Drug Repositioning
Brain Cell-based Genetic Subtyping and Drug Repositioning for Alzheimer Disease
medRxiv [Preprint]. 2024 Jun 21:2024.06.21.24309255. doi: 10.1101/2024.06.21.24309255.
ABSTRACT
Alzheimer's Disease (AD) is characterized by its complex and heterogeneous etiology and gradual progression, leading to high drug failure rates in late-stage clinical trials. In order to better stratify individuals at risk for AD and discern potential therapeutic targets we employed a novel procedure utilizing cell-based co-regulated gene networks and polygenic risk scores (cbPRSs). After defining genetic subtypes using extremes of cbPRS distributions, we evaluated correlations of the genetic subtypes with previously defined AD subtypes defined on the basis of domain-specific cognitive functioning and neuroimaging biomarkers. Employing a PageRank algorithm, we identified priority gene targets for the genetic subtypes. Pathway analysis of priority genes demonstrated associations with neurodegeneration and suggested candidate drugs currently utilized in diabetes, hypertension, and epilepsy for repositioning in AD. Experimental validation utilizing human induced pluripotent stem cell (hiPSC)-derived astrocytes demonstrated the modifying effects of estradiol, levetiracetam, and pioglitazone on expression of APOE and complement C4 genes, suggesting potential repositioning for AD.
PMID:38947056 | PMC:PMC11213108 | DOI:10.1101/2024.06.21.24309255
Shared genetics between breast cancer and predisposing diseases identifies novel breast cancer treatment candidates
Res Sq [Preprint]. 2024 Jun 21:rs.3.rs-4536370. doi: 10.21203/rs.3.rs-4536370/v1.
ABSTRACT
Background Current effective breast cancer treatment options have severe side effects, highlighting a need for new therapies. Drug repurposing can accelerate improvements to care, as FDA-approved drugs have known safety and pharmacological profiles. Some drugs for other conditions, such as metformin, an antidiabetic, have been tested in clinical trials for repurposing for breast cancer. Here, we exploit the genetics of breast cancer and linked predisposing diseases to propose novel drug repurposing. We hypothesize that if a predisposing disease contributes to breast cancer pathology, identifying the pleiotropic genes related to the risk of cancer could prioritize drug targets, among all drugs treating a predisposing disease. We aim to develop a method to not only prioritize drug repurposing, but also to highlight shared etiology explaining repurposing. Methods We compile breast cancer's predisposing diseases from literature. For each predisposing disease, we use GWAS summary statistics to identify genes in loci showing genetic correlation with breast cancer. Then, we use a network approach to link these shared genes to canonical pathways, and similarly for all drugs treating the predisposing disease, we link their targets to pathways. In this manner, we are able to prioritize a list of drugs based on each predisposing disease, with each drug linked to a set of implicating pathways. Finally, we evaluate our recommendations against drugs currently under investigation for breast cancer. Results We identify 84 loci harboring mutations with positively correlated effects between breast cancer and its predisposing diseases; these contain 194 identified shared genes. Out of the 112 drugs indicated for the predisposing diseases, 76 drugs can be linked to shared genes via pathways (candidate drugs for repurposing). Fifteen out of these candidate drugs are already in advanced clinical trial phases or approved for breast cancer (OR = 9.28, p = 7.99e-03, one-sided Fisher's exact test), highlighting the ability of our approach to identify likely successful candidate drugs for repurposing. Conclusions Our novel approach accelerates drug repurposing for breast cancer by leveraging shared genetics with its known risk factors. The result provides 59 novel candidate drugs alongside biological insights supporting each recommendation.
PMID:38947022 | PMC:PMC11213186 | DOI:10.21203/rs.3.rs-4536370/v1
Corrigendum to "Discovery of therapeutic agents targeting PKLR for NAFLD using drug repositioning" [eBioMedicine, 2022;83:104214]
EBioMedicine. 2024 Jun 28;105:105224. doi: 10.1016/j.ebiom.2024.105224. Online ahead of print.
NO ABSTRACT
PMID:38943726 | DOI:10.1016/j.ebiom.2024.105224
The genetic architecture of biological age in nine human organ systems
Nat Aging. 2024 Jun 28. doi: 10.1038/s43587-024-00662-8. Online ahead of print.
ABSTRACT
Investigating the genetic underpinnings of human aging is essential for unraveling the etiology of and developing actionable therapies for chronic diseases. Here, we characterize the genetic architecture of the biological age gap (BAG; the difference between machine learning-predicted age and chronological age) across nine human organ systems in 377,028 participants of European ancestry from the UK Biobank. The BAGs were computed using cross-validated support vector machines, incorporating imaging, physical traits and physiological measures. We identify 393 genomic loci-BAG pairs (P < 5 × 10-8) linked to the brain, eye, cardiovascular, hepatic, immune, metabolic, musculoskeletal, pulmonary and renal systems. Genetic variants associated with the nine BAGs are predominantly specific to the respective organ system (organ specificity) while exerting pleiotropic links with other organ systems (interorgan cross-talk). We find that genetic correlation between the nine BAGs mirrors their phenotypic correlation. Further, a multiorgan causal network established from two-sample Mendelian randomization and latent causal variance models revealed potential causality between chronic diseases (for example, Alzheimer's disease and diabetes), modifiable lifestyle factors (for example, sleep duration and body weight) and multiple BAGs. Our results illustrate the potential for improving human organ health via a multiorgan network, including lifestyle interventions and drug repurposing strategies.
PMID:38942983 | DOI:10.1038/s43587-024-00662-8
Exploring the potential of drug repurposing for treating depression
Prog Mol Biol Transl Sci. 2024;207:79-105. doi: 10.1016/bs.pmbts.2024.03.037. Epub 2024 May 13.
ABSTRACT
Researchers are interested in drug repurposing or drug repositioning of existing pharmaceuticals because of rising costs and slower rates of new medication development. Other investigations that authorized these treatments used data from experimental research and off-label drug use. More research into the causes of depression could lead to more effective pharmaceutical repurposing efforts. In addition to the loss of neurotransmitters like serotonin and adrenaline, inflammation, inadequate blood flow, and neurotoxins are now thought to be plausible mechanisms. Because of these other mechanisms, repurposing drugs has resulted for treatment-resistant depression. This chapter focuses on therapeutic alternatives and their effectiveness in drug repositioning. Atypical antipsychotics, central nervous system stimulants, and neurotransmitter antagonists have investigated for possible repurposing. Nonetheless, extensive research is required to ensure their formulation, effectiveness, and regulatory compliance.
PMID:38942546 | DOI:10.1016/bs.pmbts.2024.03.037
Drug repurposing for fungal infections
Prog Mol Biol Transl Sci. 2024;207:59-78. doi: 10.1016/bs.pmbts.2024.04.002. Epub 2024 May 13.
ABSTRACT
The rise of multidrug-resistant bacteria is a well-recognized threat to world health, necessitating the implementation of effective treatments. This issue has been identified as a top priority on the global agenda by the World Health Organization. Certain strains, such as Candida glabrata, Candida krusei, Candida lusitaniae, Candida auris, select cryptococcal species, and opportunistic Aspergillus or Fusarium species, have significant intrinsic resistance to numerous antifungal medicines. This inherent resistance and subsequent suboptimal clinical outcomes underscore the critical imperative for enhanced therapeutic alternatives and management protocols. The challenge of effectively treating fungal infections, compounded by the protracted timelines involved in developing novel drugs, underscores the pressing need to explore alternative therapeutic avenues. Among these, drug repurposing emerges as a particularly promising and expeditious solution, providing cost-effective solutions and safety benefits. In the fight against life-threatening resistant fungal infections, the idea of repurposing existing medications has encouraged research into both established and new compounds as a last-resort therapy. This chapter seeks to provide a comprehensive overview of contemporary antifungal drugs, as well as their key resistance mechanisms. Additionally, it seeks to provide insight into the antimicrobial properties of non-traditional drugs, thereby offering a holistic perspective on the evolving landscape of antifungal therapeutics.
PMID:38942545 | DOI:10.1016/bs.pmbts.2024.04.002
Exploring cutting-edge strategies for drug repurposing in female cancers - An insight into the tools of the trade
Prog Mol Biol Transl Sci. 2024;207:355-415. doi: 10.1016/bs.pmbts.2024.05.002. Epub 2024 May 28.
ABSTRACT
Female cancers, which include breast and gynaecological cancers, represent a significant global health burden for women. Despite advancements in research pertinent to unearthing crucial pathological characteristics of these cancers, challenges persist in discovering potential therapeutic strategies. This is further exacerbated by economic burdens associated with de novo drug discovery and clinical intricacies such as development of drug resistance and metastasis. Drug repurposing, an innovative approach leveraging existing FDA-approved drugs for new indications, presents a promising avenue to expedite therapeutic development. Computational techniques, including virtual screening and analysis of drug-target-disease relationships, enable the identification of potential candidate drugs. Integration of diverse data types, such as omics and clinical information, enhances the precision and efficacy of drug repurposing strategies. Experimental approaches, including high-throughput screening assays, in vitro, and in vivo models, complement computational methods, facilitating the validation of repurposed drugs. This review highlights various target mining strategies based on analysis of differential gene expression, weighted gene co-expression, protein-protein interaction network, and host-pathogen interaction, among others. To unearth drug candidates, the technicalities of leveraging information from databases such as DrugBank, STITCH, LINCS, and ChEMBL, among others are discussed. Further in silico validation techniques encompassing molecular docking, pharmacophore modelling, molecular dynamic simulations, and ADMET analysis are elaborated. Overall, this review delves into the exploration of individual case studies to offer a wide perspective of the ever-evolving field of drug repurposing, emphasizing the multifaceted approaches and methodologies employed for the same to confront female cancers.
PMID:38942544 | DOI:10.1016/bs.pmbts.2024.05.002
Drug repurposing for regenerative medicine and cosmetics: Scientific, technological and economic issues
Prog Mol Biol Transl Sci. 2024;207:337-353. doi: 10.1016/bs.pmbts.2024.02.005. Epub 2024 May 11.
ABSTRACT
Regenerative medicine and cosmetics are currently two outstanding fields for drug discovery. Although many pharmaceutical products for regenerative medicine and cosmetics have received approval by official agencies, several challenges are still needed to overcome, especially financial and time issues. As a result, drug repositioning, which is the usage of previously approved drugs for new treatment, stands out as a promising approach to tackle these problems. Recently, increasing scientific evidence is collected to demonstrate the applicability of this novel method in the field of regenerative medicine and cosmetics. Experts in drug development have also taken advantage of novel technologies to discover new candidates for repositioning purposes following computational approach, one of two main approaches of drug repositioning. Therefore, numerous repurposed candidates have obtained approval to enter the market and have witnessed financial success such as minoxidil and fingolimod. The benefits of drug repositioning are undeniable for regenerative medicine and cosmetics. However, some aspects still need to be carefully considered regarding this method including actual effectiveness during clinical trials, patent regulations, data integration and analysis, publicly unavailable databases as well as environmental concerns and more effort are required to overcome these obstacles.
PMID:38942543 | DOI:10.1016/bs.pmbts.2024.02.005
Drug repurposing for metabolic disorders: Scientific, technological and economic issues
Prog Mol Biol Transl Sci. 2024;207:321-336. doi: 10.1016/bs.pmbts.2024.02.006. Epub 2024 May 11.
ABSTRACT
Obesity, diabetes, and other metabolic disorders place a huge burden on both the physical health and financial well-being of the community. While the need for effective treatment of metabolic disorders remains urgent and the reality is that traditional drug development involves high costs and a very long time with many pre-clinical and clinical trials, the need for drug repurposing has emerged as a potential alternative. Scientific evidence has shown the anti-diabetic and anti-obesity effects of old drugs, which were initially utilized for the treatment of inflammation, depression, infections, and even cancers. The drug library used modern technological methods to conduct drug screening. Computational molecular docking, genome-wide association studies, or omics data mining are advantageous and unavoidable methods for drug repurposing. Drug repurposing offers a promising avenue for economic efficiency in healthcare, especially for less common metabolic diseases, despite the need for rigorous research and validation. In this chapter, we aim to explore the scientific, technological, and economic issues surrounding drug repurposing for metabolic disorders. We hope to shed light on the potential of this approach and the challenges that need to be addressed to make it a viable option in the treatment of metabolic disorders, especially in the future fight against metabolic disorders.
PMID:38942542 | DOI:10.1016/bs.pmbts.2024.02.006
Drug repurposing for neurodegenerative diseases
Prog Mol Biol Transl Sci. 2024;207:249-319. doi: 10.1016/bs.pmbts.2024.03.035. Epub 2024 May 22.
ABSTRACT
Neurodegenerative diseases (NDDs) are neuronal problems that include the brain and spinal cord and result in loss of sensory and motor dysfunction. Common NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS) etc. The occurrence of these diseases increases with age and is one of the challenging problems among elderly people. Though, several scientific research has demonstrated the key pathologies associated with NDDs still the underlying mechanisms and molecular details are not well understood and need to be explored and this poses a lack of effective treatments for NDDs. Several lines of evidence have shown that NDDs have a high prevalence and affect more than a billion individuals globally but still, researchers need to work forward in identifying the best therapeutic target for NDDs. Thus, several researchers are working in the directions to find potential therapeutic targets to alter the disease pathology and treat the diseases. Several steps have been taken to identify the early detection of the disease and drug repurposing for effective treatment of NDDs. Moreover, it is logical that current medications are being evaluated for their efficacy in treating such disorders; therefore, drug repurposing would be an efficient, safe, and cost-effective way in finding out better medication. In the current manuscript we discussed the utilization of drugs that have been repurposed for the treatment of AD, PD, HD, MS, and ALS.
PMID:38942541 | DOI:10.1016/bs.pmbts.2024.03.035
Drug repurposing for rare diseases
Prog Mol Biol Transl Sci. 2024;207:231-247. doi: 10.1016/bs.pmbts.2024.03.034. Epub 2024 May 17.
ABSTRACT
Repurposing drugs for rare diseases is a creative and cost-efficient method for creating new treatment options for certain conditions. This technique entails repurposing existing pharmaceuticals for new uses by utilizing established information regarding pharmacological characteristics, modes of operation, safety profiles, and interactions with biological systems. Creating new treatments for uncommon diseases is frequently difficult because of factors including small patient groups, disease intricacy, and insufficient knowledge of disease pathobiology. Drug repurposing is a more efficient and cost-effective approach compared to developing new drugs from scratch. It typically requires collaboration among academia, pharmaceutical firms, and patient advocacy groups.
PMID:38942540 | DOI:10.1016/bs.pmbts.2024.03.034
Drug repurposing for parasitic protozoan diseases
Prog Mol Biol Transl Sci. 2024;207:23-58. doi: 10.1016/bs.pmbts.2024.05.001. Epub 2024 May 16.
ABSTRACT
Protozoan parasites are major hazards to human health, society, and the economy, especially in equatorial regions of the globe. Parasitic diseases, including leishmaniasis, malaria, and others, contribute towards majority of morbidity and mortality. Around 1.1 million people die from these diseases annually. The lack of licensed vaccinations worsens the worldwide impact of these diseases, highlighting the importance of safe and effective medications for their prevention and treatment. However, the appearance of drug resistance in parasites continuously affects the availability of medications. The demand for novel drugs motivates global antiparasitic drug discovery research, necessitating the implementation of many innovative ways to maintain a continuous supply of promising molecules. Drug repurposing has come out as a compelling tool for drug development, offering a cost-effective and efficient alternative to standard de novo approaches. A thorough examination of drug repositioning candidates revealed that certain drugs may not benefit significantly from their original indications. Still, they may exhibit more pronounced effects in other disorders. Furthermore, certain medications can produce a synergistic effect, resulting in enhanced therapeutic effectiveness when given together. In this chapter, we outline the approaches employed in drug repurposing (sometimes referred to as drug repositioning), propose novel strategies to overcome these hurdles and fully exploit the promise of drug repurposing. We highlight a few major human protozoan diseases and a range of exemplary drugs repurposed for various protozoan infections, providing excellent outcomes for each disease.
PMID:38942539 | DOI:10.1016/bs.pmbts.2024.05.001
Drug repurposing for respiratory infections
Prog Mol Biol Transl Sci. 2024;207:207-230. doi: 10.1016/bs.pmbts.2024.03.033. Epub 2024 May 23.
ABSTRACT
Respiratory infections such as Coronavirus disease 2019 are a substantial worldwide health challenge, frequently resulting in severe sickness and death, especially in susceptible groups. Conventional drug development for respiratory infections faces obstacles such as extended timescales, substantial expenses, and the rise of resistance to current treatments. Drug repurposing is a potential method that has evolved to quickly find and reuse existing medications for treating respiratory infections. Drug repurposing utilizes medications previously approved for different purposes, providing a cost-effective and time-efficient method to tackle pressing medical needs. This chapter summarizes current progress and obstacles in repurposing medications for respiratory infections, focusing on notable examples of repurposed pharmaceuticals and their probable modes of action. The text also explores the significance of computational approaches, high-throughput screening, and preclinical investigations in identifying potential candidates for repurposing. The text delves into the significance of regulatory factors, clinical trial structure, and actual data in confirming the effectiveness and safety of repurposed medications for respiratory infections. Drug repurposing is a valuable technique for quickly increasing the range of treatments for respiratory infections, leading to better patient outcomes and decreasing the worldwide disease burden.
PMID:38942538 | DOI:10.1016/bs.pmbts.2024.03.033
Drug repurposing in MASLD and MASH-cirrhosis: Targets and treatment approaches based on pathways analysis
Prog Mol Biol Transl Sci. 2024;207:193-206. doi: 10.1016/bs.pmbts.2024.01.006. Epub 2024 May 11.
ABSTRACT
Designing and predicting novel drug targets to accelerate drug discovery for treating metabolic dysfunction-associated steatohepatitis (MASH)-cirrhosis is a challenging task. The presence of superimposed (nested) and co-occurring clinical and histological phenotypes, namely MASH and cirrhosis, may partly explain this. Thus, in this scenario, each sub-phenotype has its own set of pathophysiological mechanisms, triggers, and processes. Here, we used gene/protein and set enrichment analysis to predict druggable pathways for the treatment of MASH-cirrhosis. Our findings indicate that the pathogenesis of MASH-cirrhosis can be explained by perturbations in multiple, simultaneous, and overlapping molecular processes. In this scenario, each sub-phenotype has its own set of pathophysiological mechanisms, triggers, and processes. Therefore, we used systems biology modeling to provide evidence that MASH and cirrhosis paradoxically present unique and distinct as well as common disease mechanisms, including a network of molecular targets. More importantly, pathway analysis revealed straightforward results consistent with modulation of the immune response, cell cycle control, and epigenetic regulation. In conclusion, the selection of potential therapies for MASH-cirrhosis should be guided by a better understanding of the underlying biological processes and molecular perturbations that progressively damage liver tissue and its underlying structure. Therapeutic options for patients with MASH may not necessarily be of choice for MASH cirrhosis. Therefore, the biology of the disease and the processes associated with its natural history must be at the forefront of the decision-making process.
PMID:38942537 | DOI:10.1016/bs.pmbts.2024.01.006
The Identification of Potential Drugs for Dengue Hemorrhagic Fever: Network-Based Drug Reprofiling Study
JMIR Bioinform Biotechnol. 2023 May 9;4:e37306. doi: 10.2196/37306.
ABSTRACT
BACKGROUND: Dengue fever can progress to dengue hemorrhagic fever (DHF), a more serious and occasionally fatal form of the disease. Indicators of serious disease arise about the time the fever begins to reduce (typically 3 to 7 days following symptom onset). There are currently no effective antivirals available. Drug repurposing is an emerging drug discovery process for rapidly developing effective DHF therapies. Through network pharmacology modeling, several US Food and Drug Administration (FDA)-approved medications have already been researched for various viral outbreaks.
OBJECTIVE: We aimed to identify potentially repurposable drugs for DHF among existing FDA-approved drugs for viral attacks, symptoms of viral fevers, and DHF.
METHODS: Using target identification databases (GeneCards and DrugBank), we identified human-DHF virus interacting genes and drug targets against these genes. We determined hub genes and potential drugs with a network-based analysis. We performed functional enrichment and network analyses to identify pathways, protein-protein interactions, tissues where the gene expression was high, and disease-gene associations.
RESULTS: Analyzing virus-host interactions and therapeutic targets in the human genome network revealed 45 repurposable medicines. Hub network analysis of host-virus-drug associations suggested that aspirin, captopril, and rilonacept might efficiently treat DHF. Gene enrichment analysis supported these findings. According to a Mayo Clinic report, using aspirin in the treatment of dengue fever may increase the risk of bleeding complications, but several studies from around the world suggest that thrombosis is associated with DHF. The human interactome contains the genes prostaglandin-endoperoxide synthase 2 (PTGS2), angiotensin converting enzyme (ACE), and coagulation factor II, thrombin (F2), which have been documented to have a role in the pathogenesis of disease progression in DHF, and our analysis of most of the drugs targeting these genes showed that the hub gene module (human-virus-drug) was highly enriched in tissues associated with the immune system (P=7.29 × 10-24) and human umbilical vein endothelial cells (P=1.83 × 10-20); this group of tissues acts as an anticoagulant barrier between the vessel walls and blood. Kegg analysis showed an association with genes linked to cancer (P=1.13 × 10-14) and the advanced glycation end products-receptor for advanced glycation end products signaling pathway in diabetic complications (P=3.52 × 10-14), which indicates that DHF patients with diabetes and cancer are at risk of higher pathogenicity. Thus, gene-targeting medications may play a significant part in limiting or worsening the condition of DHF patients.
CONCLUSIONS: Aspirin is not usually prescribed for dengue fever because of bleeding complications, but it has been reported that using aspirin in lower doses is beneficial in the management of diseases with thrombosis. Drug repurposing is an emerging field in which clinical validation and dosage identification are required before the drug is prescribed. Further retrospective and collaborative international trials are essential for understanding the pathogenesis of this condition.
PMID:38935956 | DOI:10.2196/37306
Inhibition of Clostridioides difficile toxins TcdA and TcdB by the amiodarone derivative dronedarone
Naunyn Schmiedebergs Arch Pharmacol. 2024 Jun 27. doi: 10.1007/s00210-024-03248-8. Online ahead of print.
ABSTRACT
The dreaded nosocomial pathogen Clostridioides difficile causes diarrhea and severe inflammation of the colon, especially after the use of certain antibiotics. The bacterium releases two deleterious toxins, TcdA and TcdB, into the gut, which are mainly responsible for the symptoms of C. difficile-associated diseases (CDADs). Both toxins are capable of entering independently into various host cells, e.g., intestinal epithelial cells, where they mono-O-glucosylate and inactivate Rho and/or Ras GTPases, important molecular switches for various cellular functions. We have shown recently that the cellular uptake of the Clostridioides difficile toxins TcdA and TcdB (TcdA/B) is inhibited by the licensed class III antiarrhythmic drug amiodarone (Schumacher et al. in Gut Microbes 15(2):2256695, 2023). Mechanistically, amiodarone delays the cellular uptake of both toxins into target cells most likely by lowering membrane cholesterol levels and by interfering with membrane insertion and/or pore formation of TcdA/B. However, serious side effects, such as thyroid dysfunction and severe pulmonary fibrosis, limit the clinical use of amiodarone in patients with C. difficile infection (CDI). For that reason, we aimed to test whether dronedarone, an amiodarone derivative with a more favorable side effect profile, is also capable of inhibiting TcdA/B. To this end, we tested in vitro with various methods the impact of dronedarone on the intoxication of Vero and CaCo-2 cells with TcdA/B. Importantly, preincubation of both cell lines with dronedarone for 1 h at concentrations in the low micromolar range rendered the cells less sensitive toward TcdA/B-induced Rac1 glucosylation, collapse of the actin cytoskeleton, cell rounding, and cytopathic effects, respectively. Our study points toward the possibility of repurposing the already approved drug dronedarone as the preferable safer-to-use alternative to amiodarone for inhibiting TcdA/B in the (supportive) therapy of CDADs.
PMID:38935126 | DOI:10.1007/s00210-024-03248-8
Optimizing in silico drug discovery: simulation of connected differential expression signatures and applications to benchmarking
Brief Bioinform. 2024 May 23;25(4):bbae299. doi: 10.1093/bib/bbae299.
ABSTRACT
BACKGROUND: We present a novel simulation method for generating connected differential expression signatures. Traditional methods have struggled with the lack of reliable benchmarking data and biases in drug-disease pair labeling, limiting the rigorous benchmarking of connectivity-based approaches.
OBJECTIVE: Our aim is to develop a simulation method based on a statistical framework that allows for adjustable levels of parametrization, especially the connectivity, to generate a pair of interconnected differential signatures. This could help to address the issue of benchmarking data availability for connectivity-based drug repurposing approaches.
METHODS: We first detailed the simulation process and how it reflected real biological variability and the interconnectedness of gene expression signatures. Then, we generated several datasets to enable the evaluation of different existing algorithms that compare differential expression signatures, providing insights into their performance and limitations.
RESULTS: Our findings demonstrate the ability of our simulation to produce realistic data, as evidenced by correlation analyses and the log2 fold-change distribution of deregulated genes. Benchmarking reveals that methods like extreme cosine similarity and Pearson correlation outperform others in identifying connected signatures.
CONCLUSION: Overall, our method provides a reliable tool for simulating differential expression signatures. The data simulated by our tool encompass a wide spectrum of possibilities to challenge and evaluate existing methods to estimate connectivity scores. This may represent a critical gap in connectivity-based drug repurposing research because reliable benchmarking data are essential for assessing and advancing in the development of new algorithms. The simulation tool is available as a R package (General Public License (GPL) license) at https://github.com/cgonzalez-gomez/cosimu.
PMID:38935068 | DOI:10.1093/bib/bbae299
The Potential of Dutasteride for Treating Multidrug-Resistant <em>Candida auris</em> Infection
Pharmaceutics. 2024 Jun 14;16(6):810. doi: 10.3390/pharmaceutics16060810.
ABSTRACT
Novel antifungal drugs are urgently needed to treat candidiasis caused by the emerging fungal multidrug-resistant pathogen Candida auris. In this study, the most cost-effective drug repurposing technology was adopted to identify an appropriate option among the 1615 clinically approved drugs with anti-C. auris activity. High-throughput virtual screening of 1,3-beta-glucanosyltransferase inhibitors was conducted, followed by an analysis of the stability of 1,3-beta-glucanosyltransferase drug complexes and 1,3-beta-glucanosyltransferase-dutasteride metabolite interactions and the confirmation of their activity in biofilm formation and planktonic growth. The analysis identified dutasteride, a drug with no prior antifungal indications, as a potential medication for anti-auris activity in seven clinical C. auris isolates from Saudi Arabian patients. Dutasteride was effective at inhibiting biofilm formation by C. auris while also causing a significant reduction in planktonic growth. Dutasteride treatment resulted in disruption of the cell membrane, the lysis of cells, and crushed surfaces on C. auris, and significant (p-value = 0.0057) shrinkage in the length of C. auris was noted at 100,000×. In conclusion, the use of repurposed dutasteride with anti-C. auris potential can enable rapid recovery in patients with difficult-to-treat candidiasis caused by C. auris and reduce the transmission of nosocomial infection.
PMID:38931930 | DOI:10.3390/pharmaceutics16060810
Trametinib, a MEK1/2 Inhibitor, Protects Mice from Cisplatin- and Noise-Induced Hearing Loss
Pharmaceuticals (Basel). 2024 Jun 5;17(6):735. doi: 10.3390/ph17060735.
ABSTRACT
Hearing loss is one of the most common types of disability; however, there is only one FDA-approved drug to prevent any type of hearing loss. Treatment with the highly effective chemotherapy agent, cisplatin, and exposure to high-decibel noises are two of the most common causes of hearing loss. The mitogen-activated protein kinase (MAPK) pathway, a phosphorylation cascade consisting of RAF, MEK1/2, and ERK1/2, has been implicated in both types of hearing loss. Pharmacologically inhibiting BRAF or ERK1/2 is protective against noise- and cisplatin-induced hearing loss in multiple mouse models. Trametinib, a MEK1/2 inhibitor, protects from cisplatin-induced outer hair cell death in mouse cochlear explants; however, to the best of our knowledge, inhibiting MEK1/2 has not yet been shown to be protective against hearing loss in vivo. In this study, we demonstrate that trametinib protects against cisplatin-induced hearing loss in a translationally relevant mouse model and does not interfere with cisplatin's tumor-killing efficacy in cancer cell lines. Higher doses of trametinib were toxic to mice when combined with cisplatin, but lower doses of the drug were protective against hearing loss without any known toxicity. Trametinib also protected mice from noise-induced hearing loss and synaptic damage. This study shows that MEK1/2 inhibition protects against both insults of hearing loss, as well as that targeting all three kinases in the MAPK pathway protects mice from cisplatin- and noise-induced hearing loss.
PMID:38931403 | DOI:10.3390/ph17060735
Antibacterial Prodrugs to Overcome Bacterial Antimicrobial Resistance
Pharmaceuticals (Basel). 2024 Jun 1;17(6):718. doi: 10.3390/ph17060718.
ABSTRACT
Antimicrobial resistance (AMR) is an increasingly concerning phenomenon that requires urgent attention because it poses a threat to human and animal health. Bacteria undergo continuous evolution, acquiring novel resistance mechanisms in addition to their intrinsic ones. Multidrug-resistant and extensively drug-resistant bacterial strains are rapidly emerging, and it is expected that bacterial AMR will claim the lives of 10 million people annually by 2050. Consequently, the urgent need for the development of new therapeutic agents with new modes of action is evident. The antibacterial prodrug approach, a strategy that includes drug repurposing and derivatization, integration of nanotechnology, and exploration of natural products, is highlighted in this review. Thus, this publication aims at compiling the most pertinent research in the field, spanning from 2021 to 2023, offering the reader a comprehensive insight into the AMR phenomenon and new strategies to overcome it.
PMID:38931385 | DOI:10.3390/ph17060718