Drug Repositioning
Doxorubicin as a Drug Repurposing for Disruption of alpha-Chymotrypsinogen-A Aggregates
Protein J. 2024 Jul 16. doi: 10.1007/s10930-024-10217-w. Online ahead of print.
ABSTRACT
Protein conformation is affected by interaction of several small molecules resulting either stabilization or disruption depending on the nature of the molecules. In our earlier communication, Hg2+ was known to disrupt the native structure of α-Cgn A leading to aggregation (Ansari, N.K., Rais, A. & Naeem, A. Methotrexate for Drug Repurposing as an Anti-Aggregatory Agent to Mercuric Treated α-Chymotrypsinogen-A. Protein J (2024). https://doi.org/10.1007/s10930-024-10187-z ). Accumulation of β-rich aggregates in the living system is found to be linked with copious number of disorders. Here, we have investigated the effect of varying concentration of doxorubicin (DOX) i.e. 0-100 µM on the preformed aggregates of α-Cgn A upon incubation with 120 µM Hg2+. The decrease in the intrinsic fluorescence and enzyme activity with respect to increase in the Hg2+ concentration substantiate the formation of aggregates. The DOX showed the dose dependent decrease in the ThT fluorescence, turbidity and RLS measurements endorsing the dissolution of aggregates which were consistent with red shift in ANS, confirming the breakdown of aggregates. The α-Cgn A has 30% α-helical content which decreases to 3% in presence of Hg2+. DOX increased the α-helicity to 28% confirming its anti-aggregatory potential. The SEM validates the formation of aggregates with Hg2+ and their dissolution upon incubation with the DOX. Hemolysis assay checked the cytotoxicity of α-Cgn A aggregates. Docking revealed that the DOX interacted Lys203, Cys201, Cys136, Ser159, Leu10, Trp207, Val137 and Thr134 of α-Cgn A through hydrophobic interactions and Gly133, Thr135 and Lys202 forms hydrogen bonds.
PMID:39014260 | DOI:10.1007/s10930-024-10217-w
Optimization of atorvastatin and quercetin-loaded solid lipid nanoparticles using Box-Behnken design
Nanomedicine (Lond). 2024 Jul 16:1-15. doi: 10.1080/17435889.2024.2364585. Online ahead of print.
ABSTRACT
Aim: The study explores the synergistic potential of atorvastatin (ATR) and quercetin (QUER)- loaded solid lipid nanoparticles (SLN) in combating breast cancer. Materials & methods: SLNs were synthesized using a high-shear homogenization method and optimized using Box-Behnken design. The SLNs were characterized and evaluated for their in vitro anticancer activity. Results: The optimized SLN exhibited narrow size distribution (PDI = 0.338 ± 0.034), a particle size of 72.5 ± 6.5 nm, higher entrapment efficiency (<90%), sustained release and spherical surface particles. The in vitro cytotoxicity studies showed a significant reduction in IC50 values on MDA-MB-231 cell lines. Conclusion: We report a novel strategy of repurposing well-known drugs and encapsulating them into SLNs as a promising drug-delivery system against breast cancer.
PMID:39012199 | DOI:10.1080/17435889.2024.2364585
A combination treatment based on drug repurposing demonstrates mutation-agnostic efficacy in pre-clinical retinopathy models
Nat Commun. 2024 Jul 15;15(1):5943. doi: 10.1038/s41467-024-50033-5.
ABSTRACT
Inherited retinopathies are devastating diseases that in most cases lack treatment options. Disease-modifying therapies that mitigate pathophysiology regardless of the underlying genetic lesion are desirable due to the diversity of mutations found in such diseases. We tested a systems pharmacology-based strategy that suppresses intracellular cAMP and Ca2+ activity via G protein-coupled receptor (GPCR) modulation using tamsulosin, metoprolol, and bromocriptine coadministration. The treatment improves cone photoreceptor function and slows degeneration in Pde6βrd10 and RhoP23H/WT retinitis pigmentosa mice. Cone degeneration is modestly mitigated after a 7-month-long drug infusion in PDE6A-/- dogs. The treatment also improves rod pathway function in an Rpe65-/- mouse model of Leber congenital amaurosis but does not protect from cone degeneration. RNA-sequencing analyses indicate improved metabolic function in drug-treated Rpe65-/- and rd10 mice. Our data show that catecholaminergic GPCR drug combinations that modify second messenger levels via multiple receptor actions provide a potential disease-modifying therapy against retinal degeneration.
PMID:39009597 | DOI:10.1038/s41467-024-50033-5
Integrated ML-Based Strategy Identifies Drug Repurposing for Idiopathic Pulmonary Fibrosis
ACS Omega. 2024 Jun 27;9(27):29870-29883. doi: 10.1021/acsomega.4c03796. eCollection 2024 Jul 9.
ABSTRACT
Idiopathic pulmonary fibrosis (IPF) affects an estimated global population of around 3 million individuals. IPF is a medical condition with an unknown cause characterized by the formation of scar tissue in the lungs, leading to progressive respiratory disease. Currently, there are only two FDA-approved small molecule drugs specifically for the treatment of IPF and this has created a demand for the rapid development of drugs for IPF treatment. Moreover, denovo drug development is time and cost-intensive with less than a 10% success rate. Drug repurposing currently is the most feasible option for rapidly making the drugs to market for a rare and sporadic disease. Normally, the repurposing of drugs begins with a screening of FDA-approved drugs using computational tools, which results in a low hit rate. Here, an integrated machine learning-based drug repurposing strategy is developed to significantly reduce the false positive outcomes by introducing the predock machine-learning-based predictions followed by literature and GSEA-assisted validation and drug pathway prediction. The developed strategy is deployed to 1480 FDA-approved drugs and to drugs currently in a clinical trial for IPF to screen them against "TGFB1", "TGFB2", "PDGFR-a", "SMAD-2/3", "FGF-2", and more proteins resulting in 247 total and 27 potentially repurposable drugs. The literature and GSEA validation suggested that 72 of 247 (29.14%) drugs have been tried for IPF, 13 of 247 (5.2%) drugs have already been used for lung fibrosis, and 20 of 247 (8%) drugs have been tested for other fibrotic conditions such as cystic fibrosis and renal fibrosis. Pathway prediction of the remaining 142 drugs was carried out resulting in 118 distinct pathways. Furthermore, the analysis revealed that 29 of 118 pathways were directly or indirectly involved in IPF and 11 of 29 pathways were directly involved. Moreover, 15 potential drug combinations are suggested for showing a strong synergistic effect in IPF. The drug repurposing strategy reported here will be useful for rapidly developing drugs for treating IPF and other related conditions.
PMID:39005763 | PMC:PMC11238209 | DOI:10.1021/acsomega.4c03796
CPIExtract: A software package to collect and harmonize small molecule and protein interactions
bioRxiv [Preprint]. 2024 Jul 5:2024.07.03.601957. doi: 10.1101/2024.07.03.601957.
ABSTRACT
SUMMARY: The binding interactions between small molecules and proteins are the basis of cellular functions. Yet, experimental data available regarding compound-protein interaction is not harmonized into a single entity but rather scattered across multiple institutions, each maintaining databases with different formats. Extracting information from these multiple sources remains challenging due to data heterogeneity. Here, we present CPIExtract (Compound-Protein Interaction Extract), a tool to interactively extract experimental binding interaction data from multiple databases, perform filtering, and harmonize the resulting information, thus providing a gain of compound-protein interaction data. When compared to a single source, DrugBank, we show that it can collect more than 10 times the amount of annotations. The end-user can apply custom filtering to the aggregated output data and save it in any generic tabular file suitable for further downstream tasks such as network medicine analyses for drug repurposing and cross-validation of deep learning models.
AVAILABILITY: CPIExtract is an open-source Python package under an MIT license. CPIExtract can be downloaded from https://github.com/menicgiulia/CPIExtract and https://pypi.org/project/cpiextract . The package can run on any standard desktop computer or computing cluster.
PMID:39005430 | PMC:PMC11245042 | DOI:10.1101/2024.07.03.601957
Alzheimer's Disease Knowledge Graph Enhances Knowledge Discovery and Disease Prediction
bioRxiv [Preprint]. 2024 Jul 5:2024.07.03.601339. doi: 10.1101/2024.07.03.601339.
ABSTRACT
BACKGROUND: Alzheimer's disease (AD), a progressive neurodegenerative disorder, continues to increase in prevalence without any effective treatments to date. In this context, knowledge graphs (KGs) have emerged as a pivotal tool in biomedical research, offering new perspectives on drug repurposing and biomarker discovery by analyzing intricate network structures. Our study seeks to build an AD-specific knowledge graph, highlighting interactions among AD, genes, variants, chemicals, drugs, and other diseases. The goal is to shed light on existing treatments, potential targets, and diagnostic methods for AD, thereby aiding in drug repurposing and the identification of biomarkers.
RESULTS: We annotated 800 PubMed abstracts and leveraged GPT-4 for text augmentation to enrich our training data for named entity recognition (NER) and relation classification. A comprehensive data mining model, integrating NER and relationship classification, was trained on the annotated corpus. This model was subsequently applied to extract relation triplets from unannotated abstracts. To enhance entity linking, we utilized a suite of reference biomedical databases and refine the linking accuracy through abbreviation resolution. As a result, we successfully identified 3,199,276 entity mentions and 633,733 triplets, elucidating connections between 5,000 unique entities. These connections were pivotal in constructing a comprehensive Alzheimer's Disease Knowledge Graph (ADKG). We also integrated the ADKG constructed after entity linking with other biomedical databases. The ADKG served as a training ground for Knowledge Graph Embedding models with the high-ranking predicted triplets supported by evidence, underscoring the utility of ADKG in generating testable scientific hypotheses. Further application of ADKG in predictive modeling using the UK Biobank data revealed models based on ADKG outperforming others, as evidenced by higher values in the areas under the receiver operating characteristic (ROC) curves.
CONCLUSION: The ADKG is a valuable resource for generating hypotheses and enhancing predictive models, highlighting its potential to advance AD's disease research and treatment strategies.
PMID:39005357 | PMC:PMC11245034 | DOI:10.1101/2024.07.03.601339
Aging-associated Alterations in the Gene Regulatory Network Landscape Associate with Risk, Prognosis and Response to Therapy in Lung Adenocarcinoma
bioRxiv [Preprint]. 2024 Jul 3:2024.07.02.601689. doi: 10.1101/2024.07.02.601689.
ABSTRACT
Aging is the primary risk factor for many individual cancer types, including lung adenocarcinoma (LUAD). To understand how aging-related alterations in the regulation of key cellular processes might affect LUAD risk and survival outcomes, we built individual (person)-specific gene regulatory networks integrating gene expression, transcription factor protein-protein interaction, and sequence motif data, using PANDA/LIONESS algorithms, for both non-cancerous lung tissue samples from the Genotype Tissue Expression (GTEx) project and LUAD samples from The Cancer Genome Atlas (TCGA). In GTEx, we found that pathways involved in cell proliferation and immune response are increasingly targeted by regulatory transcription factors with age; these aging-associated alterations are accelerated by tobacco smoking and resemble oncogenic shifts in the regulatory landscape observed in LUAD and suggests that dysregulation of aging pathways might be associated with an increased risk of LUAD. Comparing normal adjacent samples from individuals with LUAD with healthy lung tissue samples from those without LUAD, we found that aging-associated genes show greater aging-biased targeting patterns in younger individuals with LUAD compared to their healthy counterparts of similar age, a pattern suggestive of age acceleration. This implies that an accelerated aging process may be responsible for tumor incidence in younger individuals. Using drug repurposing tool CLUEreg, we found small molecule drugs with potential geroprotective effects that may alter the accelerating aging profiles we found. We also observed that, in contrast to chronological age, a network-informed aging signature was associated with survival and response to chemotherapy in LUAD.
PMID:39005266 | PMC:PMC11244978 | DOI:10.1101/2024.07.02.601689
Targeting calciumopathy for neuroprotection: focus on calcium channels Cav1, Orai1 and P2X7
Cell Calcium. 2024 Jul 6;123:102928. doi: 10.1016/j.ceca.2024.102928. Online ahead of print.
ABSTRACT
As the uncontrolled entry of calcium ions (Ca2+) through plasmalemmal calcium channels is a cell death trigger, the conjecture is here raised that mitigating such an excess of Ca2+ entry should rescue from death the vulnerable neurons in neurodegenerative diseases (NDDs). However, this supposition has failed in some clinical trials (CTs). Thus, a recent CT tested whether isradipine, a blocker of the Cav1 subtype of voltage-operated calcium channels (VOCCs), exerted a benefit in patients with Parkinson's disease (PD); however, outcomes were negative. This is one more of the hundreds of CTs done under the principle of one-drug-one-target, that have failed in Alzheimer's disease (AD) and other NDDs during the last three decades. As there are myriad calcium channels to let Ca2+ ions gain the cell cytosol, it seems reasonable to predict that blockade of Ca2+ entry through a single channel may not be capable of preventing the Ca2+ flood of cells by the uncontrolled Ca2+ entry. Furthermore, as Ca2+ signaling is involved in the regulation of myriad functions in different cell types, it seems also reasonable to guess that a therapy should be more efficient by targeting different cells with various drugs. Here, we propose to mitigate Ca2+ entry by the simultaneous partial blockade of three quite different subtypes of plasmalemmal calcium channels that is, the Cav1 subtype of VOCCs, the Orai1 store-operated calcium channel (SOCC), and the purinergic P2X7 calcium channel. All three channels are expressed in both microglia and neurons. Thus, by targeting the three channels with a combination of three drug blockers we expect favorable changes in some of the pathogenic features of NDDs, namely (i) to mitigate Ca2+ entry into microglia; (ii) to decrease the Ca2+-dependent microglia activation; (iii) to decrease the sustained neuroinflammation; (iv) to decrease the uncontrolled Ca2+ entry into neurons; (v) to rescue vulnerable neurons from death; and (vi) to delay disease progression. In this review we discuss the arguments underlying our triad hypothesis in the sense that the combination of three repositioned medicines targeting Cav1, Orai1, and P2X7 calcium channels could boost neuroprotection and delay the progression of AD and other NDDs.
PMID:39003871 | DOI:10.1016/j.ceca.2024.102928
Discovering Potential in Non-Cancer Medications: A Promising Breakthrough for Multiple Myeloma Patients
Cancers (Basel). 2024 Jun 28;16(13):2381. doi: 10.3390/cancers16132381.
ABSTRACT
MM is a common type of cancer that unfortunately leads to a significant number of deaths each year. The majority of the reported MM cases are detected in the advanced stages, posing significant challenges for treatment. Additionally, all MM patients eventually develop resistance or experience relapse; therefore, advances in treatment are needed. However, developing new anti-cancer drugs, especially for MM, requires significant financial investment and a lengthy development process. The study of drug repurposing involves exploring the potential of existing drugs for new therapeutic uses. This can significantly reduce both time and costs, which are typically a major concern for MM patients. The utilization of pre-existing non-cancer drugs for various myeloma treatments presents a highly efficient and cost-effective strategy, considering their prior preclinical and clinical development. The drugs have shown promising potential in targeting key pathways associated with MM progression and resistance. Thalidomide exemplifies the success that can be achieved through this strategy. This review delves into the current trends, the challenges faced by conventional therapies for MM, and the importance of repurposing drugs for MM. This review highlights a noncomprehensive list of conventional therapies that have potentially significant anti-myeloma properties and anti-neoplastic effects. Additionally, we offer valuable insights into the resources that can help streamline and accelerate drug repurposing efforts in the field of MM.
PMID:39001443 | DOI:10.3390/cancers16132381
Pro-Oxidant Auranofin and Glutathione-Depleting Combination Unveils Synergistic Lethality in Glioblastoma Cells with Aberrant Epidermal Growth Factor Receptor Expression
Cancers (Basel). 2024 Jun 25;16(13):2319. doi: 10.3390/cancers16132319.
ABSTRACT
Glioblastoma (GBM) is the most prevalent and advanced malignant primary brain tumor in adults. GBM frequently harbors epidermal growth factor receptor (EGFR) wild-type (EGFRwt) gene amplification and/or EGFRvIII activating mutation. EGFR-driven GBM relies on the thioredoxin (Trx) and/or glutathione (GSH) antioxidant systems to withstand the excessive production of reactive oxygen species (ROS). The impact of EGFRwt or EGFRvIII overexpression on the response to a Trx/GSH co-targeting strategy is unknown. In this study, we investigated Trx/GSH co-targeting in the context of EGFR overexpression in GBM. Auranofin is a thioredoxin reductase (TrxR) inhibitor, FDA-approved for rheumatoid arthritis. L-buthionine-sulfoximine (L-BSO) inhibits GSH synthesis by targeting the glutamate-cysteine ligase catalytic (GCLC) enzyme subunit. We analyzed the mechanisms of cytotoxicity of auranofin and the interaction between auranofin and L-BSO in U87MG, U87/EGFRwt, and U87/EGFRvIII GBM isogenic GBM cell lines. ROS-dependent effects were assessed using the antioxidant N-acetylsteine. We show that auranofin decreased TrxR1 activity and increased ROS. Auranofin decreased cell vitality and colony formation and increased protein polyubiquitination through ROS-dependent mechanisms, suggesting the role of ROS in auranofin-induced cytotoxicity in the three cell lines. ROS-dependent PARP-1 cleavage was associated with EGFRvIII downregulation in U87/EGFRvIII cells. Remarkably, the auranofin and L-BSO combination induced the significant depletion of intracellular GSH and synergistic cytotoxicity regardless of EGFR overexpression. Nevertheless, molecular mechanisms associated with cytotoxicity were modulated to a different extent among the three cell lines. U87/EGFRvIII exhibited the most prominent ROS increase, P-AKT(Ser-473), and AKT decrease along with drastic EGFRvIII downregulation. U87/EGFRwt and U87/EGFRvIII displayed lower basal intracellular GSH levels and synergistic ROS-dependent DNA damage compared to U87MG cells. Our study provides evidence for ROS-dependent synergistic cytotoxicity of auranofin and L-BSO combination in GBM in vitro. Unraveling the sensitivity of EGFR-overexpressing cells to auranofin alone, and synergistic auranofin and L-BSO combination, supports the rationale to repurpose this promising pro-oxidant treatment strategy in GBM.
PMID:39001381 | DOI:10.3390/cancers16132319
Insight into Mantle Cell Lymphoma Pathobiology, Diagnosis, and Treatment Using Network-Based and Drug-Repurposing Approaches
Int J Mol Sci. 2024 Jul 2;25(13):7298. doi: 10.3390/ijms25137298.
ABSTRACT
Mantle cell lymphoma (MCL) is a rare, incurable, and aggressive B-cell non-Hodgkin lymphoma (NHL). Early MCL diagnosis and treatment is critical and puzzling due to inter/intra-tumoral heterogeneity and limited understanding of the underlying molecular mechanisms. We developed and applied a multifaceted analysis of selected publicly available transcriptomic data of well-defined MCL stages, integrating network-based methods for pathway enrichment analysis, co-expression module alignment, drug repurposing, and prediction of effective drug combinations. We demonstrate the "butterfly effect" emerging from a small set of initially differentially expressed genes, rapidly expanding into numerous deregulated cellular processes, signaling pathways, and core machineries as MCL becomes aggressive. We explore pathogenicity-related signaling circuits by detecting common co-expression modules in MCL stages, pointing out, among others, the role of VEGFA and SPARC proteins in MCL progression and recommend further study of precise drug combinations. Our findings highlight the benefit that can be leveraged by such an approach for better understanding pathobiology and identifying high-priority novel diagnostic and prognostic biomarkers, drug targets, and efficacious combination therapies against MCL that should be further validated for their clinical impact.
PMID:39000404 | DOI:10.3390/ijms25137298
Aprotinin (II): Inhalational Administration for the Treatment of COVID-19 and Other Viral Conditions
Int J Mol Sci. 2024 Jun 29;25(13):7209. doi: 10.3390/ijms25137209.
ABSTRACT
Aprotinin is a broad-spectrum inhibitor of human proteases that has been approved for the treatment of bleeding in single coronary artery bypass surgery because of its potent antifibrinolytic actions. Following the outbreak of the COVID-19 pandemic, there was an urgent need to find new antiviral drugs. Aprotinin is a good candidate for therapeutic repositioning as a broad-spectrum antiviral drug and for treating the symptomatic processes that characterise viral respiratory diseases, including COVID-19. This is due to its strong pharmacological ability to inhibit a plethora of host proteases used by respiratory viruses in their infective mechanisms. The proteases allow the cleavage and conformational change of proteins that make up their viral capsid, and thus enable them to anchor themselves by recognition of their target in the epithelial cell. In addition, the activation of these proteases initiates the inflammatory process that triggers the infection. The attraction of the drug is not only its pharmacodynamic characteristics but also the possibility of administration by the inhalation route, avoiding unwanted systemic effects. This, together with the low cost of treatment (≈2 Euro/dose), makes it a good candidate to reach countries with lower economic means. In this article, we will discuss the pharmacodynamic, pharmacokinetic, and toxicological characteristics of aprotinin administered by the inhalation route; analyse the main advances in our knowledge of this medication; and the future directions that should be taken in research in order to reposition this medication in therapeutics.
PMID:39000315 | DOI:10.3390/ijms25137209
New Potential Pharmacological Options for Endometriosis Associated Pain
Int J Mol Sci. 2024 Jun 27;25(13):7068. doi: 10.3390/ijms25137068.
ABSTRACT
Endometriosis is a chronic inflammatory disorder characterized by the abnormal growth of endometrial-like tissue outside the uterine cavity, affecting 10-15% of women of reproductive age. Pain is the most common symptom. Treatment options include surgery, which has limited effectiveness and high recurrence rates, and pharmacotherapy. Hormonal therapies, commonly used for symptom management, can have side effects and contraceptive outcomes, contributing to the infertility associated with endometriosis, with pain and lesions often reappearing after treatment cessation. Among its etiological factors, immunological and inflammatory dysregulation plays a significant role, representing an interesting target for developing new therapeutic strategies. This review critically analyzes recent studies to provide an updated synthesis of ongoing research into potential new pharmacotherapies focusing on lesion progression, pain relief, and improving quality of life. Immunotherapy, natural anti-inflammatory and antioxidant compounds and drug repurposing show promise in addressing the limitations of current treatments by targeting immunological factors, potentially offering non-invasive solutions for managing pain and infertility in endometriosis. Promising results have been obtained from in vitro and animal model studies, but clinical trials are still limited. More effort is needed to translate these findings into clinical practice to effectively reduce disease progression, alleviate pain symptoms and preserve the reproductive capacity, improving patients' overall wellbeing.
PMID:39000175 | DOI:10.3390/ijms25137068
Inter-Species Pharmacokinetic Modeling and Scaling for Drug Repurposing of Pyronaridine and Artesunate
Int J Mol Sci. 2024 Jun 26;25(13):6998. doi: 10.3390/ijms25136998.
ABSTRACT
Even though several new targets (mostly viral infection) for drug repurposing of pyronaridine and artesunate have recently emerged in vitro and in vivo, inter-species pharmacokinetic (PK) data that can extend nonclinical efficacy to humans has not been reported over 30 years of usage. Since extrapolation of animal PK data to those of humans is essential to predict clinical outcomes for drug repurposing, this study aimed to investigate inter-species PK differences in three animal species (hamster, rat, and dog) and to support clinical translation of a fixed-dose combination of pyronaridine and artesunate. PK parameters (e.g., steady-state volume of distribution (Vss), clearance (CL), area under the concentration-time curve (AUC), mean residence time (MRT), etc.) of pyronaridine, artesunate, and dihydroartemisinin (an active metabolite of artesunate) were determined by non-compartmental analysis. In addition, one- or two-compartment PK modeling was performed to support inter-species scaling. The PK models appropriately described the blood concentrations of pyronaridine, artesunate, and dihydroartemisinin in all animal species, and the estimated PK parameters in three species were integrated for inter-species allometric scaling to predict human PKs. The simple allometric equation (Y = a × Wb) well explained the relationship between PK parameters and the actual body weight of animal species. The results from the study could be used as a basis for drug repurposing and support determining the effective dosage regimen for new indications based on in vitro/in vivo efficacy data and predicted human PKs in initial clinical trials.
PMID:39000107 | DOI:10.3390/ijms25136998
Repurposing Anticancer Drugs Targeting the MAPK/ERK Signaling Pathway for the Treatment of Respiratory Virus Infections
Int J Mol Sci. 2024 Jun 25;25(13):6946. doi: 10.3390/ijms25136946.
ABSTRACT
Respiratory virus infections remain a significant challenge to human health and the social economy. The symptoms range from mild rhinitis and nasal congestion to severe lower respiratory tract dysfunction and even mortality. The efficacy of therapeutic drugs targeting respiratory viruses varies, depending upon infection time and the drug resistance engendered by a high frequency of viral genome mutations, necessitating the development of new strategies. The MAPK/ERK pathway that was well delineated in the 1980s represents a classical signaling cascade, essential for cell proliferation, survival, and differentiation. Since this pathway is constitutively activated in many cancers by oncogenes, several drugs inhibiting Raf/MEK/ERK have been developed and currently used in anticancer treatment. Two decades ago, it was reported that viruses such as HIV and influenza viruses could exploit the host cellular MAPK/ERK pathway for their replication. Thus, it would be feasible to repurpose this category of the pathway inhibitors for the treatment of respiratory viral infections. The advantage is that the host genes are not easy to mutate such that the drug resistance rarely occurs during short-period treatment of viruses. Therefore, in this review we will summarize the research progress on the role of the MAPK/ERK pathway in respiratory virus amplification and discuss the potential of the pathway inhibitors (MEK inhibitors) in the treatment of respiratory viral infections.
PMID:39000055 | DOI:10.3390/ijms25136946
Repurposing GnRH-A as a Near-Infrared Fluorescent Probe for Diagnosis and Surgical Navigation of Breast Cancer Tumors and Metastases
J Med Chem. 2024 Jul 12. doi: 10.1021/acs.jmedchem.4c01142. Online ahead of print.
ABSTRACT
Breast cancer, globally the most common cancer in women, presents significant challenges in treatment. Breast-conserving surgery (BCS), a less traumatic and painful alternative to radical mastectomy, not only preserves the breast's appearance but also supports postsurgical functional recovery. However, accurately identifying tumors, precisely delineating margins, and thoroughly removing metastases remain complex surgical challenges, exacerbated by the limitations of current imaging techniques, including poor tumor uptake and low signal contrast. Addressing these challenges, our study developed a series of GnRHR-targeted probes (YQGN-n) for fluorescence imaging and surgical navigation of breast cancer through a drug repositioning strategy. Notably, YQGN-7, with its high cellular affinity (Kd of 217.8 nM), demonstrates exceptional selectivity and specificity for breast cancer tumors, surpassing traditional imaging agents like ICG in tumor uptake and pharmacokinetic properties. Furthermore, YQGN-7's effectiveness in surgical navigation, both for primary breast tumors and metastases, highlights its potential as a revolutionary tool in BCS.
PMID:38995618 | DOI:10.1021/acs.jmedchem.4c01142
Otilonium Bromide Exhibits Potent Antifungal Effects by Blocking Ergosterol Plasma Membrane Localization and Triggering Cytotoxic Autophagy in Candida Albicans
Adv Sci (Weinh). 2024 Jul 12:e2406473. doi: 10.1002/advs.202406473. Online ahead of print.
ABSTRACT
Candidiasis, which presents a substantial risk to human well-being, is frequently treated with azoles. However, drug-drug interactions caused by azoles inhibiting the human CYP3A4 enzyme, together with increasing resistance of Candida species to azoles, represent serious issues with this class of drug, making it imperative to develop innovative antifungal drugs to tackle this growing clinical challenge. A drug repurposing approach is used to examine a library of Food and Drug Administration (FDA)-approved drugs, ultimately identifying otilonium bromide (OTB) as an exceptionally encouraging antifungal agent. Mechanistically, OTB impairs vesicle-mediated trafficking by targeting Sec31, thereby impeding the plasma membrane (PM) localization of the ergosterol transporters, such as Sip3. Consequently, OTB obstructs the movement of ergosterol across membranes and triggers cytotoxic autophagy. It is noteworthy that C. albicans encounters challenges in developing resistance to OTB because it is not a substrate for drug transporters. This study opens a new door for antifungal therapy, wherein OTB disrupts ergosterol subcellular distribution and induces cytotoxic autophagy. Additionally, it circumvents the hepatotoxicity associated with azole-mediated liver enzyme inhibition and avoids export-mediated drug resistance in C. albicans.
PMID:38995235 | DOI:10.1002/advs.202406473
DrugRepoBank: a comprehensive database and discovery platform for accelerating drug repositioning
Database (Oxford). 2024 Jul 11;2024:baae051. doi: 10.1093/database/baae051.
ABSTRACT
In recent years, drug repositioning has emerged as a promising alternative to the time-consuming, expensive and risky process of developing new drugs for diseases. However, the current database for drug repositioning faces several issues, including insufficient data volume, restricted data types, algorithm inaccuracies resulting from the neglect of multidimensional or heterogeneous data, a lack of systematic organization of literature data associated with drug repositioning, limited analytical capabilities and user-unfriendly webpage interfaces. Hence, we have established the first all-encompassing database called DrugRepoBank, consisting of two main modules: the 'Literature' module and the 'Prediction' module. The 'Literature' module serves as the largest repository of literature-supported drug repositioning data with experimental evidence, encompassing 169 repositioned drugs from 134 articles from 1 January 2000 to 1 July 2023. The 'Prediction' module employs 18 efficient algorithms, including similarity-based, artificial-intelligence-based, signature-based and network-based methods to predict repositioned drug candidates. The DrugRepoBank features an interactive and user-friendly web interface and offers comprehensive functionalities such as bioinformatics analysis of disease signatures. When users provide information about a drug, target or disease of interest, DrugRepoBank offers new indications and targets for the drug, proposes new drugs that bind to the target or suggests potential drugs for the queried disease. Additionally, it provides basic information about drugs, targets or diseases, along with supporting literature. We utilize three case studies to demonstrate the feasibility and effectiveness of predictively repositioned drugs within DrugRepoBank. The establishment of the DrugRepoBank database will significantly accelerate the pace of drug repositioning. Database URL: https://awi.cuhk.edu.cn/DrugRepoBank.
PMID:38994794 | DOI:10.1093/database/baae051
Aging and cognitive resilience: Molecular mechanisms as new potential therapeutic targets
Drug Discov Today. 2024 Jul 9:104093. doi: 10.1016/j.drudis.2024.104093. Online ahead of print.
ABSTRACT
As the global population ages, the need to prolong lifespan and healthspan becomes increasingly imperative. Understanding the molecular determinants underlying cognitive resilience, together with changes during aging and the (epi)genetic factors that predispose an individual to decreased cognitive resilience, open avenues for researching novel therapies. This review provides a critical and timely appraisal of the molecular mechanisms underlying cognitive resilience, framed within a critical analysis of emerging therapeutic strategies to mitigate age-related cognitive decline. Significant insights from both animals and human subjects are discussed herein, directed either toward active pharmaceutical ingredients (drug repositioning or macromolecules), or, alternatively, advanced cellular therapies.
PMID:38992420 | DOI:10.1016/j.drudis.2024.104093
A phenome-wide association and factorial Mendelian randomization study on the repurposing of uric acid-lowering drugs for cardiovascular outcomes
Eur J Epidemiol. 2024 Jul 11. doi: 10.1007/s10654-024-01138-0. Online ahead of print.
ABSTRACT
Uric acid has been linked to various disease outcomes. However, it remains unclear whether uric acid-lowering therapy could be repurposed as a treatment for conditions other than gout. We first performed both observational phenome-wide association study (Obs-PheWAS) and polygenic risk score PheWAS (PRS-PheWAS) to identify associations of uric acid levels with a wide range of disease outcomes. Then, trajectory analysis was conducted to explore temporal progression patterns of the observed disease outcomes. Finally, we investigated whether uric acid-lowering drugs could be repurposed using a factorial Mendelian randomization (MR) study design. A total of 41 overlapping phenotypes associated with uric acid levels were identified by both Obs- and PRS- PheWASs, primarily cardiometabolic diseases. The trajectory analysis illustrated how elevated uric acid levels contribute to cardiometabolic diseases, and finally death. Meanwhile, we found that uric acid-lowering drugs exerted a protective role in reducing the risk of coronary atherosclerosis (OR = 0.96, 95%CI: 0.93, 1.00, P = 0.049), congestive heart failure (OR = 0.64, 95%CI: 0.42, 0.99, P = 0.043), occlusion of cerebral arteries (OR = 0.93, 95%CI: 0.87, 1.00, P = 0.044) and peripheral vascular disease (OR = 0.60, 95%CI: 0.38, 0.94, P = 0.025). Furthermore, the combination of uric acid-lowering therapy (e.g. xanthine oxidase inhibitors) with antihypertensive treatment (e.g. calcium channel blockers) exerted additive effects and was associated with a 6%, 8%, 8%, 10% reduction in risk of coronary atherosclerosis, heart failure, occlusion of cerebral arteries and peripheral vascular disease, respectively. Our findings support a role of elevated uric acid levels in advancing cardiovascular dysfunction and identify potential repurposing opportunities for uric acid-lowering drugs in cardiovascular treatment.
PMID:38992218 | DOI:10.1007/s10654-024-01138-0