Drug Repositioning

Effective Treatment of COVID-19 Infection with Repurposed Drugs: Case Reports

Sat, 2024-08-03 06:00

Viral Immunol. 2024 Aug 5. doi: 10.1089/vim.2024.0034. Online ahead of print.

ABSTRACT

The COVID-19 pandemic response has been hindered by the absence of an efficient antiviral therapy for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The reason why the previous preventative approach to COVID-19 solely through vaccines has failed could be a lack of understanding of how quickly the SARS-CoV-2 virus evolves. Given the absence of specific treatments for the virus, efforts have been underway to explore treatment options. Drug repurposing involves identifying new therapeutic uses for approved drugs, proving to be a time-saving strategy with minimal risk of failure. In this study, we report the successful use of a multidrug approach in patients with COVID-19. Successful administration of multidrug therapy, such as combinations of hydroxychloroquine and azithromycin, doxycycline and ivermectin, or ivermectin, doxycycline, and azithromycin, has been reported. Multidrug therapy is effective because of the differing mechanisms of action of these drugs, and it may also mitigate the emergence of drug-resistant SARS-CoV-2 strains. The medicines were lopinavir/ritonavir (Kaletra), bamlanivimab (monoclonal antibody), glycopyrrolate-formoterol (Bevespi), ciclesonide (Alvesco), famotidine (Pepcid), and diphenhydramine (Benadryl).

PMID:39096169 | DOI:10.1089/vim.2024.0034

Categories: Literature Watch

Inhibition of human DNA alkylation damage repair enzyme ALKBH2 by HIV protease inhibitor ritonavir

Fri, 2024-08-02 06:00

DNA Repair (Amst). 2024 Jul 25;141:103732. doi: 10.1016/j.dnarep.2024.103732. Online ahead of print.

ABSTRACT

The human DNA repair enzyme AlkB homologue-2 (ALKBH2) repairs methyl adducts from genomic DNA and is overexpressed in several cancers. However, there are no known inhibitors available for this crucial DNA repair enzyme. The aim of this study was to examine whether the first-generation HIV protease inhibitors having strong anti-cancer activity can be repurposed as inhibitors of ALKBH2. We selected four such inhibitors and performed in vitro binding analysis against ALKBH2 based on alterations of its intrinsic tryptophan fluorescence and differential scanning fluorimetry. The effect of these HIV protease inhibitors on the DNA repair activity of ALKBH2 was also evaluated. Interestingly, we observed that one of the inhibitors, ritonavir, could inhibit ALKBH2-mediated DNA repair significantly via competitive inhibition and sensitized cancer cells to alkylating agent methylmethane sulfonate (MMS). This work may provide new insights into the possibilities of utilizing HIV protease inhibitor ritonavir as a DNA repair antagonist.

PMID:39094381 | DOI:10.1016/j.dnarep.2024.103732

Categories: Literature Watch

Exploring the pharmacological mechanism of Xianlingubao against diabetic osteoporosis based on network pharmacology and molecular docking: An observational study

Fri, 2024-08-02 06:00

Medicine (Baltimore). 2024 Aug 2;103(31):e39138. doi: 10.1097/MD.0000000000039138.

ABSTRACT

Xianlinggubao formula (XLGB), is a traditional Chinese compound Medicine that has been extensively used in osteoarthritis and aseptic osteonecrosis, but its curative effect on diabetic osteoporosis (DOP) and its pharmacological mechanisms remains not clear. The aim of the present study was to investigate the possible mechanism of drug repurposing of XLGB in DOP therapy. We acquired XLGB active compounds from the traditional Chinese medicine systems pharmacology and traditional Chinese medicines integrated databases and discovered potential targets for these compounds by conducting target fishing using the traditional Chinese medicine systems pharmacology and Swiss Target Prediction databases. Gene Cards and Online Mendelian Inheritance in Man® database were used to identify the DOP targets. Overlapping related targets between XLGB and DOP was selected to build a protein-protein interaction network. Next, the Metascape database was utilized to enrich the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. In addition, Auto-Dock Vina software was used to verify drug and target binding. In total, 48 hub targets were obtained as the candidate targets responsible for DOP therapy. The anti-DOP effect mediated by XLGB was primarily centralized on the advanced glycation end products (AGEs)-receptor for AGE signaling pathway in diabetic complications and osteoclast differentiation. In addition, AKT serine/threonine kinase 1, tumor necrosis factor, Interleukin-6, vascular endothelial growth factor A and peroxisome proliferator activated receptor gamma, which were considered as potential therapeutic targets. Furthermore, molecular docking results confirm the credibility of the predicted therapeutic targets. This study elucidates that XLGB may through regulating AGEs formation and osteoclast differentiation as well as angiogenesis and adipogenesis against DOP. And this study provides new promising points to find the exact regulatory mechanisms of XLGB mediated anti-DOP effect.

PMID:39093780 | DOI:10.1097/MD.0000000000039138

Categories: Literature Watch

Plasma Proteomics to Identify Drug Targets and Potential Drugs for Retinal Artery Occlusion: An Integrated Analysis in the UK Biobank

Fri, 2024-08-02 06:00

J Proteome Res. 2024 Aug 2. doi: 10.1021/acs.jproteome.4c00044. Online ahead of print.

ABSTRACT

Retinal artery occlusion (RAO), which is positively correlated with acute ischemic stroke (IS) and results in severe visual impairment, lacks effective intervention drugs. This study aims to perform integrated analysis using UK Biobank plasma proteome data of RAO and IS to identify potential targets and preventive drugs. A total of 7191 participants (22 RAO patients, 1457 IS patients, 8 individuals with both RAO and IS, and 5704 healthy age-gender-matched controls) were included in this study. Unique 1461 protein expression profiles of RAO, IS, and the combined data set, extracted from UK Biobank Plasma proteomics projects, were analyzed using both differential expression analysis and elastic network regression (Enet) methods to identify shared key proteins. Subsequent analyses, including single cell type expression assessment, pathway enrichment, and druggability analysis, were conducted for verifying shared key proteins and discovery of new drugs. Five proteins were found to be shared among the samples, with all of them showing upregulation. Notably, adhesion G-protein coupled receptor G1 (ADGRG1) exhibited high expression in glial cells of the brain and eye tissues. Gene set enrichment analysis revealed pathways associated with lipid metabolism and vascular regulation and inflammation. Druggability analysis unveiled 15 drug candidates targeting ADGRG1, which demonstrated protective effects against RAO, especially troglitazone (-8.5 kcal/mol). Our study identified novel risk proteins and therapeutic drugs associated with the rare disease RAO, providing valuable insights into potential intervention strategies.

PMID:39093603 | DOI:10.1021/acs.jproteome.4c00044

Categories: Literature Watch

Medicinal polypharmacology-a scientific glossary of terminology and concepts

Fri, 2024-08-02 06:00

Front Pharmacol. 2024 Jul 18;15:1419110. doi: 10.3389/fphar.2024.1419110. eCollection 2024.

ABSTRACT

Medicinal polypharmacology is one answer to the complex reality of multifactorial human diseases that are often unresponsive to single-targeted treatment. It is an admittance that intrinsic feedback mechanisms, crosstalk, and disease networks necessitate drugs with broad modes-of-action and multitarget affinities. Medicinal polypharmacology grew to be an independent research field within the last two decades and stretches from basic drug development to clinical research. It has developed its own terminology embedded in general terms of pharmaceutical drug discovery and development at the intersection of medicinal chemistry, chemical biology, and clinical pharmacology. A clear and precise language of critical terms and a thorough understanding of underlying concepts is imperative; however, no comprehensive work exists to this date that could support researchers in this and adjacent research fields. In order to explore novel options, establish interdisciplinary collaborations, and generate high-quality research outputs, the present work provides a first-in-field glossary to clarify the numerous terms that have originated from various individual disciplines.

PMID:39092220 | PMC:PMC11292611 | DOI:10.3389/fphar.2024.1419110

Categories: Literature Watch

DREAMER: Exploring Common Mechanisms of Adverse Drug Reactions and Disease Phenotypes through Network-Based Analysis

Fri, 2024-08-02 06:00

bioRxiv [Preprint]. 2024 Jul 22:2024.07.20.602911. doi: 10.1101/2024.07.20.602911.

ABSTRACT

Adverse drug reactions (ADRs) are a major concern in clinical healthcare, significantly affecting patient safety and drug development. The need for a deeper understanding of ADR mechanisms is crucial for improving drug safety profiles in drug design and drug repurposing. This study introduces DREAMER (Drug adverse REAction Mechanism ExplaineR), a novel network-based method for exploring the mechanisms underlying adverse drug reactions and disease phenotypes at a molecular level by leveraging a comprehensive knowledge graph obtained from various datasets. By considering drugs and diseases that cause similar phenotypes, and investigating their commonalities regarding their impact on specific modules of the protein-protein interaction network, DREAMER can robustly identify protein sets associated with the biological mechanisms underlying ADRs and unravel the causal relationships that contribute to the observed clinical outcomes. Applying DREAMER to 649 ADRs, we identified proteins associated with the mechanism of action for 67 ADRs across multiple organ systems, e.g., ventricular arrhythmia, metabolic acidosis, and interstitial pneumonitis. In particular, DREAMER highlights the importance of GABAergic signaling and proteins of the coagulation pathways for personality disorders and intracranial hemorrhage, respectively. We further demonstrate the application of DREAMER in drug repurposing and propose sotalol (targeting KCNH2), ranolazine (targeting SCN5A, currently under clinical trial), and diltiazem (indicated drug targeting CACNA1C and SCN3A) as candidate drugs to be repurposed for cardiac arrest. In summary, DREAMER effectively detects molecular mechanisms underlying phenotypes emphasizing the importance of network-based analyses with integrative data for enhancing drug safety and accelerating the discovery of novel therapeutic strategies.

PMID:39091742 | PMC:PMC11291051 | DOI:10.1101/2024.07.20.602911

Categories: Literature Watch

Treatment of Epidermolysis Bullosa and Future Directions: A Review

Thu, 2024-08-01 06:00

Dermatol Ther (Heidelb). 2024 Aug 2. doi: 10.1007/s13555-024-01227-8. Online ahead of print.

ABSTRACT

Epidermolysis bullosa (EB) comprises rare genetic disorders characterized by skin and mucosal membrane blistering induced by mechanical trauma. Molecularly, pathogenic variants affect genes encoding proteins crucial for epidermal-dermal adhesion and stability. Management of severe EB is multidisciplinary, focusing on wound healing support, ensuring that patients thrive, and complication treatment. Despite extensive research over 30 years, novel therapeutic approaches face challenges. Gene therapy and protein therapy struggle with efficacy, while regenerative cell-based therapies show limited effects. Drug repurposing to target various pathogenic mechanisms has gained attention, as has in vivo gene therapy with drugs for dystrophic and junctional EB that were recently approved by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA). However, their high cost limits global accessibility. This review examines therapeutic advancements made over the past 5 years, exploiting a systematic literature review and clinical trial data.

PMID:39090514 | DOI:10.1007/s13555-024-01227-8

Categories: Literature Watch

Drug repurposing of cyclin-dependent kinase inhibitors for neutrophilic acute respiratory distress syndrome and psoriasis

Thu, 2024-08-01 06:00

J Adv Res. 2024 Jul 30:S2090-1232(24)00310-2. doi: 10.1016/j.jare.2024.07.026. Online ahead of print.

ABSTRACT

BACKGROUND: Neutrophilic inflammation, characterized by dysregulated neutrophil activation, triggers a variety of inflammatory responses such as chemotactic infiltration, oxidative bursts, degranulation, neutrophil extracellular traps (NETs) formation, and delayed turnover. This type of inflammation is pivotal in the pathogenesis of acute respiratory distress syndrome (ARDS) and psoriasis. Despite current treatments, managing neutrophil-associated inflammatory symptoms remains a significant challenge.

AIM OF REVIEW: This review emphasizes the role of cyclin-dependent kinases (CDKs) in neutrophil activation and inflammation. It aims to highlight the therapeutic potential of repurposing CDK inhibitors to manage neutrophilic inflammation, particularly in ARDS and psoriasis. Additionally, it discusses the necessary precautions for the clinical application of these inhibitors due to potential off-target effects and the need for dose optimization.

KEY SCIENTIFIC CONCEPTS OF REVIEW: CDKs regulate key neutrophilic functions, including chemotactic responses, degranulation, NET formation, and apoptosis. Repurposing CDK inhibitors, originally developed for cancer treatment, shows promise in controlling neutrophilic inflammation. Clinical anticancer drugs, palbociclib and ribociclib, have demonstrated efficacy in treating neutrophilic ARDS and psoriasis by targeting off-label pathways, phosphoinositide 3-kinase (PI3K) and phosphodiesterase 4 (PDE4), respectively. While CDK inhibitors offer promising therapeutic benefits, their clinical repurposing requires careful consideration of off-target effects and dose optimization. Further exploration and clinical trials are necessary to ensure their safety and efficacy in treating inflammatory conditions.

PMID:39089617 | DOI:10.1016/j.jare.2024.07.026

Categories: Literature Watch

Safety and tolerability of pooled human immune globulins after topical ophthalmic administration in New Zealand White rabbits

Thu, 2024-08-01 06:00

Cutan Ocul Toxicol. 2024 Jul 31:1-5. doi: 10.1080/15569527.2024.2381207. Online ahead of print.

ABSTRACT

PURPOSE: To evaluate the safety and tolerability of pooled human immune globulins, Flebogamma® 5% DIF and Flebogamma® 10% DIF, administered by topical ophthalmic instillation to New Zealand White (NZW) rabbits.

METHODS: Male NZW rabbits were used in this study. In the acute single dose tolerability study, rabbits (n = 12) received a single topical dose of Flebogamma® 5% DIF. In the two-week repeated-dose tolerability study, rabbits (n = 5 for each group) were administered either Flebogamma® 5% DIF or Flebogamma® 10% DIF by topical bilateral administration four times daily (q.i.d.) between 8 am and 6 pm for a period of two weeks. Full ophthalmic examinations were conducted to evaluate ocular tolerability at baseline, Day 7, and Day 14.

RESULTS: In the acute single dose study, mild hyperaemia was observed in 1 out of 4 eyes at each 4 h and 24 h post-instillation of Flebogamma® 5% DIF. In the repeated dose study, no ocular signs were detected after q.i.d. topical instillation of Flebogamma® 5% DIF, while Flebogamma® 10% DIF resulted in mild hyperaemia in 8 out of 10 eyes on Day 7, and 5 out of 10 eyes on Day 14. No positive corneal fluorescein staining was detected. Schirmer tear test results were unremarkable. No other ocular signs were observed. Administration of immune globulins had no effect on intraocular pressure.

CONCLUSIONS: Flebogamma® 5% DIF and Flebogamma® 10% DIF were well-tolerated by NZW rabbits following single and repeat dose topical ophthalmic administration, supporting the future development of topical pooled human immune globulins for the treatment of ocular surface disease.

PMID:39086095 | DOI:10.1080/15569527.2024.2381207

Categories: Literature Watch

Repurposing FDA Approved Drugs against Sterol C-24 methyltransferase of Leishmania donovani: A Dual in silico and in vitro Approach

Wed, 2024-07-31 06:00

Acta Trop. 2024 Jul 29:107338. doi: 10.1016/j.actatropica.2024.107338. Online ahead of print.

ABSTRACT

Leishmaniasis is a disease caused by the parasite Leishmania donovani affecting populations belonging to developing countries. The present study explores drug repurposing as an innovative strategy to identify new uses for approved clinical drugs, reducing the time and cost required for drug discovery. The three-dimensional structure of Leishmania donovani Sterol C-24 methyltransferase (LdSMT) was modeled and 1615 FDA-approved drugs from the ZINC database were computationally screened to identify the potent leads. Fulvestrant, docetaxel, indocyanine green, and iohexol were shortlisted as potential leads with the highest binding affinity and fitness scores for the concerned pathogenic receptor. Molecular dynamic simulation studies showed that the macromolecular complexes of indocyanine green and iohexol with LdSMT remained stable throughout the simulation and can be further evaluated experimentally for developing an effective drug. The proposed leads have further demonstrated promising safety profiles during cytotoxicity analysis on the J774.A1 macrophage cell line. Mechanistic analysis with these two drugs also revealed significant morphological alterations in the parasite, along with reduced intracellular parasitic load. Overall, this study demonstrates the potential of drug repurposing in identifying new treatments for leishmaniasis and other diseases affecting developing countries, highlighting the importance of considering approved clinical drugs for new applications.

PMID:39084482 | DOI:10.1016/j.actatropica.2024.107338

Categories: Literature Watch

Drug repurposing for glomerular diseases: an underutilized resource

Wed, 2024-07-31 06:00

Nat Rev Nephrol. 2024 Jul 31. doi: 10.1038/s41581-024-00864-8. Online ahead of print.

ABSTRACT

Drug repurposing in glomerular disease can deliver opportunities for steroid-free regimens, enable personalized multi-target options for resistant or relapsing disease and enhance treatment options for understudied populations (for example, children) and in resource-limited settings. Identification of drug-repurposing candidates can be data driven, which utilizes existing data on disease pathobiology, drug features and clinical outcomes, or experimental, which involves high-throughput drug screens. Information from databases of approved drugs, clinical trials and PubMed registries suggests that at least 96 drugs on the market cover 49 targets with immunosuppressive potential that could be candidates for drug repurposing in glomerular disease. Furthermore, evidence to support drug repurposing is available for 191 immune drug target-glomerular disease pairs. Non-immunological drug repurposing includes strategies to reduce haemodynamic overload, podocyte injury and kidney fibrosis. Recommended strategies to expand drug-repurposing capacity in glomerular disease include enriching drug databases with glomeruli-specific information, enhancing the accessibility of primary clinical trial data, biomarker discovery to improve participant selection into clinical trials and improve surrogate outcomes and initiatives to reduce patent, regulatory and organizational hurdles.

PMID:39085415 | DOI:10.1038/s41581-024-00864-8

Categories: Literature Watch

DRML-Ensemble: drug repurposing method based on feature construction of multi-layer ensemble

Wed, 2024-07-31 06:00

J Mol Model. 2024 Jul 31;30(8):296. doi: 10.1007/s00894-024-06087-9.

ABSTRACT

CONTEXT: Computational drug repurposing methods have been continuously developed in recent years to alleviate the high costs associated with drug development. As drug targets or the products of disease-related genes, proteins play an important role in drug repurposing. Although the potential has been demonstrated, heterogeneous graphs with proteins as independent nodes have yet to be studied, where extracting high-quality protein features from heterogeneous graphs poses a significant challenge. A novel drug repurposing model based on the feature construction of multi-layer ensemble (DRML-Ensemble) is proposed in this study. The performance of DRML-Ensemble, as evaluated on publicly available datasets, achieves an AUPR value of 0.93 and an AUROC value of 0.92, surpassing those of existing state-of-the-art methods. Additionally, DRML-Ensemble demonstrates its notable ability for drug repurposing in Alzheimer's disease.

METHODS: DRML-Ensemble is primarily composed of multiple layers of heterogeneous graph feature construction (HGFC). Each HGFC can extract protein features by leveraging the relationships between drugs, diseases, and proteins. These protein features are then utilized in subsequent layers to build drug and disease features, facilitating drug repurposing. By stacking multiple layers, optimal protein features can be obtained from the heterogeneous graph, consequently improving the accuracy of drug repurposing. However, an excessive· stacking of layers usually affect the model's training process, for example, causing problems such as overfitting; a multi-layer ensemble prediction module is designed to further improve the model's performance.

PMID:39083073 | DOI:10.1007/s00894-024-06087-9

Categories: Literature Watch

Network-Based Drug Repurposing and Genomic Analysis to Unveil Potential Therapeutics for Monkeypox Virus

Wed, 2024-07-31 06:00

Chem Biodivers. 2024 Jul 31:e202400895. doi: 10.1002/cbdv.202400895. Online ahead of print.

ABSTRACT

The emergence of the human monkeypox virus (MPXV) and the lack of effective medications have necessitated the exploration of various strategies to combat its infection. This study employs a network-based approach to drug discovery, utilizing the BLASTn and phylogenetic analysis to compare the MPXV genome with those of 18 related orthopoxviruses, revealing over 75% genomic similarity. Through a literature review, 160 human-host proteins linked to MPXV and its relatives were identified, leading to the construction of a human-host protein interactome. Analysis of this interactome highlighted 39 central hub proteins, which were then examined for potential drug targets. The process successfully revealed 15 targets already approved for use with medications. Additionally, the functional enrichment analysis provided insights into potential pathways and disorders connected with these targets. Four medications, namely Baricitinib, Infliximab, Adalimumab, and Etanercept, have been identified as potential candidates for repurposing to combat MPXV. In addition, the pharmacophore-based screening identified a molecule that is comparable to Baricitinib and has the potential to be effective against MPXV. The findings of the study suggest that ZINC22060520 is a promising medication for treating MPXV infection and proposes these medications as potential options for additional experimental and clinical assessment in the battle against MPXV.

PMID:39082609 | DOI:10.1002/cbdv.202400895

Categories: Literature Watch

Antiretroviral Drugs Impact Autophagy: Opportunities for Drug Repurposing

Wed, 2024-07-31 06:00

Front Biosci (Landmark Ed). 2024 Jul 2;29(7):242. doi: 10.31083/j.fbl2907242.

ABSTRACT

Autophagy is an evolutionarily conserved process in which intracellular macromolecules are degraded in a lysosomal-dependent manner. It is central to cellular energy homeostasis and to quality control of intracellular components. A decline in autophagic activity is associated with aging, and contributes to the development of various age-associated pathologies, including cancer. There is an ongoing need to develop chemotherapeutic agents to improve morbidity and mortality for those diagnosed with cancer, as well as to decrease the cost of cancer care. Autophagic programs are altered in cancer cells to support survival in genetically and metabolically unstable environments, making autophagy an attractive target for new chemotherapy. Antiretroviral drugs, which have dramatically increased the life- and health spans of people with human immunodeficiency virus (HIV) (PWH), have offered promise in the treatment of cancer. One mechanism underlying the antineoplastic effects of antiretroviral drugs is the alteration of cancer cell autophagy that can potentiate cell death. Antiretroviral drugs could be repurposed into the cancer chemotherapy arsenal. A more complete understanding of the impact of antiretroviral drugs on autophagy is essential for effective repurposing. This review summarizes our knowledge of the effects of antiretroviral drugs on autophagy as potential adjunctive chemotherapeutic agents, and highlights gaps to be addressed to reposition antiretroviral drugs into the antineoplastic arsenal successfully.

PMID:39082334 | DOI:10.31083/j.fbl2907242

Categories: Literature Watch

Nilotinib: Disrupting the MYC-MAX Heterocomplex

Wed, 2024-07-31 06:00

Bioinform Biol Insights. 2024 Jul 29;18:11779322241267056. doi: 10.1177/11779322241267056. eCollection 2024.

ABSTRACT

MYC is a transcription factor crucial for maintaining cellular homeostasis, and its dysregulation is associated with highly aggressive cancers. Despite being considered "undruggable" due to its unstable protein structure, MYC gains stability through its interaction with its partner protein, MAX. The MYC-MAX heterodimer orchestrates the expression of numerous genes that contribute to an oncogenic phenotype. Previous efforts to develop small molecules, disrupting the MYC-MAX interaction, have shown promise in vitro but none have gained clinical approval. Our current computer-aided study utilizes an approach to explore drug repurposing as a strategy for inhibiting the c-MYC-MAX interaction. We have focused on compounds from DrugBank library, including Food and Drug Administration-approved drugs or those under investigation for other medical conditions. First, we identified a potential druggable site on flat interface of the c-MYC protein, which served as the target for virtual screening. Using both activity-based and structure-based screening, we comprehensively assessed the entire DrugBank library. Structure-based virtual screening was performed on AutoDock Vina and Glide docking tools, while activity-based screening was performed on two independent quantitative structure-activity relationship models. We focused on the top 2% of hit molecules from all screening methods. Ultimately, we selected consensus molecules from these screenings-those that exhibited both a stable interaction with c-MYC and superior inhibitory activity against c-MYC-MAX interaction. Among the evaluated molecules, we identified a protein kinase inhibitor (tyrosine kinase inhibitor [TKI]) known as nilotinib as a promising candidate targeting c-MYC-MAX dimer. Molecular dynamic simulations demonstrated a stable interaction between MYC and nilotinib. The interaction with nilotinib led to the stabilization of a region of the MYC protein that is distorted in apo-MYC and is important for MAX binding. Further analysis of differentially expressed gene revealed that nilotinib, uniquely among the tested TKIs, induced a gene expression program in which half of the genes were known to be responsive to c-MYC. Our findings provide the foundation for subsequent in vitro and in vivo investigations aimed at evaluating the efficacy of nilotinib in managing MYC oncogenic activity.

PMID:39081669 | PMC:PMC11287739 | DOI:10.1177/11779322241267056

Categories: Literature Watch

Identification of critical genes and metabolic pathways in rheumatoid arthritis and osteoporosis toward drug repurposing

Tue, 2024-07-30 06:00

Comput Biol Med. 2024 Jul 29;180:108912. doi: 10.1016/j.compbiomed.2024.108912. Online ahead of print.

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) and osteoporosis (OP) are considered to be complex diseases. In recent studies, a positive association between RA and OP has been reported triggering growing research interest. This study aims to investigate the drugs related to critical genes in RA and OP, using bioinformatics approaches, toward drug repurposing.

METHOD: RA and OP genes were identified. The RA-OP PPI network was constructed and analyzed using the STRING and Cytoscape, respectively. Hub genes and modules were extracted and enriched Gene Ontology, through the WebGestalt and g:Profiler. The identification of the drugs related to critical genes using the DGIDB, and extracted the miRNAs using miRWalk and miRNet.

RESULTS: By network clustering, five significant modules were obtained that have important roles in the immune system. IL6, TNF, IL1B, STAT3, TGFB1, TP53, HIF1A, CCL2, IL10, and MMP9 were found as the top 10 hub genes in the RA-OP network. Hub genes were shown to have implications in inflammatory response, significant functions in cytokine receptor binding, and localized mostly in extracellular space. By investigating the drugs related to hub genes, 16 drugs were identified as repurposing candidate drugs. The 10 drugs included Hydroxychloroquine, Infliximab, Adalimumab, Etanercept, Certolizumab, Cyclosporine, Diacerein, Gevokizumab, Canakinumab, and Olokizumab proposed for OP. Also, six drugs including Pirfenidone, Pentoxifylline, Vadimezan, Rilonacept, Metelimumab, and Siltuximab have important roles in inflammatory control and were proposed for both RA and OP.

CONCLUSIONS: The results of the present study can provide novel insights into the pathogenesis and treatment of RA and OP.

PMID:39079412 | DOI:10.1016/j.compbiomed.2024.108912

Categories: Literature Watch

MMCL-CPI: A multi-modal compound-protein interaction prediction model incorporating contrastive learning pre-training

Tue, 2024-07-30 06:00

Comput Biol Chem. 2024 Jul 25;112:108137. doi: 10.1016/j.compbiolchem.2024.108137. Online ahead of print.

ABSTRACT

MOTIVATION: Compound-protein interaction (CPI) prediction plays a crucial role in drug discovery and drug repositioning. Early researchers relied on time-consuming and labor-intensive wet laboratory experiments. However, the advent of deep learning has significantly accelerated this progress. Most existing deep learning methods utilize deep neural networks to extract compound features from sequences and graphs, either separately or in combination. Our team's previous research has demonstrated that compound images contain valuable information that can be leveraged for CPI task. However, there is a scarcity of multimodal methods that effectively combine sequence and image representations of compounds in CPI. Currently, the use of text-image pairs for contrastive language-image pre-training is a popular approach in the multimodal field. Further research is needed to explore how the integration of sequence and image representations can enhance the accuracy of CPI task.

RESULTS: This paper presents a novel method called MMCL-CPI, which encompasses two key highlights: 1) Firstly, we propose extracting compound features from two modalities: one-dimensional SMILES and two-dimensional images. This approach enables us to capture both sequence and spatial features, enhancing the prediction accuracy for CPI. Based on this, we design a novel multimodal model. 2) Secondly, we introduce a multimodal pre-training strategy that leverages comparative learning on a large-scale unlabeled dataset to establish the correspondence between SMILES string and compound's image. This pre-training approach significantly improves compound feature representations for downstream CPI task. Our method has shown competitive results on multiple datasets.

PMID:39079285 | DOI:10.1016/j.compbiolchem.2024.108137

Categories: Literature Watch

Pharmacological inhibition of CK2 by silmitasertib mitigates sepsis-induced circulatory collapse, thus improving septic outcomes in mice

Tue, 2024-07-30 06:00

Biomed Pharmacother. 2024 Jul 29;178:117191. doi: 10.1016/j.biopha.2024.117191. Online ahead of print.

ABSTRACT

Casein kinase II (CK2) has recently emerged as a pivotal mediator in the propagation of inflammation across various diseases. Nevertheless, its role in the pathogenesis of sepsis remains unexplored. Here, we investigated the involvement of CK2 in sepsis progression and the potential beneficial effects of silmitasertib, a selective and potent CK2α inhibitor, currently under clinical trials for COVID-19 and cancer. Sepsis was induced by caecal ligation and puncture (CLP) in four-month-old C57BL/6OlaHsd mice. One hour after the CLP/Sham procedure, animals were assigned to receive silmitasertib (50 mg/kg/i.v.) or vehicle. Plasma/organs were collected at 24 h for analysis. A second set of experiments was performed for survival rate over 120 h. Septic mice developed multiorgan failure, including renal dysfunction due to hypoperfusion (reduced renal blood flow) and increased plasma levels of creatinine. Renal derangements were associated with local overactivation of CK2, and downstream activation of the NF-ĸB-iNOS-NO axis, paralleled by a systemic cytokine storm. Interestingly, all markers of injury/inflammation were mitigated following silmitasertib administration. Additionally, when compared to sham-operated mice, sepsis led to vascular hyporesponsiveness due to an aberrant systemic and local release of NO. Silmitasertib restored sepsis-induced vascular abnormalities. Overall, these pharmacological effects of silmitasertib significantly reduced sepsis mortality. Our findings reveal, for the first time, the potential benefits of a selective and potent CK2 inhibitor to counteract sepsis-induced hyperinflammatory storm, vasoplegia, and ultimately prolonging the survival of septic mice, thus suggesting a pivotal role of CK2 in sepsis and silmitasertib as a novel powerful pharmacological tool for drug repurposing in sepsis.

PMID:39079263 | DOI:10.1016/j.biopha.2024.117191

Categories: Literature Watch

In vitro synergistic antiviral activity of repurposed drugs against enterovirus 71

Tue, 2024-07-30 06:00

Arch Virol. 2024 Jul 30;169(8):169. doi: 10.1007/s00705-024-06097-1.

ABSTRACT

Enteroviruses cause viral diseases that are harmful to children. Hand, foot, and mouth disease (HFMD) with neurological complications is mainly caused by enterovirus 71 (EV71). Despite its clinical importance, there is no effective antiviral drug against EV71. However, several repurposed drugs have been shown to have antiviral activity against related viruses. Treatments with single drugs and two-drug combinations were performed in vitro to assess anti-EV71 activity. Three repurposed drug candidates with broad-spectrum antiviral activity were found to demonstrate potent anti-EV71 activity: prochlorperazine, niclosamide, and itraconazole. To improve antiviral activity, combinations of two drugs were tested. Niclosamide and itraconazole showed synergistic antiviral activity in Vero cells, whereas combinations of niclosamide-prochlorperazine and itraconazole-prochlorperazine showed only additive effects. Furthermore, the combination of itraconazole and prochlorperazine showed an additive effect in neuroblastoma cells. Itraconazole and prochlorperazine exert their antiviral activities by inhibiting Akt phosphorylation. Repurposing of drugs can provide a treatment solution for HFMD, and our data suggest that combining these drugs can enhance that efficacy.

PMID:39078431 | DOI:10.1007/s00705-024-06097-1

Categories: Literature Watch

Meta-analysis of the human gut microbiome uncovers shared and distinct microbial signatures between diseases

Tue, 2024-07-30 06:00

mSystems. 2024 Jul 30:e0029524. doi: 10.1128/msystems.00295-24. Online ahead of print.

ABSTRACT

Microbiome studies have revealed gut microbiota's potential impact on complex diseases. However, many studies often focus on one disease per cohort. We developed a meta-analysis workflow for gut microbiome profiles and analyzed shotgun metagenomic data covering 11 diseases. Using interpretable machine learning and differential abundance analysis, our findings reinforce the generalization of binary classifiers for Crohn's disease (CD) and colorectal cancer (CRC) to hold-out cohorts and highlight the key microbes driving these classifications. We identified high microbial similarity in disease pairs like CD vs ulcerative colitis (UC), CD vs CRC, Parkinson's disease vs type 2 diabetes (T2D), and schizophrenia vs T2D. We also found strong inverse correlations in Alzheimer's disease vs CD and UC. These findings, detected by our pipeline, provide valuable insights into these diseases.

IMPORTANCE: Assessing disease similarity is an essential initial step preceding a disease-based approach for drug repositioning. Our study provides a modest first step in underscoring the potential of integrating microbiome insights into the disease similarity assessment. Recent microbiome research has predominantly focused on analyzing individual diseases to understand their unique characteristics, which by design excludes comorbidities in individuals. We analyzed shotgun metagenomic data from existing studies and identified previously unknown similarities between diseases. Our research represents a pioneering effort that utilizes both interpretable machine learning and differential abundance analysis to assess microbial similarity between diseases.

PMID:39078158 | DOI:10.1128/msystems.00295-24

Categories: Literature Watch

Pages