Drug Repositioning

Challenges and Opportunities for Consideration of Efavirenz Drug Repurposing for Alzheimer's Disease Therapeutics

Fri, 2024-10-18 06:00

ACS Pharmacol Transl Sci. 2024 Sep 6;7(10):2924-2935. doi: 10.1021/acsptsci.4c00229. eCollection 2024 Oct 11.

ABSTRACT

Therapeutic research and development for Alzheimer's disease (AD) has been an area of intense research to alleviate memory loss and neurodegeneration. There is growing interest in drug repositioning and repurposing strategies for FDA-approved medications as potential candidates that may further advance AD therapeutics. The FDA drug efavirenz has been investigated as a candidate drug for repurposing as an AD medication. The proposed mechanism of action of efavirenz (at low doses) is the activation of the neuron-specific enzyme CYP46A1 that converts excess brain cholesterol into 24-hydroxycholesterol (24-HC) that is exported to the periphery. Efavirenz at a low dose was found to improve memory deficit in the 5XFAD model of AD that was accompanied by elevated 24-HC and reduction in Aβ; furthermore, efavirenz reduced pTau and excess cholesterol levels in human iPSC-derived Alzheimer's neurons. The low dose of efavirenz used in the AD mouse model to increase 24-HC contrasts with the use of more than 100-fold higher doses of efavirenz for clinical treatment of human immunodeficiency virus (HIV) through inhibition of reverse transcriptase. Low doses of efavirenz may avoid neurotoxic adverse effects that occur at high efavirenz doses used for HIV treatment. This review evaluates the drug properties of efavirenz with respect to its preclinical data on regulating memory deficit, pharmacokinetics, pharmacodynamics, metabolites, and genetic variabilities in drug metabolism as well as its potential adverse effects. These analyses discuss the challenges and questions that should be addressed in future studies to consider the opportunity for low dose efavirenz as a candidate for AD drug development.

PMID:39421657 | PMC:PMC11480897 | DOI:10.1021/acsptsci.4c00229

Categories: Literature Watch

In Silico Evaluation of HIV Protease and RNA Polymerase Inhibitors as Potential COVID-19 Therapeutics

Fri, 2024-10-18 06:00

Cureus. 2024 Sep 17;16(9):e69576. doi: 10.7759/cureus.69576. eCollection 2024 Sep.

ABSTRACT

BACKGROUND: The COVID-19 coronavirus, also known as the acute respiratory syndrome coronavirus, emerged as a significant global health concern. First identified in Wuhan, China, in December 2019, the virus rapidly spread to over 187 countries due to its high transmissibility. Until an effective treatment or vaccine is developed, preventive measures remain the only mandatory strategy to curb person-to-person transmission.

AIMS AND OBJECTIVES: The study aimed to explore potential therapeutic options for COVID-19 by repurposing existing drugs. Specifically, the objective was to evaluate a library of clinically approved or investigational antiviral compounds through docking studies to identify candidates with high binding affinity to COVID-19 proteins.

MATERIALS AND METHODS: The study employed molecular docking techniques using the Maestro interface (Schrodinger Suite, LLC, NY) to assess the interaction of selected compounds with various COVID-19 protein targets. A total of 15 compounds were analyzed for their binding potential to multiple forms of the virus's proteins.

RESULTS: The docking studies revealed that several compounds, particularly HIV protease inhibitors and RNA-dependent RNA polymerase inhibitors, demonstrated strong binding affinities to key COVID-19 enzymes. These interactions suggest their potential as therapeutic candidates for COVID-19 treatment.

CONCLUSION: The findings from this drug repurposing study highlight the potential of certain existing antiviral agents in the treatment of COVID-19. The identified compounds could serve as promising candidates for further investigation in the ongoing battle against the coronavirus pandemic.

PMID:39421085 | PMC:PMC11483341 | DOI:10.7759/cureus.69576

Categories: Literature Watch

In silico approaches supporting drug repurposing for Leishmaniasis: a scoping review

Fri, 2024-10-18 06:00

EXCLI J. 2024 Sep 3;23:1117-1169. doi: 10.17179/excli2024-7552. eCollection 2024.

ABSTRACT

The shortage of treatment options for leishmaniasis, especially those easy to administer and viable for deployment in the world's poorest regions, highlights the importance of employing these strategies to cost-effectively investigate repurposing candidates. This scoping review aims to map the studies using in silico methodologies for drug repurposing against leishmaniasis. This study followed JBI recommendations for scoping reviews. Articles were searched on PubMed, Scopus, and Web of Science databases using keywords related to leishmaniasis and in silico methods for drug discovery, without publication date restrictions. The selection was based on primary studies involving computational methods for antileishmanial drug repurposing. Information about methodologies, obtained data, and outcomes were extracted. After the full-text appraisal, 34 studies were included in this review. Molecular docking was the preferred method for evaluating repurposing candidates (n=25). Studies reported 154 unique ligands and 72 different targets, sterol 14-alpha demethylase and trypanothione reductase being the most frequently reported. In silico screening was able to correctly pinpoint some known active pharmaceutical classes and propose previously untested drugs. Fifteen drugs investigated in silico exhibited low micromolar inhibition (IC50 < 10 µM) of Leishmania spp. in vitro. In conclusion, several in silico repurposing candidates are yet to be investigated in vitro and in vivo. Future research could expand the number of targets screened and employ advanced methods to optimize drug selection, offering new starting points for treatment development. See also the graphical abstract(Fig. 1).

PMID:39421030 | PMC:PMC11484518 | DOI:10.17179/excli2024-7552

Categories: Literature Watch

Funding multinational investigator-initiated clinical studies in Europe: why and how?

Fri, 2024-10-18 06:00

Trials. 2024 Oct 17;25(1):689. doi: 10.1186/s13063-024-08548-1.

ABSTRACT

Investigator-initiated clinical studies (IICSs), also referred to as non-commercial, academic or independent clinical studies, address important research questions that are usually neglected by industry despite their high societal value. Indeed, industry may direct their focus and resources on studies that will yield results and products that can ultimately generate revenue for the company. Conversely, IICS research questions include (a) refining or getting new indications of available treatments (drug repurposing); (b) optimisation, by comparing various health products or treatment regimens; and (c) innovation, especially for advanced therapies. Multinational IICSs increase the scientific quality of the data by exchange of research ideas, scientific techniques and tools. Participation of patients from different geographical, social and ethnic backgrounds equally adds to the value of study results and yields more generalisable evidence than a study confined to a single geographical location. Multinational IICSs are generally sponsored by non-profit/academic organisations and publicly funded. Funding has been already identified as a main challenge for the conduct IICS and especially for clinical trials (IICTs, IICS where a medical intervention is directly tested). Main barriers to the conduct of multinational IICTs with public funding include: Limitations of budget and duration of the eligibility of costs Lack of flexibility to move funds transnationally Tendering rules Complexity in the reporting of the eligible costs to funders We describe why there is a need to support multinational IICS, what should be their objectives and what are the current funding mechanisms in Europe. Strategies for funding multinational IICS should evolve to mitigate identified barriers, thus facilitating research that can provide answers to highly relevant questions in healthcare which are less likely to be answered by studies funded by the pharmaceutical and medical device industry.

PMID:39420404 | DOI:10.1186/s13063-024-08548-1

Categories: Literature Watch

Vemurafenib inhibits the replication of diabetogenic enteroviruses in intestinal epithelial and pancreatic beta cells

Thu, 2024-10-17 06:00

Antiviral Res. 2024 Oct 15:106021. doi: 10.1016/j.antiviral.2024.106021. Online ahead of print.

ABSTRACT

Enteroviruses, which infect via the gut, have been implicated in type 1 diabetes (T1D) development. Prolonged faecal shedding of enterovirus has been associated with islet autoimmunity. Additionally, enteroviral proteins and viral RNA have been detected in the pancreatic islets of individuals with recent-onset T1D, implicating their possible role in beta cell destruction. Despite this, no approved antiviral drugs currently exist that specifically target enterovirus infections for utilisation in disease interventions. Drug repurposing allows for the discovery of new clinical uses for existing drugs and can expedite drug discovery. Previously, the cancer drug Vemurafenib demonstrated unprecedented antiviral activity against several enteroviruses. In the present study, we assessed the efficacy of Vemurafenib and an analogue thereof in preventing infection or reducing the replication of enteroviruses associated with T1D. We tested Vemurafenib in intestinal epithelial cells (IECs) and insulin-producing beta cells. Additionally, we established a protocol for infecting human stem cell-derived islets (SC-islets) and used Vemurafenib and its analogue in this model. Our studies revealed that Vemurafenib exhibited strong antiviral properties in IECs and a beta cell line. The antiviral effect was also seen with the Vemurafenib analogue. SC-islets expressed the viral receptors CAR and DAF, with their highest expression in insulin- and glucagon-positive cells, respectively. SC-islets were successfully infected by CVBs and the antiviral activity of Vemurafenib and its analogue was confirmed in most SC-islet batches. In summary, our observations suggest that Vemurafenib and its analogue warrant further exploration as potential antiviral agents for the treatment of enterovirus-induced diseases, including T1D.

PMID:39419452 | DOI:10.1016/j.antiviral.2024.106021

Categories: Literature Watch

Discovery of Daclatasvir as a potential PD-L1 inhibitor from drug repurposing

Thu, 2024-10-17 06:00

Bioorg Chem. 2024 Oct 10;153:107874. doi: 10.1016/j.bioorg.2024.107874. Online ahead of print.

ABSTRACT

This study employed a drug repositioning strategy to discover novel PD-L1 small molecule inhibitors. 3D-QSAR pharmacophore models were establishedand subsequently validated through various means to select a robust model, Hypo-1, suitable for virtual screening. Hypo1 was used toscreen a library of 7,475 compounds from the Drugbank database, leading to the identification of 283 molecules following molecular docking with PD-L1.19 compounds underwent HTRF assays, with 15 showing varying degrees of inhibition of the PD-1/PD-L1 interaction. Compounds2202,2204,2207, and2208were further confirmed to bind to PD-L1 using SPR experiments. Among them, compound2204(Daclatasvir, KD = 11.4 μM) showeda higher affinity for human PD-L1 than the control compound BMS-1. In the HepG2/Jurkat cell co-culture model, Daclatasvir effectively activated Jurkat cells to kill HepG2 cells. In the mouse H22 hepatocellular tumor model, Daclatasvir significantly inhibited tumor growth (TGI = 53.4 % at a dose of 100 mg/kg). Its anti-tumor effect was more pronounced when combined with Lenvatinib (TGI = 85.1 %). Flow cytometry analysis of splenocytes and tumor cells indicated that Daclatasvir activated the immune system in both models. In summary, Daclatasvir was identified as a novel PD-L1small molecule inhibitor.

PMID:39418845 | DOI:10.1016/j.bioorg.2024.107874

Categories: Literature Watch

Isoflurane-lipid emulsion injection as an anticonvulsant and neuroprotectant treatment for nerve agent exposure

Thu, 2024-10-17 06:00

Front Pharmacol. 2024 Oct 2;15:1466351. doi: 10.3389/fphar.2024.1466351. eCollection 2024.

ABSTRACT

We have shown that briefly inhaled isoflurane rapidly halts convulsions and protects the central nervous system (CNS) from organophosphate-induced neuronal loss when administered at 5% for 5 min, even as late as 1 h after organophosphate exposure. In the current study we investigated if an injectable form of isoflurane was as effective as inhaled isoflurane. We used a mixture of 10% isoflurane dissolved in an IV-compatible lipid-water emulsion for intravenous administration. Rats with an implanted jugular vein cannula were infused with 1,000 μL of the 10% isoflurane-lipid emulsion (ILE) mixture at a rate of 200 μL per minute, which achieved full anesthesia lasting approximately 10 min. When administered 30 min after a highly lethal dose of the organophosphate insecticide paraoxon (POX), the short-duration administration halted convulsions over the course of the study and prevented the great majority of neuronal loss as shown by Fluoro-Jade B staining (FJB). Our results indicate that injectable isoflurane is very effective for treating organophosphate poisoning, negating the need for vaporizer equipment and enabling intravenous therapy.

PMID:39415842 | PMC:PMC11479933 | DOI:10.3389/fphar.2024.1466351

Categories: Literature Watch

Characterization of the symmetrical benzimidazole twin drug TL1228: the role as viral entry inhibitor for fighting COVID-19

Wed, 2024-10-16 06:00

Biol Direct. 2024 Oct 16;19(1):93. doi: 10.1186/s13062-024-00523-9.

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is reliably one of the largest pandemics the world has suffered in recent years. In the search for non-biological antivirals, special emphasis was placed on drug repurposing to accelerate the clinical implementation of effective drugs.The life cycle of the virus has been extensively investigated and many human targets have been identified, such as the molecular chaperone GRP78, representing a host auxiliary factor for SARS-CoV-2 entry. Here we report the inhibitor capacity of TL1228, a small molecule discovered through an in silico screening approach, which could interfere with the interaction of SARS-CoV-2 and its target cells, blocking the recognition of the GRP78 cellular receptor by the viral Spike protein. TL1228 showed in vitro the ability to reduce significantly both pseudoviral and authentic viral activity even through the reduction of GRP78/ACE2 transcript levels. Importantly, TL1228 acts in modulating expression levels of innate immunity and as inflammation markers.

PMID:39415197 | DOI:10.1186/s13062-024-00523-9

Categories: Literature Watch

Application of Box-Behnken design in the optimization and development of albendazole-loaded zein nanoparticles as a drug repurposing approach for colorectal cancer management

Wed, 2024-10-16 06:00

Int J Biol Macromol. 2024 Oct 14:136437. doi: 10.1016/j.ijbiomac.2024.136437. Online ahead of print.

ABSTRACT

Colorectal cancer (CRC) is the second cancer worldwide representing a major global health challenge. Numerous effective anticancer drugs have been developed in the last decade, yet the problem remains due to their low therapeutic index and nonspecificity. A new anticancer therapeutic paradigm is based on repurposing and nanoformulating drugs. Albendazole (ALB), a popular anthelmintic agent, was recently repurposed against CRC cells. In this study zein, an amphiphilic protein, was used to formulate nanoparticles (NPs) loaded with ALB. Box-Behnken design was selected to optimize the loaded NPs, the concentrations of polyvinyl alcohol, acetic acid, and the weight of zein were the independent variables. The dependent variables were the particle size, polydispersity index, and zeta potential. The optimized formula displayed a size of 84.3 ± 0.41 nm, PDI 0.13 ± 0.012, and a zeta potential of 42.5 ± 2.35 mV. ALB was successfully encapsulated into zein NPs and the release study revealed a desirable pH-responsive drug release behavior, that was negligible discharge during the first 2 h at pH 1.2 and progressive in the simulated colon environment reaching 71.1 ± 0.34 % at 6 h and 92.4 ± 1.11 % at 24 h. The anticancer effect of the loaded NPs on the human HCT116 cells showed favorable effects at 1 μM concentrations with a significant decrease in the IC50 at days 2 and 3 upon loading albendazole into zein NPs. ZNPs proved to be prospective nanocarriers that could be used for the delivery of repurposed drugs in CRC treatment.

PMID:39414215 | DOI:10.1016/j.ijbiomac.2024.136437

Categories: Literature Watch

Simvastatin and adenosine-co-loaded nanostructured lipid carriers for wound healing: Development, characterization and cell-based investigation

Wed, 2024-10-16 06:00

Eur J Pharm Biopharm. 2024 Oct 14:114533. doi: 10.1016/j.ejpb.2024.114533. Online ahead of print.

ABSTRACT

Chronic wounds represent a significant global health burden, characterized by delayed skin healing and associated comorbidities. The present study aimed to develop nanostructured lipid carriers (NLCs) as a topical delivery system for the co-administration of simvastatin and adenosine to address chronic wound management. The rationale behind the co-delivery approach was to mitigate the cytotoxicity associated with high-dose simvastatin, while preserving its therapeutic benefits through a potential synergistic or additive effect. A significant challenge in the development of these NLCs was the encapsulation of the highly hydrophilic adenosine within the hydrophobic lipid matrix. The NLCs were prepared using a hot homogenization-sonication method with a double emulsion technique and optimized through a series of formulation trials, employing various surfactants, solid and liquid lipids, to achieve efficient drug encapsulation, particularly for the hydrophilic adenosine. Optimized formulations F5- and F10-S/A 0.6 %/2 % (containing 0.6 % simvastatin and 2 % adenosine), exhibited promising physicochemical properties. The main difference was the liquid lipid used: F5 containing Miglyol 810 N, while F10 Capmul MCM C-8. Both formulations displayed a mean particle size below 230 nm, a polydispersity index (PDI) of approximately 0.2, and a zeta potential of around -22 mV. While simvastatin association efficiency (AE) was nearly 100 %, adenosine AE was higher for F10 (24 %), compared to F5 (13.5 %). F5 demonstrated superior stability compared to F10, maintaining consistent particle size and PDI over a 60-day period. Formulation F5 also demonstrated superior cell-based in vitro performance compared to F10, with higher cell viability (MTT assay), greater cell proliferation induction (SRB assay), and enhanced cell proliferation and migration in the wound-scratch assay. While F10 displayed higher adenosine AE, F5 excelled in terms of stability and biological activity. The slightly increase in intracellular reactive oxygen species levels observed with F5 may contribute to its enhanced proliferative effects. In-depth characterization revealed that F5 comprised spherical nanoparticles, and thermal analysis indicated no significant changes in the nanocarrier structure upon drug encapsulation. Additionally, ex vivo permeability study demonstrated superior skin retention of both simvastatin and adenosine for F5 compared to an emulsion control. Overall, the F5 nanocarrier demonstrated suitable physicochemical properties, cellular biocompatibility, induction of cell proliferation and migration events, and drug retention capacity in the skin layers, indicating its potential as a promising topical treatment for difficult-to-heal wounds.

PMID:39414092 | DOI:10.1016/j.ejpb.2024.114533

Categories: Literature Watch

Terazosin, a repurposed GPR119 agonist, ameliorates mitophagy and β-cell function in NAFPD by inhibiting MST1-Foxo3a signalling pathway

Wed, 2024-10-16 06:00

Cell Prolif. 2024 Oct 16:e13764. doi: 10.1111/cpr.13764. Online ahead of print.

ABSTRACT

GPR119 agonists are being developed to safeguard the function of pancreatic β-cells, especially in the context of non-alcoholic fatty pancreas disease (NAFPD) that is closely associated with β-cell dysfunction. This study aims to employ a drug repurposing strategy to screen GPR119 agonists and explore their potential molecular mechanisms for enhancing β-cell function in the context of NAFPD. MIN6 cells were stimulated with palmitic acid (PA), and a NAFPD model was established in GPR119-/- mice fed with a high-fat diet (HFD). Terazosin, identified through screening, was utilized to assess its impact on enhancing β-cell function via the MST1-Foxo3a pathway and mitophagy. Terazosin selectively activated GPR119, leading to increased cAMP and ATP synthesis, consequently enhancing insulin secretion. Terazosin administration improved high blood glucose, obesity, and impaired pancreatic β-cell function in NAFPD mice. It inhibited the upregulation of MST1-Foxo3a expression in pancreatic tissue and enhanced damaged mitophagy clearance, restoring autophagic flux, and improving mitochondrial quantity and structure in β-cells. Nevertheless, GPR119 deficiency negated the positive impact of terazosin on pancreatic β-cell function in NAFPD mice and abolished its inhibitory effect on the MST1-Foxo3a pathway. Terazosin activates GPR119 on the surface of pancreatic β-cells, enhancing mitophagy and alleviating β-cell dysfunction in the context of NAFPD by suppressing the MST1-Foxo3a signalling pathway. Terazosin could be considered a priority treatment for patients with concomitant NAFPD and hypertension.

PMID:39413003 | DOI:10.1111/cpr.13764

Categories: Literature Watch

Estimating Anticancer Effects of Yohimbine in DMBA-Induced Oral Carcinogenesis Hamster Model: Utilizing Biochemical and Immunohistochemical Techniques

Wed, 2024-10-16 06:00

Cell Biochem Funct. 2024 Sep;42(7):e4132. doi: 10.1002/cbf.4132.

ABSTRACT

Yohimbine is a potent bioactive indole alkaloid, isolated from a variety of biological sources and has long been used as a natural stimulant and aphrodisiac, particularly to treat erectile dysfunction. However, some literature also points toward its anticancer effect in different experimental models. The current study aimed to address a clinical concern on the therapeutic utilization of yohimbine as a repurposed drug. We employed 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch carcinogenesis model juxtaposed with biochemical investigation of several detoxification and antioxidant markers, such as Cyt p450, Cyt b5, thiobarbituric acid reactive substance (TBARS), glutathione (GSH), glutathione reductase (GR), glutathione S transferase (GST), DT-diaphorase, vitamin C, vitamin E, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). The immunohistochemical assessment of cyclooxygenase-2 (COX-2), interleukin-6 (IL-6), proliferating cell nuclear antigen (PCNA), and cyclin D1 expression were also performed to observe the effect of yohimbine on these markers. The hamsters treated with DMBA presented the growth of tumors in the buccal pouches, accompanied by significant changes in the liver and buccal mucosa levels of Phase I & II detoxification enzymes and lipid peroxidation (LPO). A significant rise in the range of 2- to 3.5-fold was observed in Cyt p450, Cyt b5, and LPO in DMBA-treated animals. However, oral administration of yohimbine significantly restored the LPO, antioxidant, and detoxifying enzyme activities. Additionally, the levels of COX-2, IL-6, PCNA, and cyclin D1 were also found to be downregulated by yohimbine treatment. In conclusion, yohimbine improved the biochemical and immunohistochemical markers of DMBA-induced oral cancer and reverted to near normal values via ameliorating the underlying inflammation and oxidative stress conditions. Our study highlighted the potential of yohimbine as anticancer agent, especially against oral cancer and suggested its possible use as repurposed drug.

PMID:39412169 | DOI:10.1002/cbf.4132

Categories: Literature Watch

In silico Prediction of Pranlukast as a Stabilizer of PD-L1 Homodimers

Wed, 2024-10-16 06:00

Anticancer Agents Med Chem. 2024 Oct 14. doi: 10.2174/0118715206303675241009104647. Online ahead of print.

ABSTRACT

INTRODUCTION: Tumors can be targeted by modulating the immune response of the patient. Programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) are critical immune checkpoints in cancer biology. The efficacy of certain cancer immunotherapies has been achieved by targeting these molecules using monoclonal antibodies.

METHOD: Small-molecule drugs have also been developed as inhibitors of the PD-1/PD-L1 axis, with a mechanism of action that is distinct from that of antibodies: they induce the formation of PD-L1 homodimers, causing their stabilization, internalization, and subsequent degradation. Drug repurposing is a strategy in which new uses are sought after for approved drugs, expediting their clinical translation based on updated findings. In this study, we generated a pharmacophore model that was based on reported small molecules that targeted PD-L1 and used it to identify potential PD-L1 inhibitors among FDA-approved drugs.

RESULTS: We identified 12 pharmacophore-matching compounds, but only 4 reproduced the binding mode of the reference inhibitors in docking experiments. Further characterization by molecular dynamics showed that pranlukast, an antagonist of leukotriene receptors that is used to treat asthma, generated stable and energyfavorable interactions with PD-L1 homodimers and induced homodimerization of recombinant PD-L1.

CONCLUSION: Our results suggest that pranlukast inhibits the PD-1/PD-L1 axis, meriting its repurposing as an antitumor drug.

PMID:39411933 | DOI:10.2174/0118715206303675241009104647

Categories: Literature Watch

Transcriptomic analysis reveals <em>Streptococcus agalactiae</em> activation of oncogenic pathways in cervical adenocarcinoma

Wed, 2024-10-16 06:00

Oncol Lett. 2024 Oct 3;28(6):588. doi: 10.3892/ol.2024.14720. eCollection 2024 Dec.

ABSTRACT

Cervical adenocarcinoma (AC), a subtype of uterine cervical cancer (CC), poses a challenge due to its resistance to therapy and poor prognosis compared with squamous cervical carcinoma. Streptococcus agalactiae [group B Streptococcus (GBS)], a Gram-positive coccus, has been associated with cervical intraepithelial neoplasia in CC. However, the underlying mechanism interaction between GBS and CC, particularly AC, remains elusive. Leveraging The Cancer Genome Atlas public data and time-series transcriptomic data, the present study investigated the interaction between GBS and AC, revealing activation of two pivotal pathways: 'MAPK signaling pathway' and 'mTORC1 signaling'. Western blotting, reverse transcription-quantitative PCR and cell viability assays were performed to validate the activation of these pathways and their role in promoting cancer cell proliferation. Subsequently, the present study evaluated the efficacy of two anticancer drugs targeting these pathways (binimetinib and ridaforolimus) in AC cell treatment. Binimetinib demonstrated a cytostatic effect, while ridaforolimus had a modest impact on HeLa cells after 48 h of treatment, as observed in both cell viability and cytotoxicity assays. The combination of binimetinib and ridaforolimus resulted in a significantly greater cytotoxic effect compared to binimetinib or ridaforolimus monotherapy, although the synergy score indicated an additive effect. In general, the MAPK and mTORC1 signaling pathways were identified as the main pathways associated with GBS and AC cells. The combination of binimetinib and ridaforolimus could be a potential AC treatment.

PMID:39411203 | PMC:PMC11474141 | DOI:10.3892/ol.2024.14720

Categories: Literature Watch

Drug repurposing to tackle parainfluenza 3 based on multi-similarities and network proximity analysis

Wed, 2024-10-16 06:00

Front Pharmacol. 2024 Oct 1;15:1428925. doi: 10.3389/fphar.2024.1428925. eCollection 2024.

ABSTRACT

Given that there is currently no clinically approved drug or vaccine for parainfluenza 3 (PIV3), we applied a drug repurposing method based on disease similarity and chemical similarity to screen 2,585 clinically approved chemical drugs using PIV3 potential drugs BCX-2798 and zanamivir as our controls. Twelve candidate drugs were obtained after being screened with good disease similarity and chemical similarity (S > 0.50, T > 0.56). When docking them with the PIV3 target protein, hemagglutinin-neuraminidase (HN), only oseltamivir was docked with a better score than BCX-2798, which indicates that oseltamivir has an inhibitory effect on PIV3. After the distance ( Z d c ) between the drug target of 14 drugs and the PIV3 disease target was measured by the network proximity method based on the PIV3 disease module, it was found that the Z d c values of amikacin, oseltamivir, ribavirin, and streptomycin were less than those of the control. Thus, oseltamivir is the best potential drug because it met all the above screening requirements. Additionally, to explore whether oseltamivir binds to HN stably, molecular dynamics simulation of the binding of oseltamivir to HN was carried out, and the results showed that the RMSD value of the complex tended to be stable within 100 ns, and the binding free energy of the complex was low (-10.60 kcal/mol). It was proved that oseltamivir screened by our drug repurposing method had the potential feasibility of treating PIV3.

PMID:39411066 | PMC:PMC11473393 | DOI:10.3389/fphar.2024.1428925

Categories: Literature Watch

Secondary Transcriptomic Analysis of Triple-Negative Breast Cancer Reveals Reliable Universal and Subtype-Specific Mechanistic Markers

Wed, 2024-10-16 06:00

Cancers (Basel). 2024 Oct 2;16(19):3379. doi: 10.3390/cancers16193379.

ABSTRACT

Background/Objectives: Breast cancer is diagnosed in 2.3 million women each year and kills 685,000 (~30% of patients) worldwide. The prognosis for many breast cancer subtypes has improved due to treatments targeting the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). In contrast, patients with triple-negative breast cancer (TNBC) tumors, which lack all three commonly targeted membrane markers, more frequently relapse and have lower survival rates due to a lack of tumor-selective TNBC treatments. We aim to investigate TNBC mechanistic markers that could be targeted for treatment. Methods: We performed a secondary TNBC analysis of 196 samples across 10 publicly available bulk RNA-sequencing studies to better understand the molecular mechanism(s) of disease and predict robust mechanistic markers that could be used to improve the mechanistic understanding of and diagnostic capabilities for TNBC. Results: Our analysis identified ~12,500 significant differentially expressed genes (FDR-adjusted p-value < 0.05), including KIF14 and ELMOD3, and two significantly modulated pathways. Additionally, our novel findings include highly accurate mechanistic markers identified using machine learning methods, including CIDEC (97.1% accuracy alone), CD300LG, ASPM, and RGS1 (98.9% combined accuracy), as well as TNBC subtype-differentiating mechanistic markers, including the targets PDE3B, CFD, IFNG, and ADM, which have associated therapeutics that can potentially be repurposed to improve treatment options. We then experimentally and computationally validated a subset of these findings. Conclusions: The results of our analyses can be used to better understand the mechanism(s) of disease and contribute to the development of improved diagnostics and/or treatments for TNBC.

PMID:39409999 | DOI:10.3390/cancers16193379

Categories: Literature Watch

StratosPHere 2: study protocol for a response-adaptive randomised placebo-controlled phase II trial to evaluate hydroxychloroquine and phenylbutyrate in pulmonary arterial hypertension caused by mutations in BMPR2

Tue, 2024-10-15 06:00

Trials. 2024 Oct 15;25(1):680. doi: 10.1186/s13063-024-08485-z.

ABSTRACT

BACKGROUND: Pulmonary arterial hypertension is a life-threatening progressive disorder characterised by high blood pressure (hypertension) in the arteries of the lungs (pulmonary artery). Although treatable, there is no known cure for this rare disorder, and its exact cause is unknown. Mutations in the bone morphogenetic protein receptor type-2 (BMPR2) are the most common genetic cause of familial pulmonary arterial hypertension. This study represents the first-ever trial of treatments aimed at directly rescuing the BMPR2 pathway, repurposing two drugs that have shown promise at restoring levels of BMPR2 signalling: hydroxychloroquine and phenylbutyrate.

METHODS: This three-armed phase II precision medicine study will investigate BMPR2 target engagement and explore the efficacy of two repurposed therapies in pulmonary arterial hypertension patients with BMPR2 mutations. Patients will be stratified based on two BMPR2 mutation classes: missense and haploinsufficient mutations. Eligible subjects will be randomised to one of the three arms (two active therapy arms and a placebo arm, all plus standard of care) following a Bayesian response-adaptive design implemented independently in each stratum and updated in response to a novel panel of primary biomarkers designed to assess biological modification of the disease.

DISCUSSION: The results of this trial will provide the first randomised evidence of the efficacy of these therapies to rescue BMPR2 function and will efficiently explore the potential for a differential response of these therapies per mutation class to address causes rather than consequences of this rare disease.

TRIAL REGISTRATION: The study has been registered with ISRCTN (ISRCTN10304915, 22/09/2023).

PMID:39407331 | DOI:10.1186/s13063-024-08485-z

Categories: Literature Watch

Anagrelide and idarubicin combination induces GSDME-mediated pyroptosis as a potential therapy for high-PDE3A acute myeloid leukemia

Tue, 2024-10-15 06:00

Leukemia. 2024 Oct 15. doi: 10.1038/s41375-024-02437-x. Online ahead of print.

ABSTRACT

Acute myeloid leukemia (AML) is an invasive hematopoietic malignancy requiring novel treatment strategies. In this study, we identified phosphodiesterase 3 A (PDE3A) as a potential new target for drug repositioning in AML. PDE3A was preferentially overexpressed in AML cells than in normal cells, and high expression of PDE3A was correlated with lower event-free survival (EFS) in de novo AML patients. The PDE3A inhibitor anagrelide (ANA) profoundly suppresses the proliferation of high PDE3A-expressing AML cells while exhibiting minimal impact on those with low PDE3A expression. Moreover, synergistic effect of ANA with other chemotherapeutic drugs in high PDE3A expression AML cells was observed. The ANA-idarubicin (IDA) combination showed the most remarkable synergistic effect among all ANA-chemotherapeutic drugs commonly used in AML cell line models. Mechanistically, the synergy between ANA and IDA inhibited the survival of PDE3Ahigh AML cell lines through pyroptosis. This mechanism was initiated by GSDME cleavage triggered by caspase-3 activation. In vivo combination treatment of leukemic animals with high PDE3A expression significantly reduced leukemia burden and prolonged survival time compared with single-drug and vehicle control treatments. Our findings suggest that combined ANA and IDA treatment is an innovative and promising therapeutic strategy for AML patients with high PDE3A expression.

PMID:39406931 | DOI:10.1038/s41375-024-02437-x

Categories: Literature Watch

A novel hypothesis-generating computational workflow utilizing reverse pharmacophore mapping-A drug repurposing perspective of istradefylline towards major depressive disorder

Tue, 2024-10-15 06:00

Br J Pharmacol. 2024 Oct 15. doi: 10.1111/bph.17346. Online ahead of print.

ABSTRACT

BACKGROUND AND PURPOSE: Drug repurposing (DR) offers a compelling alternative to traditional drug discovery's lengthy, resource-intensive process. DR is the process of identifying alternative clinical applications for pre-approved drugs as a low-risk and low-cost strategy. Computational approaches are crucial during the early hypothesis-generating stage of DR. However, 'large-scale' data retrieval remains a significant challenge. A computational workflow addressing such limitations might improve hypothesis generation, ultimately benefit patients and advance DR research.

EXPERIMENTAL APPROACH: We introduce a novel computational workflow (combining free-accessible computational platforms) to provide 'proof-of-concept' of the pre-approved drug's suitability for repurposing. Three key phases are included: target fishing (via reverse pharmacophore mapping), target identification (via disease- and drug-target pathway identification) and retrospective literature and drug-like analysis (via in silico ADMET properties determination). Istradefylline is a Parkinson's disease-approved drug with literature-attributed antidepressant properties remaining unclear. Practically applied, istradefylline's antidepressant activity was assessed in the context of major depressive disorder (MDD).

KEY RESULTS: Data mining aided by target identification resulted in istradefylline potentially representing a novel antidepressant drug class. Retrieved drug targets (KYNU, MAO-B, ALOX12 and PLCB2) associated with selected MDD pathways (tryptophan metabolism and serotonergic synapse) generated a hypothesis that istradefylline increased extracellular 5-HT levels (MAO-B inhibition) and reduced inflammation (KYNU, ALOX12 and PLCB2 inhibition).

CONCLUSION AND IMPLICATIONS: The practically applied workflow's generated hypothesis aligns with known experimental data, validating the effectiveness of this novel computational workflow. It is a low-risk and low-cost DR computational tool providing a bird's-eye view for exploring alternative clinical applications of pre-approved drugs.

PMID:39406391 | DOI:10.1111/bph.17346

Categories: Literature Watch

The colony-stimulating factor-1 receptor inhibitor edicotinib counteracts multidrug resistance in cancer cells by inhibiting ABCG2-mediated drug efflux

Tue, 2024-10-15 06:00

Biomed Pharmacother. 2024 Oct 14;180:117554. doi: 10.1016/j.biopha.2024.117554. Online ahead of print.

ABSTRACT

Chemotherapy treatment faces a major obstacle with the emergence of multidrug resistance (MDR), often attributed to the elevated expression of ATP-binding cassette (ABC) transporters such as ABCG2 and ABCB1 in cancer cells. These transporters hinder the efficacy of cytotoxic drugs via ATP hydrolysis-dependent efflux, leading to diminished intracellular drug levels. The scarcity of approved treatments for multidrug resistant cancers necessitates exploration of alternative strategies, including drug repositioning of molecular targeted agents to counteract ABCG2-mediated MDR in multidrug-resistant cancer cells. This study investigates the potential of edicotinib, a selective colony-stimulating factor-1 receptor (CSF-1R) tyrosine kinase inhibitor that is currently undergoing clinical trials for various diseases, to reverse MDR in ABCG2-overexpressing cancer cells. Our findings reveal that by attenuating the drug-efflux function of ABCG2 without altering its expression, edicotinib improves drug-induced apoptosis and reverses MDR in ABCG2-overexpressing multidrug-resistant cancer cells at non-toxic concentrations. Through ATPase activity analysis and molecular docking, potential interaction sites for edicotinib on ABCG2 were identified. These results underscore an additional pharmacological benefit of edicotinib against ABCG2 activity, suggesting its potential incorporation into combination therapies for patients with ABCG2-overexpressing tumors. Further research is warranted to validate these findings and explore their clinical implications.

PMID:39405897 | DOI:10.1016/j.biopha.2024.117554

Categories: Literature Watch

Pages