed the influences of topical oral applications of a repurposed FDA-approved drug, thonzonium bromide, on gastrointestinal microbiomes and host tissues in a rat model of dental caries designed to reduce cross-contamination associated with coprophagy. Using this model, we recapitulated the body site microbiota that mirrored the human microbiome profile. Oral microbiota was perturbed by the treatments with specific disruption of Rothia and Veillonella without affecting the global composition of the fecal microbiome. However, disturbances in the oral-gut microbial interactions were identified using nestedness and machine learning, showing increased sharing of oral taxon Sutterella in the gut microbiota. Host-tissue analyses revealed caries reduction on teeth by thonzonium bromide without cytotoxic effects, indicating bioactivity and biocompatibility when used orally. Altogether, we demonstrate how an oral treatment using a repurposed drug causes localized microbial disturbances and therapeutic effects while promoting turnover of specific oral species in the lower gut in vivo.
PMID: 33483519 [PubMed - as supplied by publisher]
SNF-NN: computational method to predict drug-disease interactions using similarity network fusion and neural networks.
SNF-NN: computational method to predict drug-disease interactions using similarity network fusion and neural networks.
BMC Bioinformatics. 2021 Jan 22;22(1):28
Authors: Jarada TN, Rokne JG, Alhajj R
Abstract
BACKGROUND: Drug repositioning is an emerging approach in pharmaceutical research for identifying novel therapeutic potentials for approved drugs and discover therapies for untreated diseases. Due to its time and cost efficiency, drug repositioning plays an instrumental role in optimizing the drug development process compared to the traditional de novo drug discovery process. Advances in the genomics, together with the enormous growth of large-scale publicly available data and the availability of high-performance computing capabilities, have further motivated the development of computational drug repositioning approaches. More recently, the rise of machine learning techniques, together with the availability of powerful computers, has made the area of computational drug repositioning an area of intense activities.
RESULTS: In this study, a novel framework SNF-NN based on deep learning is presented, where novel drug-disease interactions are predicted using drug-related similarity information, disease-related similarity information, and known drug-disease interactions. Heterogeneous similarity information related to drugs and disease is fed to the proposed framework in order to predict novel drug-disease interactions. SNF-NN uses similarity selection, similarity network fusion, and a highly tuned novel neural network model to predict new drug-disease interactions. The robustness of SNF-NN is evaluated by comparing its performance with nine baseline machine learning methods. The proposed framework outperforms all baseline methods ([Formula: see text] = 0.867, and [Formula: see text]=0.876) using stratified 10-fold cross-validation. To further demonstrate the reliability and robustness of SNF-NN, two datasets are used to fairly validate the proposed framework's performance against seven recent state-of-the-art methods for drug-disease interaction prediction. SNF-NN achieves remarkable performance in stratified 10-fold cross-validation with [Formula: see text] ranging from 0.879 to 0.931 and [Formula: see text] from 0.856 to 0.903. Moreover, the efficiency of SNF-NN is verified by validating predicted unknown drug-disease interactions against clinical trials and published studies.
CONCLUSION: In conclusion, computational drug repositioning research can significantly benefit from integrating similarity measures in heterogeneous networks and deep learning models for predicting novel drug-disease interactions. The data and implementation of SNF-NN are available at http://pages.cpsc.ucalgary.ca/ tnjarada/snf-nn.php .
PMID: 33482713 [PubMed - as supplied by publisher]
"drug repositioning" OR "drug repurposing"; +13 new citations
13 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
"drug repositioning" OR "drug repurposing"
These pubmed results were generated on 2021/01/23
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
"drug repositioning" OR "drug repurposing"; +6 new citations
6 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
"drug repositioning" OR "drug repurposing"
These pubmed results were generated on 2021/01/22
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
"drug repositioning" OR "drug repurposing"; +7 new citations
7 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
"drug repositioning" OR "drug repurposing"
These pubmed results were generated on 2021/01/21
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
Autophagy activation, lipotoxicity and lysosomal membrane permeabilization synergize to promote pimozide- and loperamide-induced glioma cell death.
Autophagy activation, lipotoxicity and lysosomal membrane permeabilization synergize to promote pimozide- and loperamide-induced glioma cell death.
Autophagy. 2021 Jan 19;:1-20
Authors: Meyer N, Henkel L, Linder B, Zielke S, Tascher G, Trautmann S, Geisslinger G, Münch C, Fulda S, Tegeder I, Kögel D
Abstract
Increasing evidence suggests that induction of lethal macroautophagy/autophagy carries potential significance for the treatment of glioblastoma (GBM). In continuation of previous work, we demonstrate that pimozide and loperamide trigger an ATG5- and ATG7 (autophagy related 5 and 7)-dependent type of cell death that is significantly reduced with cathepsin inhibitors and the lipid reactive oxygen species (ROS) scavenger α-tocopherol in MZ-54 GBM cells. Global proteomic analysis after treatment with both drugs also revealed an increase of proteins related to lipid and cholesterol metabolic processes. These changes were accompanied by a massive accumulation of cholesterol and other lipids in the lysosomal compartment, indicative of impaired lipid transport/degradation. In line with these observations, pimozide and loperamide treatment were associated with a pronounced increase of bioactive sphingolipids including ceramides, glucosylceramides and sphingoid bases measured by targeted lipidomic analysis. Furthermore, pimozide and loperamide inhibited the activity of SMPD1/ASM (sphingomyelin phosphodiesterase 1) and promoted induction of lysosomal membrane permeabilization (LMP), as well as release of CTSB (cathepsin B) into the cytosol in MZ-54 wild-type (WT) cells. Whereas LMP and cell death were significantly attenuated in ATG5 and ATG7 knockout (KO) cells, both events were enhanced by depletion of the lysophagy receptor VCP (valosin containing protein), supporting a pro-survival function of lysophagy under these conditions. Collectively, our data suggest that pimozide and loperamide-driven autophagy and lipotoxicity synergize to induce LMP and cell death. The results also support the notion that simultaneous overactivation of autophagy and induction of LMP represents a promising approach for the treatment of GBM. Abbreviations: ACD: autophagic cell death; AKT1: AKT serine/threonine kinase 1; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG14: autophagy related 14; CERS1: ceramide synthase 1; CTSB: cathepsin B; CYBB/NOX2: cytochrome b-245 beta chain; ER: endoplasmatic reticulum; FBS: fetal bovine serum; GBM: glioblastoma; GO: gene ontology; HTR7/5-HT7: 5-hydroxytryptamine receptor 7; KD: knockdown; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LAP: LC3-associated phagocytosis; LMP: lysosomal membrane permeabilization; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MTOR: mechanistic target of rapamycin kinase; RB1CC1: RB1 inducible coiled-coil 1; ROS: reactive oxygen species; RPS6: ribosomal protein S6; SMPD1/ASM: sphingomyelin phosphodiesterase 1; VCP/p97: valosin containing protein; WT: wild-type.
PMID: 33461384 [PubMed - as supplied by publisher]
COVID-19 treatment in patients with comorbidities: Awareness of drug-drug interactions.
COVID-19 treatment in patients with comorbidities: Awareness of drug-drug interactions.
Br J Clin Pharmacol. 2021 01;87(1):212-213
Authors: Back D, Marzolini C, Hodge C, Marra F, Boyle A, Gibbons S, Burger D, Khoo S
PMID: 32384171 [PubMed - indexed for MEDLINE]