Drug Repositioning
Integrated edge information and pathway topology for drug-disease associations
iScience. 2024 May 18;27(7):110025. doi: 10.1016/j.isci.2024.110025. eCollection 2024 Jul 19.
ABSTRACT
Drug repurposing is a promising approach to find new therapeutic indications for approved drugs. Many computational approaches have been proposed to prioritize candidate anticancer drugs by gene or pathway level. However, these methods neglect the changes in gene interactions at the edge level. To address the limitation, we develop a computational drug repurposing method (iEdgePathDDA) based on edge information and pathway topology. First, we identify drug-induced and disease-related edges (the changes in gene interactions) within pathways by using the Pearson correlation coefficient. Next, we calculate the inhibition score between drug-induced edges and disease-related edges. Finally, we prioritize drug candidates according to the inhibition score on all disease-related edges. Case studies show that our approach successfully identifies new drug-disease pairs based on CTD database. Compared to the state-of-the-art approaches, the results demonstrate our method has the superior performance in terms of five metrics across colorectal, breast, and lung cancer datasets.
PMID:38974972 | PMC:PMC11226970 | DOI:10.1016/j.isci.2024.110025
Targeting Nrf2/HO-1 and NF-κB/TNF-α signaling pathways with empagliflozin protects against atrial fibrillation-induced acute kidney injury in rats
Toxicology. 2024 Jul 3:153879. doi: 10.1016/j.tox.2024.153879. Online ahead of print.
ABSTRACT
A bidirectional relationship exists between atrial fibrillation (AF) and kidney function. Uncontrolled AF may lead to kidney injury, whereas renal dysfunction may contribute to AF initiation and maintenance. This study aimed to investigate the protective effect of the sodium glucose cotransporter-2 inhibitor empagliflozin (EMPA) on acute kidney injury (AKI) associated with AF induced by acetylcholine and calcium chloride (ACh/CaCl2) in rats and elucidate the potential underlying mechanism. Rats were randomly divided as follows: control (CTRL) group: administered vehicles only; AF group: intravenously injected 1ml/kg of an ACh/CaCl2 mixture for seven days to induce AF; EMPA group: orally administered EMPA (30mg/kg) for seven days; AF+EMPA10 and AF+EMPA30 groups: co-administered the induction mixture and EMPA (10 and 30mg/kg, respectively) for seven days. Our results showed that EMPA (10 and 30mg/kg) effectively maintained kidney function and demonstrated a significant antioxidant potential. EMPA also suppressed AF-induced renal tubulointerstitial injury and fibrotic changes concurrently with reducing renal levels of the pro-inflammatory cytokines tumour necrosis factor-α (TNF-α) and interleukin-6, as well as the pro-fibrotic marker transforming growth factor beta-1 and collagen type I. Mechanistically, EMPA boosted nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) renal tissue expression while repressing nuclear factor kappa B (NF-κB) activation. In addition, these beneficial effects of EMPA on kidneys were concurrent with its ability to effectively inhibit AF-related electrocardiographic changes, reduce incidence and duration of AF episodes, and markedly suppress serum B-type natriuretic peptide and C-reactive protein levels. In conclusion, EMPA protected against AKI associated with AF induced by ACh/CaCl2 in rats through simultaneous modulation of the Nrf2/HO-1 and the NF-κB/TNF-α signaling pathways, exerting antioxidant, anti-inflammatory, and anti-fibrotic effects.
PMID:38971551 | DOI:10.1016/j.tox.2024.153879
Preclinical 3D model screening reveals digoxin as an effective therapy for a rare and aggressive type of endometrial cancer
Gynecol Oncol. 2024 Jul 5;188:162-168. doi: 10.1016/j.ygyno.2024.06.029. Online ahead of print.
ABSTRACT
OBJECTIVE: Dedifferentiated endometrial carcinoma (DDEC) characterized by SWItch/Sucrose Non-Fermentable (SWI/SNF) complex inactivation is a highly aggressive type of endometrial cancer without effective systemic therapy options. Its uncommon nature and aggressive disease trajectory pose significant challenges for therapeutic progress. To address this obstacle, we focused on developing preclinical models tailored to this tumor type and established patient tumor-derived three-dimensional (3D) spheroid models of DDEC.
METHODS: High-throughput drug repurposing screens were performed on in vitro 3D spheroid models of DDEC cell lines (SMARCA4-inactivated DDEC-1 and ARID1A/ARID1B co-inactivated DDEC-2). The dose-response relationships of the identified candidate drugs were evaluated in vitro, followed by in vivo evaluation using xenograft models of DDEC-1 and DDEC-2.
RESULTS: Drug screen in 3D models identified multiple cardiac glycosides including digoxin and digitoxin as candidate drugs in both DDEC-1 and DDEC-2. Subsequent in vitro dose-response analyses confirmed the inhibitory activity of digoxin and digitoxin with both drugs showing lower IC50 in DDEC cells compared to non-DDEC endometrial cancer cells. In in vivo xenograft models, digoxin significantly suppressed the growth of DDEC tumors at clinically relevant serum concentrations.
CONCLUSION: Using biologically precise preclinical models of DDEC derived from patient tumor samples, our study identified digoxin as an effective drug in suppressing DDEC tumor growth. These findings provide compelling preclinical evidence for the use of digoxin as systemic therapy for SWI/SNF-inactivated DDEC, which may also be applicable to other SWI/SNF-inactivated tumor types.
PMID:38970843 | DOI:10.1016/j.ygyno.2024.06.029
Fine mapping of candidate effector genes for heart rate
Hum Genet. 2024 Jul 6. doi: 10.1007/s00439-024-02684-z. Online ahead of print.
ABSTRACT
An elevated resting heart rate (RHR) is associated with increased cardiovascular mortality. Genome-wide association studies (GWAS) have identified > 350 loci. Uniquely, in this study we applied genetic fine-mapping leveraging tissue specific chromatin segmentation and colocalization analyses to identify causal variants and candidate effector genes for RHR. We used RHR GWAS summary statistics from 388,237 individuals of European ancestry from UK Biobank and performed fine mapping using publicly available genomic annotation datasets. High-confidence causal variants (accounting for > 75% posterior probability) were identified, and we collated candidate effector genes using a multi-omics approach that combined evidence from colocalisation with molecular quantitative trait loci (QTLs), and long-range chromatin interaction analyses. Finally, we performed druggability analyses to investigate drug repurposing opportunities. The fine mapping pipeline indicated 442 distinct RHR signals. For 90 signals, a single variant was identified as a high-confidence causal variant, of which 22 were annotated as missense. In trait-relevant tissues, 39 signals colocalised with cis-expression QTLs (eQTLs), 3 with cis-protein QTLs (pQTLs), and 75 had promoter interactions via Hi-C. In total, 262 candidate genes were highlighted (79% had promoter interactions, 15% had a colocalised eQTL, 8% had a missense variant and 1% had a colocalised pQTL), and, for the first time, enrichment in nervous system pathways. Druggability analyses highlighted ACHE, CALCRL, MYT1 and TDP1 as potential targets. Our genetic fine-mapping pipeline prioritised 262 candidate genes for RHR that warrant further investigation in functional studies, and we provide potential therapeutic targets to reduce RHR and cardiovascular mortality.
PMID:38969939 | DOI:10.1007/s00439-024-02684-z
Patient-derived induced pluripotent stem cells: Tools to advance the understanding and drug discovery in Major Depressive Disorder
Psychiatry Res. 2024 Jul 4;339:116033. doi: 10.1016/j.psychres.2024.116033. Online ahead of print.
ABSTRACT
Major Depressive Disorder (MDD) is a pleomorphic disease with substantial patterns of symptoms and severity with mensurable deficits in several associated domains. The broad spectrum of phenotypes observed in patients diagnosed with depressive disorders is the reflection of a very complex disease where clusters of biological and external factors (e.g., response/processing of life events, intrapsychic factors) converge and mediate pathogenesis, clinical presentation/phenotypes and trajectory. Patient-derived induced pluripotent stem cells (iPSCs) enable their differentiation into specialised cell types in the central nervous system to explore the pathophysiological substrates of MDD. These models may complement animal models to advance drug discovery and identify therapeutic approaches, such as cell therapy, drug repurposing, and elucidation of drug metabolism, toxicity, and mechanisms of action at the molecular/cellular level, to pave the way for precision psychiatry. Despite the remarkable scientific and clinical progress made over the last few decades, the disease is still poorly understood, the incidence and prevalence continue to increase, and more research is needed to meet clinical demands. This review aims to summarise and provide a critical overview of the research conducted thus far using patient-derived iPSCs for the modelling of psychiatric disorders, with a particular emphasis on MDD.
PMID:38968917 | DOI:10.1016/j.psychres.2024.116033
Drug repositioning identifies salvinorin A and deacetylgedunin (DCG) enriched plant extracts as novel inhibitors of Mpro, RBD-ACE2 and TMPRRS2 proteins
RSC Adv. 2024 Jul 4;14(29):21203-21212. doi: 10.1039/d4ra02593h. eCollection 2024 Jun 27.
ABSTRACT
The coronavirus disease 2019 (COVID-19) has spread worldwide with severe health, social, and economic repercussions. Although vaccines have significantly reduced the severity of symptoms and deaths, alternative medications derived from natural products (NPs) are vital to further decrease fatalities, especially in regions with low vaccine uptake. When paired with the latest computational developments, NPs, which have been used to cure illnesses and infections for thousands of years, constitute a renewed resource for drug discovery. In the present report, a combination of computational and in vitro methods reveals the repositioning of NPs and identifies salvinorin A and deacetylgedunin (DCG) as having potential anti-SARS-CoV-2 activities. Salvinorin A was found both in silico and in vitro to inhibit both SARS-CoV-2 spike/host ACE2 protein interactions, consistent with blocking viral cell entry, and well as live virus replication. Plant extracts from Azadirachta indica and Cedrela odorata, which contain high levels of DCG, inhibited viral cell replication by targeting the main protease (Mpro) and/or inhibited viral cell entry by blocking the interaction between spike RBD-ACE2 protein at concentrations lower than salvinorin A. Our findings suggest that salvinorin A represent promising chemical starting points where further optimization may result in effective natural product-derived and potent anti-SARS-CoV-2 inhibitors to supplement vaccine efforts.
PMID:38966817 | PMC:PMC11223729 | DOI:10.1039/d4ra02593h
In-vivo neuronal dysfunction by Aβ and tau overlaps with brain-wide inflammatory mechanisms in Alzheimer's disease
Front Aging Neurosci. 2024 Jun 19;16:1383163. doi: 10.3389/fnagi.2024.1383163. eCollection 2024.
ABSTRACT
The molecular mechanisms underlying neuronal dysfunction in Alzheimer's disease (AD) remain uncharacterized. Here, we identify genes, molecular pathways and cellular components associated with whole-brain dysregulation caused by amyloid-beta (Aβ) and tau deposits in the living human brain. We obtained in-vivo resting-state functional MRI (rs-fMRI), Aβ- and tau-PET for 47 cognitively unimpaired and 16 AD participants from the Translational Biomarkers in Aging and Dementia cohort. Adverse neuronal activity impacts by Aβ and tau were quantified with personalized dynamical models by fitting pathology-mediated computational signals to the participant's real rs-fMRIs. Then, we detected robust brain-wide associations between the spatial profiles of Aβ-tau impacts and gene expression in the neurotypical transcriptome (Allen Human Brain Atlas). Within the obtained distinctive signature of in-vivo neuronal dysfunction, several genes have prominent roles in microglial activation and in interactions with Aβ and tau. Moreover, cellular vulnerability estimations revealed strong association of microglial expression patterns with Aβ and tau's synergistic impact on neuronal activity (q < 0.001). These results further support the central role of the immune system and neuroinflammatory pathways in AD pathogenesis. Neuronal dysregulation by AD pathologies also associated with neurotypical synaptic and developmental processes. In addition, we identified drug candidates from the vast LINCS library to halt or reduce the observed Aβ-tau effects on neuronal activity. Top-ranked pharmacological interventions target inflammatory, cancer and cardiovascular pathways, including specific medications undergoing clinical evaluation in AD. Our findings, based on the examination of molecular-pathological-functional interactions in humans, may accelerate the process of bringing effective therapies into clinical practice.
PMID:38966801 | PMC:PMC11223503 | DOI:10.3389/fnagi.2024.1383163
Repurposing effect of cardiovascular-metabolic drug to increase lifespan: a systematic review of animal studies and current clinical trial progress
Front Pharmacol. 2024 Jun 20;15:1373458. doi: 10.3389/fphar.2024.1373458. eCollection 2024.
ABSTRACT
With the increase in life expectancy, aging has emerged as a significant health concern. Due to its various mechanisms of action, cardiometabolic drugs are often repurposed for other indications, including aging. This systematic review analyzed and highlighted the repositioning potential of cardiometabolic drugs to increase lifespan as an aging parameter in animal studies and supplemented by information from current clinical trial registries. Systematic searching in animal studies was performed based on PICO: "animal," "cardiometabolic drug," and "lifespan." All clinical trial registries were also searched from the WHO International Clinical Trial Registry Platform (ICTRP). Analysis of 49 animal trials and 10 clinical trial registries show that various cardiovascular and metabolic drugs have the potential to target lifespan. Metformin, acarbose, and aspirin are the three most studied drugs in animal trials. Aspirin and acarbose are the promising ones, whereas metformin exhibits various results. In clinical trial registries, metformin, omega-3 fatty acid, acarbose, and atorvastatin are currently cardiometabolic drugs that are repurposed to target aging. Published clinical trial results show great potential for omega-3 and metformin in healthspan. Systematic Review Registration: crd.york.ac.uk/prospero/display_record.php?RecordID=457358, identifier: CRD42023457358.
PMID:38966557 | PMC:PMC11223003 | DOI:10.3389/fphar.2024.1373458
Repurposing FDA-approved drugs to treat chemical weapon toxicities: Interactive case studies for trainees
Pharmacol Res Perspect. 2024 Aug;12(4):e1229. doi: 10.1002/prp2.1229.
ABSTRACT
The risk of a terrorist attack in the United States has created challenges on how to effectively treat toxicities that result from exposure to chemical weapons. To address this concern, the United States has organized a trans-agency initiative across academia, government, and industry to identify drugs to treat tissue injury resulting from exposure to chemical threat agents. We sought to develop and evaluate an interactive educational session that provides hands-on instruction on how to repurpose FDA-approved drugs as therapeutics to treat toxicity from exposure to chemical weapons. As part of the Rutgers Summer Undergraduate Research Fellowship program, 23 undergraduate students participated in a 2-h session that included: (1) an overview of chemical weapon toxicities, (2) a primer on pharmacology principles, and (3) an interactive session where groups of students were provided lists of FDA-approved drugs to evaluate potential mechanisms of action and suitability as countermeasures for four chemical weapon case scenarios. The interactive session culminated in a competition for the best grant "sales pitch." From this interactive training, students improved their understanding of (1) the ability of chemical weapons to cause long-term toxicities, (2) impact of route of administration and exposure scenario on drug efficacy, and (3) re-purposing FDA-approved drugs to treat disease from chemical weapon exposure. These findings demonstrated that an interactive training exercise can provide students with new insights into drug development for chemical threat agent toxicities.
PMID:38965070 | DOI:10.1002/prp2.1229
Celecoxib exhibits antifungal effect against Paracoccidioides brasiliensis both directly and indirectly by activating neutrophil responses
Int Immunopharmacol. 2024 Jul 3;138:112606. doi: 10.1016/j.intimp.2024.112606. Online ahead of print.
ABSTRACT
BACKGROUND: Celecoxib, an anti-inflammatory drug, combined therapies using antimicrobials and immune modulator drugs are being studied.
OBJECTIVE: To assess whether Celecoxib has direct in vitro antifungal effect against the Paracoccidioides brasiliensis, the causative agent of Paracoccidioidomycosis-(PCM) and also if it improves the in vivo activity of neutrophils-(PMN) in an experimental murine subcutaneous-(air pouch) model of the disease.
METHODS: The antifungal activity of Celecoxib(6 mg/mL) on P. brasiliensis-(Pb18) was evaluated using the microdilution technique. Splenocytes co-cultured with Pb18 and treated with Celecoxib(6 mg/mL) were co-cultured for 24, 48 and 72-hours. Swiss mice were inoculated with Pb18 and treated with Celecoxib(6 mg/kg) in the subcutaneous air pouch. Neutrophils were collected from the air pouch. Mitochondrial activity, reactive oxygen production, catalase, peroxidase, cytokines and chemokines, nitrogen species, total protein, microbicidal activity of PMNs and viable Pb18 cells numbers were analyzed.
RESULTS: Celecoxib had no cytotoxic effect on splenocytes co-cultured with Pb18, but had a marked direct antifungal effect, inhibiting fungal growth both in vitro and in vivo. Celecoxib interaction with immune system cells in the air pouch, it leads to activation of PMNs, as confirmed by several parameters (mitochondrial activity, reactive oxygen species, peroxidase, KC and IL-6 increase, killing constant and phagocytosis). Celecoxib was able to reduce IL-4, IL-10 and IL-12 cytokine production. The number of recovered viable Pb18 decreased dramatically.
CONCLUSIONS: This is the first report of the direct antifungal activity of Celecoxib against P. brasiliensis. The use of Celecoxib opens a new possibility for future treatment of PCM.
PMID:38963980 | DOI:10.1016/j.intimp.2024.112606
Antimicrobial Delivery Using Metallophore-Responsive Dynamic Nanocarriers
ACS Appl Bio Mater. 2024 Jul 4. doi: 10.1021/acsabm.4c00619. Online ahead of print.
ABSTRACT
The increasing prevalence of multidrug-resistant (MDR) pathogens has promoted the development of innovative approaches, such as drug repurposing, synergy, and efficient delivery, in complement to traditional antibiotics. In this study, we present an approach based on biocompatible nanocarriers containing antimicrobial cations and known antibiotics. The matrices were prepared by coordinating GaIII or InIII to formulations of chitosan/tripolyphosphate or catechol-functionalized chitosan with or without encapsulated antibiotics, yielding particles of 100-200 nm in hydrodynamic diameter. MDR clinical isolates of Pseudomonas aeruginosa were found to be effectively inhibited by the nanocarriers under nutrient-limiting conditions. Fractional inhibitory concentration (FIC) indices revealed that cation- and antibiotic-encapsulated nanomatrices were effective against both Gram-negative and Gram-positive pathogens. Metallophores, such as deferoxamine (DFO), were probed to facilitate the sequestration and transport of the antimicrobial cations GaIII or InIII. Although the antimicrobial activities were less significant with DFO, the eradication of biofilm-associated bacteria showed promising trends against P. aeruginosa and Staphylococcus epidermidis. Interestingly, indium-containing compounds showed enhanced activity on biofilm formation and eradication, neutralizing P. aeruginosa under Fe-limiting conditions. In particular, InIII-cross-linked catechol-modified chitosan matrices were able to inhibit pathogenic growth together with DFO. The nanocarriers showed low cytotoxicity toward A549 cells and improvable CC50 values with NIH/3T3 cells.
PMID:38963757 | DOI:10.1021/acsabm.4c00619
Exploring the binding dynamics of covalent inhibitors within active site of PL<sup>pro</sup> in SARS-CoV-2
Comput Biol Chem. 2024 Jun 23;112:108132. doi: 10.1016/j.compbiolchem.2024.108132. Online ahead of print.
ABSTRACT
In the global fight against the COVID-19 pandemic caused by the highly transmissible SARS-CoV-2 virus, the search for potent medications is paramount. With a focused investigation on the SARS-CoV-2 papain-like protease (PLpro) as a promising therapeutic target due to its pivotal role in viral replication and immune modulation, the catalytic triad of PLpro comprising Cys111, His272, and Asp286, highlights Cys111 as an intriguing nucleophilic center for potential covalent bonds with ligands. The detailed analysis of the binding site unveils crucial interactions with both hydrophobic and polar residues, demonstrating the structural insights of the cavity and deepening our understanding of its molecular landscape. The sequence of PLpro among variants of concern (Alpha, Beta, Gamma, Delta and Omicron) and the recent variant of interest, JN.1, remains conserved with no mutations at the active site. Moreover, a thorough exploration of apo, non-covalently bound, and covalently bound PLpro conformations exposes significant conformational changes in loop regions, offering invaluable insights into the intricate dynamics of ligand-protein complex formation. Employing strategic in silico medication repurposing, this study swiftly identifies potential molecules for target inhibition. Within the domain of covalent docking studies and molecular dynamics, using reported inhibitors and clinically tested molecules elucidate the formation of stable covalent bonds with the cysteine residue, laying a robust foundation for potential therapeutic applications. These details not only deepen our comprehension of PLpro inhibition but also play a pivotal role in shaping the dynamic landscape of COVID-19 treatment strategies.
PMID:38959551 | DOI:10.1016/j.compbiolchem.2024.108132
The antiarrhythmic drugs amiodarone and dronedarone inhibit intoxication of cells with pertussis toxin
Naunyn Schmiedebergs Arch Pharmacol. 2024 Jul 3. doi: 10.1007/s00210-024-03247-9. Online ahead of print.
ABSTRACT
Pertussis toxin (PT) is a virulent factor produced by Bordetella pertussis, the causative agent of whooping cough. PT exerts its pathogenic effects by ADP-ribosylating heterotrimeric G proteins, disrupting cellular signaling pathways. Here, we investigate the potential of two antiarrhythmic drugs, amiodarone and dronedarone, in mitigating PT-induced cellular intoxication. After binding to cells, PT is endocytosed, transported from the Golgi to the endoplasmic reticulum where the enzyme subunit PTS1 is released from the transport subunit of PT. PTS1 is translocated into the cytosol where it ADP-ribosylates inhibitory α-subunit of G-protein coupled receptors (Gαi). We showed that amiodarone and dronedarone protected CHO cells and human A549 cells from PT-intoxication by analyzing the ADP-ribosylation status of Gαi. Amiodarone had no effect on PT binding to cells or in vitro enzyme activity of PTS1 but reduced the signal of PTS1 in the cell suggesting that amiodarone interferes with intracellular transport of PTS1. Moreover, dronedarone mitigated the PT-mediated effect on cAMP signaling in a cell-based bioassay. Taken together, our findings underscore the inhibitory effects of amiodarone and dronedarone on PT-induced cellular intoxication, providing valuable insights into drug repurposing for infectious disease management.
PMID:38958734 | DOI:10.1007/s00210-024-03247-9
In Silico Drug Repurposing Against PSMB8 as a Potential Target for Acute Myeloid Leukemia Treatment
Mol Biotechnol. 2024 Jul 2. doi: 10.1007/s12033-024-01224-4. Online ahead of print.
ABSTRACT
PSMB8 emerges as a prominent gene associated with cancer survival, yet its potential therapeutic role in acute myeloid leukemia (AML) remains unexplored within the existing literature. The principal aim of this study is to systematically screen an expansive library of molecular entities, curated from various databases to identify the prospective inhibitory agents with an affinity for PSMB8. A comprehensive assortment of molecular compounds obtained from the ZINC15 database was subjected to molecular docking simulations with PSMB8 by using the AutoDock tool in PyRx (version 0.9.9) to elucidate binding affinities. Following the docking simulations, a select subset of molecules underwent further investigation through comprehensive ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis employing AdmetSar and SwissADME tools. Finally, RMSD, RMSF, Rg, and H bond analyses were conducted via GROMACS to determine the best conformationally dynamic molecule that represents the candidate agent for the study. Following rigorous evaluation, Adozelesin, Fiduxosin, and Rimegepant have been singled out based on considerations encompassing bioavailability scores, compliance with filter criteria, and acute oral toxicity levels. Additionally, ligand interaction analysis indicates that Adozelesin and Fiduxosin exhibit an augmented propensity for hydrogen bond formation, a factor recognized for its facilitative role in protein-ligand interactions. After final analyses, we report that Fiduxosin may offer a treatment possibility by reversing the low survival rates caused by PSMB8 high activation in AML. This study represents a strategic attempt to repurpose readily available pharmaceutical agents, potentially obviating the need for de novo drug development, and thereby offering promising avenues for therapeutic intervention in specific diseases.
PMID:38954355 | DOI:10.1007/s12033-024-01224-4
Tackling neurodegeneration <em>in vitro</em> with omics: a path towards new targets and drugs
Front Mol Neurosci. 2024 Jun 17;17:1414886. doi: 10.3389/fnmol.2024.1414886. eCollection 2024.
ABSTRACT
Drug discovery is a generally inefficient and capital-intensive process. For neurodegenerative diseases (NDDs), the development of novel therapeutics is particularly urgent considering the long list of late-stage drug candidate failures. Although our knowledge on the pathogenic mechanisms driving neurodegeneration is growing, additional efforts are required to achieve a better and ultimately complete understanding of the pathophysiological underpinnings of NDDs. Beyond the etiology of NDDs being heterogeneous and multifactorial, this process is further complicated by the fact that current experimental models only partially recapitulate the major phenotypes observed in humans. In such a scenario, multi-omic approaches have the potential to accelerate the identification of new or repurposed drugs against a multitude of the underlying mechanisms driving NDDs. One major advantage for the implementation of multi-omic approaches in the drug discovery process is that these overarching tools are able to disentangle disease states and model perturbations through the comprehensive characterization of distinct molecular layers (i.e., genome, transcriptome, proteome) up to a single-cell resolution. Because of recent advances increasing their affordability and scalability, the use of omics technologies to drive drug discovery is nascent, but rapidly expanding in the neuroscience field. Combined with increasingly advanced in vitro models, which particularly benefited from the introduction of human iPSCs, multi-omics are shaping a new paradigm in drug discovery for NDDs, from disease characterization to therapeutics prediction and experimental screening. In this review, we discuss examples, main advantages and open challenges in the use of multi-omic approaches for the in vitro discovery of targets and therapies against NDDs.
PMID:38952421 | PMC:PMC11215216 | DOI:10.3389/fnmol.2024.1414886
Drug Repurposing of Selected Antibiotics: An Emerging Approach in Cancer Drug Discovery
ACS Omega. 2024 Jun 13;9(25):26762-26779. doi: 10.1021/acsomega.4c00617. eCollection 2024 Jun 25.
ABSTRACT
Drug repurposing is a method of investigating new therapeutic applications for previously approved medications. This repurposing approach to "old" medications is now highly efficient, simple to arrange, and cost-effective and poses little risk of failure in treating a variety of disorders, including cancer. Drug repurposing for cancer therapy is currently a key topic of study. It is a way of exploring recent therapeutic applications for already-existing drugs. Theoretically, the repurposing strategy has various advantages over the recognized challenges of creating new molecular entities, including being faster, safer, easier, and less expensive. In the real world, several medications have been repurposed, including aspirin, metformin, and chloroquine. However, doctors and scientists address numerous challenges when repurposing drugs, such as the fact that most drugs are not cost-effective and are resistant to bacteria. So the goal of this review is to gather information regarding repurposing pharmaceuticals to make them more cost-effective and harder for bacteria to resist. Cancer patients are more susceptible to bacterial infections. Due to their weak immune systems, antibiotics help protect them from a variety of infectious diseases. Although antibiotics are not immune boosters, they do benefit the defense system by killing bacteria and slowing the growth of cancer cells. Their use also increases the therapeutic efficacy and helps avoid recurrence. Of late, antibiotics have been repurposed as potent anticancer agents because of the evolutionary relationship between the prokaryotic genome and mitochondrial DNA of eukaryotes. Anticancer antibiotics that prevent cancer cells from growing by interfering with their DNA and blocking growth of promoters, which include anthracyclines, daunorubicin, epirubicin, mitoxantrone, doxorubicin, and idarubicin, are another type of FDA-approved antibiotics used to treat cancer. According to the endosymbiotic hypothesis, prokaryotes and eukaryotes are thought to have an evolutionary relationship. Hence, in this study, we are trying to explore antibiotics that are necessary for treating diseases, including cancer, helping people reduce deaths associated with various infections, and substantially extending people's life expectancy and quality of life.
PMID:38947816 | PMC:PMC11209889 | DOI:10.1021/acsomega.4c00617
In Silico Drug Repurposing Uncovered the Antiviral Potential of the Antiparasitic Drug Oxibendazole Against the Chikungunya Virus
ACS Omega. 2024 Jun 13;9(25):27632-27642. doi: 10.1021/acsomega.4c03417. eCollection 2024 Jun 25.
ABSTRACT
Chikungunya virus (CHIKV) has been reported in over 120 countries and is the causative agent of Chikungunya fever. The debilitating nature of this disease, which can persist months to years after acute infection, drastically impacts the quality of life of patients. Yet, specific antivirals are lacking for the treatment of this disease, which makes the search for new drugs necessary. In this context, the nsP2 protease emerges as an attractive therapeutic target, and drug repurposing strategies have proven to be valuable. Therefore, we combined in silico and in vitro methods to identify known drugs as potential CHIKV nsP2 protease inhibitors with antiviral properties within DrugBank. Herein, we developed a hybrid virtual screening pipeline comprising pharmacophore- and target-based screening, drug-like, and pharmaceutical filtering steps. Six virtual hits were obtained, and two of them, capecitabine (CPB) and oxibendazole (OBZ), were evaluated against CHIKV replication in Vero cells. CPB did not present antiviral activity, whereas OBZ inhibited the replication of two different strains of CHIKV, namely, 181-25 (Asian genotype) and BRA/RJ/18 (clinical isolate from ECSA genotype). OBZ showed potent antiviral activity against the CHIKV BRA/RJ/18 (EC50 = 11.4 μM) with a high selectivity index (>44). Analogs of OBZ (albendazole, fenbendazole, and mebendazole) were also evaluated, but none exhibited anti-CHIKV activity, and further, their stereoelectronic features were analyzed. Additionally, we observed that OBZ acts mainly at post-entry steps. Hence, our results support further in vivo studies to investigate the antiviral potential of OBZ, which offers a new alternative to fight CHIKV infections.
PMID:38947813 | PMC:PMC11209700 | DOI:10.1021/acsomega.4c03417
Drug repurposing opportunities for chronic kidney disease
iScience. 2024 May 10;27(6):109953. doi: 10.1016/j.isci.2024.109953. eCollection 2024 Jun 21.
ABSTRACT
The development of targeted drugs for the early prevention and management of chronic kidney disease (CKD) is of great importance. However, the success rates and cost-effectiveness of traditional drug development approaches are extremely low. Utilizing large sample genome-wide association study data for drug repurposing has shown promise in many diseases but has not yet been explored in CKD. Herein, we investigated actionable druggable targets to improve renal function using large-scale Mendelian randomization and colocalization analyses. We combined two population-scale independent genetic datasets and validated findings with cell-type-dependent eQTL data of kidney tubular and glomerular samples. We ultimately prioritized two drug targets, opioid receptor-like 1 and F12, with potential genetic support for restoring renal function and subsequent treatment of CKD. Our findings explore the potential pathological mechanisms of CKD, bridge the gap between the molecular mechanisms of pathogenesis and clinical intervention, and provide new strategies in future clinical trials of CKD.
PMID:38947510 | PMC:PMC11214293 | DOI:10.1016/j.isci.2024.109953
Treatment of HNSC and pulmonary metastasis using the anti-helminthic drug niclosamide to modulate Stat3 signaling activity
J Cancer. 2024 Jun 11;15(13):4406-4416. doi: 10.7150/jca.95682. eCollection 2024.
ABSTRACT
Background: Head and neck squamous cell carcinoma (HNSC) is a dangerous cancer that represents an important threat to human health. Niclosamide is an anti-helminthic drug that has received FDA approval. In drug repurposing screens, niclosamide was found to inhibit proliferative activity for a range of tumor types. Its functional effects in HNSC, however, have yet to be established. Methods: MTT and colony formation assays were used to explore the impact of niclosamide on the proliferation of HNSC cells, while wound healing and Transwell assays were employed to assess migration and invasivity. Flow cytometry and Western immunoblotting were respectively used to assess cellular apoptosis and protein expression patterns. An HNSC xenograft tumor model system was used to evaluate the in vivo antitumor activity of niclosamide, and immunofluorescent staining was employed to assess cleaved Caspase3 and Ki67 expression. The ability of niclosamide to prevent metastatic progression in vivo was assessed with a model of pulmonary metastasis. Results: These analyses revealed the ability of niclosamide to suppress HNSC cell migration, proliferation, and invasivity in vitro while promoting apoptotic death. From a mechanistic perspective, this drug suppressed Stat3 phosphorylation and β-catenin expression, while increasing cleaved Caspase3 levels in HNSC cells and reducing Bcl-2 levels. Importantly, this drug was able to suppress in vivo tumor growth and pulmonary metastasis formation, with immunofluorescent staining confirming that it reduced Ki67 levels and increased cleaved Caspase3 content. Conclusion: In conclusion, these analyses highlight the ability of niclosamide to inhibit HNSC cell migration and proliferative activity while provoking apoptotic death mediated via p-Stat3 and β-catenin pathway inactivation. Niclosamide thus holds promise for repurposing as a candidate drug for the more effective clinical management of HNSC.
PMID:38947381 | PMC:PMC11212102 | DOI:10.7150/jca.95682
Strategies of Pharmacological Repositioning for the Treatment of Medically Relevant Mycoses
Infect Drug Resist. 2024 Jun 25;17:2641-2658. doi: 10.2147/IDR.S466336. eCollection 2024.
ABSTRACT
Fungal infections represent a worldwide concern for public health, due to their prevalence and significant increase in cases each year. Among the most frequent mycoses are those caused by members of the genera Candida, Cryptococcus, Aspergillus, Histoplasma, Pneumocystis, Mucor, and Sporothrix, which have been treated for years with conventional antifungal drugs, such as flucytosine, azoles, polyenes, and echinocandins. However, these microorganisms have acquired the ability to evade the mechanisms of action of these drugs, thus hindering their treatment. Among the most common evasion mechanisms are alterations in sterol biosynthesis, modifications of drug transport through the cell wall and membrane, alterations of drug targets, phenotypic plasticity, horizontal gene transfer, and chromosomal aneuploidies. Taking into account these problems, some research groups have sought new therapeutic alternatives based on drug repositioning. Through repositioning, it is possible to use existing pharmacological compounds for which their mechanism of action is already established for other diseases, and thus exploit their potential antifungal activity. The advantage offered by these drugs is that they may be less prone to resistance. In this article, a comprehensive review was carried out to highlight the most relevant repositioning drugs to treat fungal infections. These include antibiotics, antivirals, anthelmintics, statins, and anti-inflammatory drugs.
PMID:38947372 | PMC:PMC11214559 | DOI:10.2147/IDR.S466336