Drug Repositioning
Antimigraine Drug Avitriptan Is a Ligand and Agonist of Human Aryl Hydrocarbon Receptor That Induces CYP1A1 in Hepatic and Intestinal Cells.
Antimigraine Drug Avitriptan Is a Ligand and Agonist of Human Aryl Hydrocarbon Receptor That Induces CYP1A1 in Hepatic and Intestinal Cells.
Int J Mol Sci. 2020 Apr 17;21(8):
Authors: Vyhlídalová B, Krasulová K, Pečinková P, Poulíková K, Vrzal R, Andrysík Z, Chandran A, Mani S, Dvorak Z
Abstract
The efforts for therapeutic targeting of the aryl hydrocarbon receptor (AhR) have emerged in recent years. We investigated the effects of available antimigraine triptan drugs, having an indole core in their structure, on AhR signaling in human hepatic and intestinal cells. Activation of AhR in reporter gene assays was observed for Avitriptan and to a lesser extent for Donitriptan, while other triptans were very weak or no activators of AhR. Using competitive binding assay and by homology docking, we identified Avitriptan as a low-affinity ligand of AhR. Avitriptan triggered nuclear translocation of AhR and increased binding of AhR in CYP1A1 promotor DNA, as revealed by immune-fluorescence microscopy and chromatin immune-precipitation assay, respectively. Strong induction of CYP1A1 mRNA was achieved by Avitriptan in wild type but not in AhR-knockout, immortalized human hepatocytes, implying that induction of CYP1A1 is AhR-dependent. Increased levels of CYP1A1 mRNA by Avitriptan were observed in human colon carcinoma cells LS180 but not in primary cultures of human hepatocytes. Collectively, we show that Avitriptan is a weak ligand and activator of human AhR, which induces the expression of CYP1A1 in a cell-type specific manner. Our data warrant the potential off-label therapeutic application of Avitriptan as an AhR-agonist drug.
PMID: 32316498 [PubMed - indexed for MEDLINE]
"drug repositioning" OR "drug repurposing"; +6 new citations
6 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
"drug repositioning" OR "drug repurposing"
These pubmed results were generated on 2021/01/20
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
Review of pharmacologic and immunologic agents in the management of COVID-19
Biosaf Health. 2021 Jan 9. doi: 10.1016/j.bsheal.2021.01.001. Online ahead of print.
ABSTRACT
The novel coronavirus disease 2019 (COVID-19) is the third coronavirus outbreaks in the last two decades. Emerging and re-emerging infections like COVID-19 pose serious challenges of paucity of information and lack of specific cure or vaccines. This leaves utilisation of existing scientific data on related viral infections and repurposing relevant aetiologic and supportive therapies as the best control approach while novel strategies are developed and trialled. Many promising antiviral agents including lopinavir, ritonavir, remdesivir, umifenovir, darunavir, and oseltamivir have been repurposed and are currently trialled in the care for COVID-19 patients. Adjunct therapies for the management of symptoms and to provide support especially in severe and critically ill patients have also been identified. This review provides an appraisal of the current evidence for rational use of frontline therapeutics in the management of COVID-19. It also includes updates regarding COVID-19 immunotherapy and vaccine development.
PMID:33458647 | PMC:PMC7796672 | DOI:10.1016/j.bsheal.2021.01.001
Bisindolylmaleimide IX: A novel anti-SARS-CoV2 agent targeting viral main protease 3CLpro demonstrated by virtual screening pipeline and in-vitro validation assays.
Bisindolylmaleimide IX: A novel anti-SARS-CoV2 agent targeting viral main protease 3CLpro demonstrated by virtual screening pipeline and in-vitro validation assays.
Methods. 2021 Jan 13;:
Authors: Gupta Y, Maciorowski D, Zak SE, Jones KA, Kathayat RS, Azizi SA, Mathur R, Pearce CM, Ilc DJ, Husein H, Herbert AS, Bharti A, Rathi B, Durvasula R, Becker DP, Dickinson BC, Dye JM, Kempaiah P
Abstract
SARS-CoV-2, the virus that causes COVID-19 consists of several enzymes with essential functions within its proteome. Here, we focused on repurposing approved and investigational drugs/compounds. We targeted seven proteins with enzymatic activities known to be essential at different stages of the viral cycle including PLpro, 3CLpro, RdRP, Helicase, ExoN, NendoU, and 2'-O-MT. For virtual screening, energy minimization of a crystal structure of the modeled protein was carried out using the Protein Preparation Wizard (Schrodinger LLC 2020-1). Following active site selection based on data mining and COACH predictions, we performed a high-throughput virtual screen of drugs and investigational molecules (n=5903). The screening was performed against viral targets using three sequential docking modes (i.e., HTVS, SP, and XP). Virtual screening identified ∼290 potential inhibitors based on the criteria of energy, docking parameters, ligand, and binding site strain and score. Drugs specific to each target protein were further analyzed for binding free energy perturbation by molecular mechanics (prime MM-GBSA) and pruning the hits to the top 32 candidates. The top lead from each target pool was further subjected to molecular dynamics simulation using the Desmond module. The resulting top eight hits were tested for their SARS-CoV-2 anti-viral activity in-vitro. Among these, a known inhibitor of protein kinase C isoforms, Bisindolylmaleimide IX (BIM IX), was found to be a potent inhibitor of SARS-CoV-2. Further, target validation through enzymatic assays confirmed 3CLpro to be the target. This is the first study that has showcased BIM IX as a COVID-19 inhibitor thereby validating our pipeline.
PMID: 33453392 [PubMed - as supplied by publisher]
Meta-analysis of sample-level dbGaP data reveals novel shared genetic link between body height and Crohn's disease.
Meta-analysis of sample-level dbGaP data reveals novel shared genetic link between body height and Crohn's disease.
Hum Genet. 2021 Jan 16;:
Authors: Di Narzo A, Frades I, Crane HM, Crane PK, Hulot JS, Kasarskis A, Hart A, Argmann C, Dubinsky M, Peter I, Hao K
Abstract
To further explore genetic links between complex traits, we developed a comprehensive framework to harmonize and integrate extensive genotype and phenotype data from the four well-characterized cohorts with the focus on cardiometabolic diseases deposited to the database of Genotypes and Phenotypes (dbGaP). We generated a series of polygenic risk scores (PRS) to investigate pleiotropic effects of loci that confer genetic risk for 19 common diseases and traits on body height, type 2 diabetes (T2D), and myocardial infarction (MI). In a meta-analysis of 20,021 subjects, we identified shared genetic determinants of Crohn's Disease (CD), a type of inflammatory bowel disease, and body height (p = 5.5 × 10-5). The association of PRS-CD with height was replicated in UK Biobank (p = 1.1 × 10-5) and an independent cohort of 510 CD cases and controls (1.57 cm shorter height per PRS-CD interquartile increase, p = 5.0 × 10-3 and a 28% reduction in CD risk per interquartile increase in PRS-height, p = 1.1 × 10-3, with the effect independent of CD diagnosis). A pathway analysis of the variants overlapping between PRS-height and PRS-CD detected significant enrichment of genes from the inflammatory, immune-mediated and growth factor regulation pathways. This finding supports the clinical observation of growth failure in patients with childhood-onset CD and demonstrates the value of using individual-level data from dbGaP in searching for shared genetic determinants. This information can help provide a refined insight into disease pathogenesis and may have major implications for novel therapies and drug repurposing.
PMID: 33452914 [PubMed - as supplied by publisher]
Identification of existing pharmaceuticals and herbal medicines as inhibitors of SARS-CoV-2 infection.
Identification of existing pharmaceuticals and herbal medicines as inhibitors of SARS-CoV-2 infection.
Proc Natl Acad Sci U S A. 2021 Feb 02;118(5):
Authors: Jan JT, Cheng TR, Juang YP, Ma HH, Wu YT, Yang WB, Cheng CW, Chen X, Chou TH, Shie JJ, Cheng WC, Chein RJ, Mao SS, Liang PH, Ma C, Hung SC, Wong CH
Abstract
The outbreak of COVID-19 caused by SARS-CoV-2 has resulted in more than 50 million confirmed cases and over 1 million deaths worldwide as of November 2020. Currently, there are no effective antivirals approved by the Food and Drug Administration to contain this pandemic except the antiviral agent remdesivir. In addition, the trimeric spike protein on the viral surface is highly glycosylated and almost 200,000 variants with mutations at more than 1,000 positions in its 1,273 amino acid sequence were reported, posing a major challenge in the development of antibodies and vaccines. It is therefore urgently needed to have alternative and timely treatments for the disease. In this study, we used a cell-based infection assay to screen more than 3,000 agents used in humans and animals, including 2,855 small molecules and 190 traditional herbal medicines, and identified 15 active small molecules in concentrations ranging from 0.1 nM to 50 μM. Two enzymatic assays, along with molecular modeling, were then developed to confirm those targeting the virus 3CL protease and the RNA-dependent RNA polymerase. Several water extracts of herbal medicines were active in the cell-based assay and could be further developed as plant-derived anti-SARS-CoV-2 agents. Some of the active compounds identified in the screen were further tested in vivo, and it was found that mefloquine, nelfinavir, and extracts of Ganoderma lucidum (RF3), Perilla frutescens, and Mentha haplocalyx were effective in a challenge study using hamsters as disease model.
PMID: 33452205 [PubMed - as supplied by publisher]
Systematic Search for SARS-CoV-2 Main Protease Inhibitors for Drug Repurposing: Ethacrynic Acid as a Potential Drug.
Systematic Search for SARS-CoV-2 Main Protease Inhibitors for Drug Repurposing: Ethacrynic Acid as a Potential Drug.
Viruses. 2021 Jan 13;13(1):
Authors: Isgrò C, Sardanelli AM, Palese LL
Abstract
In 2019 an outbreak occurred which resulted in a global pandemic. The causative agent has been identified in a virus belonging to theCoronaviridae family, similar to the agent of SARS, referred to as SARS-CoV-2. This epidemic spread rapidly globally with high morbidity and mortality. Although vaccine development is at a very advanced stage, there are currently no truly effective antiviral drugs to treat SARS-CoV-2 infection. In this study we present systematic and integrative antiviral drug repurposing effort aimed at identifying, among the drugs already authorized for clinical use, some active inhibitors of the SARS-CoV-2 main protease. The most important result of this analysis is the demonstration that ethacrynic acid, a powerful diuretic, is revealed to be an effective inhibitor of SARS-CoV-2 main protease. Even with all the necessary cautions, given the particular nature of this drug, these data can be the starting point for the development of an effective therapeutic strategy against SARS-CoV-2.
PMID: 33451132 [PubMed - as supplied by publisher]
A Review of Drug Therapy in Vestibular Schwannoma.
A Review of Drug Therapy in Vestibular Schwannoma.
Drug Des Devel Ther. 2021;15:75-85
Authors: Long J, Zhang Y, Huang X, Ren J, Zhong P, Wang B
Abstract
Vestibular schwannomas (VSs, also known as acoustic neuromas) are benign intracranial tumors commonly managed with observation, surgery, and radiotherapy. There is currently no approved pharmacotherapy for VS patients, which is why we conducted a detailed search of relevant literature from PubMed and Web of Science to explore recent advances and experiences in drug therapy. VSs feature a long course of disease that requires treatment to have minimal long-term side effects. Conventional chemotherapeutic agents are characterized by neurotoxicity or ototoxicity, poor effect on slow-growing tumors, and may induce new mutations in patients who have lost tumor suppressor function, and therefore are unsuitable for treating VSs. Along with the well-investigated molecular pathophysiology of VS and the increasingly accessible technology such as drug repositioning platform, many molecular targeted inhibitors have been identified and shown certain therapeutic effects in preclinical experiments or clinical trials.
PMID: 33447015 [PubMed - in process]
Potential repurposing of four FDA approved compounds with antiplasmodial activity identified through proteome scale computational drug discovery and in vitro assay.
Potential repurposing of four FDA approved compounds with antiplasmodial activity identified through proteome scale computational drug discovery and in vitro assay.
Sci Rep. 2021 Jan 14;11(1):1413
Authors: Diallo BN, Swart T, Hoppe HC, Tastan Bishop Ö, Lobb K
Abstract
Malaria elimination can benefit from time and cost-efficient approaches for antimalarials such as drug repurposing. In this work, 796 DrugBank compounds were screened against 36 Plasmodium falciparum targets using QuickVina-W. Hits were selected after rescoring using GRaph Interaction Matching (GRIM) and ligand efficiency metrics: surface efficiency index (SEI), binding efficiency index (BEI) and lipophilic efficiency (LipE). They were further evaluated in Molecular dynamics (MD). Twenty-five protein-ligand complexes were finally retained from the 28,656 (36 × 796) dockings. Hit GRIM scores (0.58 to 0.78) showed their molecular interaction similarity to co-crystallized ligands. Minimum LipE (3), SEI (23) and BEI (7) were in at least acceptable thresholds for hits. Binding energies ranged from -6 to -11 kcal/mol. Ligands showed stability in MD simulation with good hydrogen bonding and favorable protein-ligand interactions energy (the poorest being -140.12 kcal/mol). In vitro testing showed 4 active compounds with two having IC50 values in the single-digit μM range.
PMID: 33446838 [PubMed - in process]
An Integrative Transcriptomic Analysis of Systemic Juvenile Idiopathic Arthritis for Identifying Potential Genetic Markers and Drug Candidates.
An Integrative Transcriptomic Analysis of Systemic Juvenile Idiopathic Arthritis for Identifying Potential Genetic Markers and Drug Candidates.
Int J Mol Sci. 2021 Jan 12;22(2):
Authors: Kim D, Song J, Lee S, Jung J, Jang W
Abstract
Systemic juvenile idiopathic arthritis (sJIA) is a rare subtype of juvenile idiopathic arthritis, whose clinical features are systemic fever and rash accompanied by painful joints and inflammation. Even though sJIA has been reported to be an autoinflammatory disorder, its exact pathogenesis remains unclear. In this study, we integrated a meta-analysis with a weighted gene co-expression network analysis (WGCNA) using 5 microarray datasets and an RNA sequencing dataset to understand the interconnection of susceptibility genes for sJIA. Using the integrative analysis, we identified a robust sJIA signature that consisted of 2 co-expressed gene sets comprising 103 up-regulated genes and 25 down-regulated genes in sJIA patients compared with healthy controls. Among the 128 sJIA signature genes, we identified an up-regulated cluster of 11 genes and a down-regulated cluster of 4 genes, which may play key roles in the pathogenesis of sJIA. We then detected 10 bioactive molecules targeting the significant gene clusters as potential novel drug candidates for sJIA using an in silico drug repositioning analysis. These findings suggest that the gene clusters may be potential genetic markers of sJIA and 10 drug candidates can contribute to the development of new therapeutic options for sJIA.
PMID: 33445803 [PubMed - in process]
[How the search for new SARS-CoV-2 therapies did hit scientific literature. Is it time now for new approaches?]
[How the search for new SARS-CoV-2 therapies did hit scientific literature. Is it time now for new approaches?]
Epidemiol Prev. 2020 Sep-Dec;44(5-6 Suppl 2):21-22
Authors: Addis A, Amato L
PMID: 33412788 [PubMed - indexed for MEDLINE]
BCG vaccine: a hope to control COVID-19 pandemic amid crisis.
BCG vaccine: a hope to control COVID-19 pandemic amid crisis.
Hum Vaccin Immunother. 2020 12 01;16(12):2954-2962
Authors: Malik YS, Ansari MI, Ganesh B, Sircar S, Bhat S, Pande T, Vinodhkumar OR, Kumar P, Iqbal Yatoo M, Tiwari R, Touil N, Patel SK, Pathak M, Sharun K, Dhama K
Abstract
COVID-19 caused by the virus SARS-CoV-2 has gripped essentially all countries in the world, and has infected millions and killed hundreds of thousands of people. Several innovative approaches are in development to restrain the spread of SARS-CoV-2. In particular, BCG, a vaccine against tuberculosis (TB), is being considered as an alternative therapeutic modality. BCG vaccine is known to induce both humoral and adaptive immunities, thereby activating both nonspecific and cross-reactive immune responses in the host, which combined could effectively resist other pathogens including SARS-CoV-2. Notably, some studies have revealed that SARS-CoV-2 infectivity, case positivity, and mortality rate have been higher in countries that have not adopted BCG vaccination than in countries that have done so. This review presents an overview of the concepts underlying BCG vaccination and its nonspecific immuological effects and protection, resulting in 'trained immunity' and potential utility for resisting COVID-19.
PMID: 32991235 [PubMed - indexed for MEDLINE]
"drug repositioning" OR "drug repurposing"; +26 new citations
26 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
"drug repositioning" OR "drug repurposing"
These pubmed results were generated on 2021/01/15
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
"drug repositioning" OR "drug repurposing"; +9 new citations
9 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
"drug repositioning" OR "drug repurposing"
These pubmed results were generated on 2021/01/14
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
"drug repositioning" OR "drug repurposing"; +12 new citations
12 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
"drug repositioning" OR "drug repurposing"
These pubmed results were generated on 2021/01/13
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
"drug repositioning" OR "drug repurposing"; +9 new citations
9 new pubmed citations were retrieved for your search. Click on the search hyperlink below to display the complete search results:
"drug repositioning" OR "drug repurposing"
These pubmed results were generated on 2021/01/12
PubMed comprises more than millions of citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.
Disulfiram: a novel repurposed drug for cancer therapy.
Disulfiram: a novel repurposed drug for cancer therapy.
Cancer Chemother Pharmacol. 2021 Jan 10;:
Authors: Lu C, Li X, Ren Y, Zhang X
Abstract
Cancer is a major health issue worldwide and the global burden of cancer is expected to reduce the costs of treatment as well as prolong the survival time. One of the promising approaches is drug repurposing, because it reduces costs and shortens the production cycle of research and development. Disulfiram (DSF), which was originally approved as an anti-alcoholism drug, has been proven safe and shows the potential to target tumours. Its anti-tumour effect has been reported in many preclinical studies and recently on seven types of cancer in humans: non-small cell lung cancer (NSCLC), liver cancer, breast cancer, prostate cancer, pancreatic cancer, glioblastoma (GBM) and melanoma and has a successful breakthrough in the treatment of NSCLC and GBM. The mechanisms, particularly the intracellular signalling pathways, still remain to be completely elucidated. As shown in our previous study, DSF inhibits NF-kB signalling, proteasome activity, and aldehyde dehydrogenase (ALDH) activity. It induces endoplasmic reticulum (ER) stress and autophagy and has been used as an adjuvant therapy with irradiation or chemotherapy drugs. On the other hand, DSF not only kills the normal cancer cells but also has the ability to target cancer stem cells, which provides a new approach to prevent tumour recurrence and metastasis. Furthermore, other researchers have reported the ability of DSF to bind to nuclear protein localization protein 4 (NPL4), induce its immobilization and dysfunction, ultimately leading to cell death. Here, we provide an overview of DSF repurposing as a treatment in preclinical studies and clinical trials, and review studies describing the mechanisms underlying its anti-neoplastic effects.
PMID: 33426580 [PubMed - as supplied by publisher]
The Molecular Mechanisms of Regulating Oxidative Stress-Induced Ferroptosis and Therapeutic Strategy in Tumors.
The Molecular Mechanisms of Regulating Oxidative Stress-Induced Ferroptosis and Therapeutic Strategy in Tumors.
Oxid Med Cell Longev. 2020;2020:8810785
Authors: Zhu J, Xiong Y, Zhang Y, Wen J, Cai N, Cheng K, Liang H, Zhang W
Abstract
Ferroptosis is an atypical form of regulated cell death, which is different from apoptosis, necrosis, pyroptosis, and autophagy. Ferroptosis is characterized by iron-dependent oxidative destruction of cellular membranes following the antioxidant system's failure. The sensitivity of ferroptosis is tightly regulated by a series of biological processes, the metabolism of iron, amino acids, and polyunsaturated fatty acids, and the interaction of glutathione (GSH), NADPH, coenzyme Q10 (CoQ10), and phospholipids. Elevated oxidative stress (ROS) level is a hallmark of cancer, and ferroptosis serves as a link between nutrition metabolism and redox biology. Targeting ferroptosis may be an effective and selective way for cancer therapy. The underlying molecular mechanism of ferroptosis occurrence is still not enough. This review will briefly summarize the process of ferroptosis and introduce critical molecules in the ferroptotic cascade. Furthermore, we reviewed the occurrence and regulation of reduction-oxidation (redox) for ferroptosis in cancer metabolism. The role of the tumor suppressor and the epigenetic regulator in tumor cell ferroptosis will also be described. Finally, old drugs that can be repurposed to induce ferroptosis will be characterized, aiming for drug repurposing and novel drug combinations for cancer therapy more efficiently and economically.
PMID: 33425217 [PubMed - in process]
SARS-CoV-2 protein drug targets landscape: a potential pharmacological insight view for the new drug development.
SARS-CoV-2 protein drug targets landscape: a potential pharmacological insight view for the new drug development.
Expert Rev Clin Pharmacol. 2021 Jan 10;:
Authors: Chakraborty C, Bhattacharya M, Mallick B, Sharma AR, Lee SS, Agoramoorthy G
Abstract
INTRODUCTION: Protein drug targets play a significant choice in different stages of the drug discovery process. There is an urgent need to understand the drug discovery approaches and protein drug targets (PDT) of SARS-CoV-2, with structural insights for the development of SARS-CoV-2 drugs through targeted therapeutic approach.
AREAS COVERED: We have described the protein as a drug target class and also discussed various drug discovery approaches for SARS-CoV-2 involving the protein drug targets such as drug repurposing study, designing of viral entry inhibitors, viral replication inhibitors and different enzymes of the virus. We have performed comprehensive literature search from the popular databases such as PubMed Google scholar, Web of Science and Scopus. Finally, we have illustrated the structural landscape of different significant viral proteins (3CLpro or Mpro, PLpro, RdRp, helicase, S protein) and host proteins as drug targets (cathepsin L, furin, TMPRSS2, ACE2).
EXPERT OPINION: The structural landscape of PDT with their binding pockets, and significant residues involved in binding has been discussed further to better understand the PDT and the structure-based drug discovery for SARS-CoV-2. This attempt will increase more therapeutic options, and combination therapies with a multi-target strategy.
PMID: 33423554 [PubMed - as supplied by publisher]
Chloroquine and hydroxychloroquine for COVID-19: Perspectives on their failure in repurposing.
Chloroquine and hydroxychloroquine for COVID-19: Perspectives on their failure in repurposing.
J Clin Pharm Ther. 2021 Feb;46(1):17-27
Authors: Shah RR
Abstract
WHAT IS KNOWN AND OBJECTIVE: Non-clinical studies suggest that chloroquine (CQ) and hydroxychloroquine (HCQ) have antiviral activities. Early clinical reports of successful HCQ-associated reduction in viral load from small studies in COVID-19 patients spurred a large number of national and international clinical trials to test their therapeutic potential. The objective of this review is to summarize the current evidence on the safety and efficacy of these two agents and to provide a perspective on why their repurposing has hitherto failed.
METHODS: Published studies and rapidly emerging data were reviewed to gather evidence on safety and efficacy of CQ and HCQ in patients with COVID-19 infection or as prophylaxis. The focus is on clinically relevant efficacy endpoints and their adverse effects on QT interval.
RESULTS AND DISCUSSION: At the doses used, the two agents, given alone or with azithromycin (AZM), are not effective in COVID-19 infection. The choice of (typically subtherapeutic) dosing regimens, influenced partly by "QT-phobia," varied widely and seems anecdotal without any pharmacologically reliable supporting clinical evidence. A substantial proportion of patients receiving CQ/HCQ/AZM regimen developed QTc interval prolongation, many with absolute QTc interval exceeding the potential proarrhythmic threshold, but very few developed proarrhythmia.
WHAT IS NEW AND CONCLUSION: The strategy to repurpose CQ/HCQ to combat COVID-19 infection is overshadowed by concerns about their QT liability, resulting in choice of potentially subtherapeutic doses. Although the risk of QT-related proarrhythmia is real, it is low and manageable by careful monitoring. Recent discontinuation of HCQ from at least four large studies effectively marks the end of efforts at repurposing of CQ or HCQ for COVID-19 infection. This episode leaves behind important questions on dose selection and risk/benefit balance in repurposing drugs generally.
PMID: 32981089 [PubMed - indexed for MEDLINE]