Drug Repositioning
Exploring drug repositioning possibilities of kinase inhibitors via molecular simulation
Mol Inform. 2024 Jun 21:e202300336. doi: 10.1002/minf.202300336. Online ahead of print.
ABSTRACT
Kinases, a class of enzymes controlling various substrates phosphorylation, are pivotal in both physiological and pathological processes. Although their conserved ATP binding pockets pose challenges for achieving selectivity, this feature offers opportunities for drug repositioning of kinase inhibitors (KIs). This study presents a cost-effective in silico prediction of KIs drug repositioning via analyzing cross-docking results. We established the KIs database (278 unique KIs, 1834 bioactivity data points) and kinases database (357 kinase structures categorized by the DFG motif) for carrying out cross-docking. Comparative analysis of the docking scores and reported experimental bioactivity revealed that the Atypical, TK, and TKL superfamilies are suitable for drug repositioning. Among these kinase superfamilies, Olverematinib, Lapatinib, and Abemaciclib displayed enzymatic activity in our focused AKT-PI3K-mTOR pathway with IC50 values of 3.3, 3.2 and 5.8 μM. Further cell assays showed IC50 values of 0.2, 1.2 and 0.6 μM in tumor cells. The consistent result between prediction and validation demonstrated that repositioning KIs via in silico method is feasible.
PMID:39031899 | DOI:10.1002/minf.202300336
Pharmacoepidemiology evaluation of bumetanide as a potential candidate for drug repurposing for Alzheimer's disease
Alzheimers Dement. 2024 Jun 21. doi: 10.1002/alz.13872. Online ahead of print.
ABSTRACT
INTRODUCTION: Bumetanide, a loop diuretic, was identified as a candidate drug for repurposing for Alzheimer's disease (AD) based on its effects on transcriptomic apolipoprotein E signatures. Cross-sectional analyses of electronic health records suggest that bumetanide is associated with decreased prevalence of AD; however, temporality between bumetanide exposure and AD development has not been established.
METHODS: We evaluated Medicare claims data using Cox proportional hazards regression to evaluate the association between time-dependent use of bumetanide and time to first AD diagnosis while controlling for patient characteristics. Multiple sensitivity analyses were conducted to test the robustness of the findings.
RESULTS: We sampled 833,561 Medicare beneficiaries, 60.8% female, with mean (standard deviation) age of 70.4 (12). Bumetanide use was not significantly associated with AD risk (hazard ratio 1.05; 95% confidence interval, 0.99-1.10).
DISCUSSION: Using a nationwide dataset and a retrospective cohort study design, we were not able to identify a time-dependent effect of bumetanide lowering AD risk.
HIGHLIGHTS: Bumetanide was identified as a candidate for repurposing for Alzheimer's disease (AD). We evaluated the association between bumetanide use and risk of AD. We used Medicare data and accounted for duration of bumetanide use. Bumetanide use was not significantly associated with risk of AD.
PMID:39030734 | DOI:10.1002/alz.13872
Genomic and computational-aided integrative drug repositioning strategy for EGFR and ROS1 mutated NSCLC
Int Immunopharmacol. 2024 Jul 17;139:112682. doi: 10.1016/j.intimp.2024.112682. Online ahead of print.
ABSTRACT
Non-small cell lung cancer (NSCLC) has been marked as the major cause of death in lung cancer patients. Due to tumor heterogeneity, mutation burden, and emerging resistance against the available therapies in NSCLC, it has been posing potential challenges in the therapy development. Hence, identification of cancer-driving mutations and their effective inhibition have been advocated as a potential approach in NSCLC treatment. Thereof, this study aims to employ the genomic and computational-aided integrative drug repositioning strategy to identify the potential mutations in the selected molecular targets and repurpose FDA-approved drugs against them. Accordingly, molecular targets and their mutations, i.e., EGFR (V843L, L858R, L861Q, and P1019L) and ROS1 (G1969E, F2046Y, Y2092C, and V2144I), were identified based on TCGA dataset analysis. Following, virtual screening and redocking analysis, Elbasvir, Ledipasvir, and Lomitapide drugs for EGFR mutants (>-10.8 kcal/mol) while Indinavir, Ledipasvir, Lomitapide, Monteleukast, and Isavuconazonium for ROS1 mutants (>-8.8 kcal/mol) were found as putative inhibitors. Furthermore, classical molecular dynamics simulation and endpoint binding energy calculation support the considerable stability of the selected docked complexes aided by substantial hydrogen bonding and hydrophobic interactions in comparison to the respective control complexes. Conclusively, the repositioned FDA-approved drugs might be beneficial alone or in synergy to overcome acquired resistance to EGFR and ROS1-positive lung cancers.
PMID:39029228 | DOI:10.1016/j.intimp.2024.112682
Investigating the therapeutic promise of Drug-Repurposed-Loaded Nanocarriers: A pioneering strategy in advancing colorectal cancer treatment
Int J Pharm. 2024 Jul 16:124473. doi: 10.1016/j.ijpharm.2024.124473. Online ahead of print.
ABSTRACT
Globally, colorectal cancer is a major health problem that ranks in third place in terms of occurrences and second in terms of mortality worldwide. New cases increase annually, with the absence of effective therapies, especially for metastatic colorectal cancer, emphasizing the need for novel therapeutic approaches. Although conventional treatments are commonly used in oncotherapy, their success rate is low, which leads to the exploration of novel technologies. Recent efforts have focused on developing safe and efficient cancer nanocarriers. With their nanoscale properties, nanocarriers have the potential to utilize internal metabolic modifications amid cancer cells and healthy cells. Drug repurposing is an emerging strategy in cancer management as it is a faster, cheaper, and safer method than conventional drug development. However, most repurposed drugs are characterized by low-key pharmacokinetic characteristics, such as poor aqueous solubility, permeability, retention, and bioavailability. Nanoparticle formulations and delivery have expanded over the past few decades, creating opportunities for drug repurposing and promises as an advanced cancer modality. This review provides a concise and updated overview of colorectal cancer treatment regimens and their therapeutic limitations. Furthermore, the chemotherapeutic effect of various FDA-approved medications, including statins, non-steroidal anti-inflammatory drugs, antidiabetic and anthelmintic agents, and their significance in colorectal cancer management. Along with the role of various nanocarrier systems in achieving the desired therapeutic outcomes of employing these redefined drugs.
PMID:39025341 | DOI:10.1016/j.ijpharm.2024.124473
SARS-CoV-2 replication and drug discovery
Mol Cell Probes. 2024 Jul 16:101973. doi: 10.1016/j.mcp.2024.101973. Online ahead of print.
ABSTRACT
The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to wreak havoc across the globe. This sudden and deadly pandemic emphasizes the necessity for anti-viral drug development that can be rapidly administered to reduce morbidity, mortality, and virus propagation. Thus, lacking efficient anti-COVID-19 treatment, and especially given the lengthy drug development process as well as the critical death tool that has been associated with SARS-CoV-2 since its outbreak, drug repurposing (or repositioning) constitutes so far, the ideal and ready-to-go best approach in mitigating viral spread, containing the infection, and reducing the COVID-19-associated death rate. Indeed, based on the molecular similarity approach of SARS-CoV-2 with previous coronaviruses (CoVs), repurposed drugs have been reported to hamper SARS-CoV-2 replication. Therefore, understanding the inhibition mechanisms of viral replication by repurposed anti-viral drugs and chemicals known to block CoV and SARS-CoV-2 multiplication is crucial, and it opens the way for particular treatment options and COVID-19 therapeutics. In this review, we highlighted molecular basics underlying drug-repurposing strategies against SARS-CoV-2. Notably, we discussed inhibition mechanisms of viral replication, involving and including inhibition of SARS-CoV-2 proteases (3C-like protease, 3CLpro or Papain-like protease, PLpro) by protease inhibitors such as Carmofur, Ebselen, and GRL017, polymerases (RNA-dependent RNA-polymerase, RdRp) by drugs like Suramin, Remdesivir, or Favipiravir, and proteins/peptides inhibiting virus-cell fusion and host cell replication pathways, such as Disulfiram, GC376, and Molnupiravir. When applicable, comparisons with SARS-CoV inhibitors approved for clinical use were made to provide further insights to understand molecular basics in inhibiting SARS-CoV-2 replication and draw conclusions for future drug discovery research.
PMID:39025272 | DOI:10.1016/j.mcp.2024.101973
Multiple antimicrobial and immune-modulating activities of cysteamine in infectious diseases
Biomed Pharmacother. 2024 Jul 17;178:117153. doi: 10.1016/j.biopha.2024.117153. Online ahead of print.
ABSTRACT
Infectious diseases are a major threat to global health and cause millions of deaths every year, particularly in developing countries. The emergence of multidrug resistance challenges current antimicrobial treatments, inducing uncertainty in therapeutic protocols. New compounds are therefore necessary. A drug repurposing approach could play a critical role in developing new treatments used either alone or in combination with standard therapy regimens. Herein, we focused on cysteamine, an aminothiol endogenously synthesized by human cells during the degradation of coenzyme-A, which is a drug approved for the treatment of nephropathic cystinosis. Cysteamine influences many biological processes due to the presence of the highly reactive thiol group. This review provides an overview of cysteamine-mediated effects on different viruses, bacteria and parasites, with a particular focus on infections caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Mycobacterium tuberculosis, non-tuberculous mycobacteria (NTM), and Pseudomonas aeruginosa. Evidences for a potential use of cysteamine as a direct antimicrobial agent and/or a host-directed therapy, either alone or in combination with other antimicrobial drugs, are described.
PMID:39024833 | DOI:10.1016/j.biopha.2024.117153
Chlorpromazine overcomes temozolomide resistance in glioblastoma by inhibiting Cx43 and essential DNA repair pathways
J Transl Med. 2024 Jul 18;22(1):667. doi: 10.1186/s12967-024-05501-3.
ABSTRACT
BACKGROUND: In the fight against GBM, drug repurposing emerges as a viable and time-saving approach to explore new treatment options. Chlorpromazine, an old antipsychotic medication, has recently arisen as a promising candidate for repositioning in GBM therapy in addition to temozolomide, the first-line standard of care. We previously demonstrated the antitumor efficacy of chlorpromazine and its synergistic effects with temozolomide in suppressing GBM cell malignant features in vitro. This prompted us to accomplish a Phase II clinical trial to evaluate the efficacy and safety of adding chlorpromazine to temozolomide in GBM patients with unmethylated MGMT gene promoter. In this in vitro study, we investigate the potential role of chlorpromazine in overcoming temozolomide resistance.
METHODS: In our experimental set, we analyzed Connexin-43 expression at both the transcriptional and protein levels in control- and chlorpromazine-treated GBM cells. DNA damage and subsequent repair were assessed by immunofluorescence of γ-H2AX and Reverse-Phase Protein microArrays in chlorpromazine treated GBM cell lines. To elucidate the relationship between DNA repair systems and chemoresistance, we analyzed a signature of DNA repair genes in GBM cells after treatment with chlorpromazine, temozolomide and Connexin-43 downregulation.
RESULTS: Chlorpromazine treatment significantly downregulated connexin-43 expression in GBM cells, consequently compromising connexin-dependent cellular resilience, and ultimately contributing to cell death. In line with this, we observed concordant post-translational modifications of molecular determinants involved in DNA damage and repair pathways. Our evaluation of DNA repair genes revealed that temozolomide elicited an increase, while chlorpromazine, as well as connexin-43 silencing, a decrease in DNA repair gene expression in GBM cells.
CONCLUSIONS: Chlorpromazine potentiates the cytotoxic effects of the alkylating agent temozolomide through a mechanism involving downregulation of Cx43 expression and disruption of the cell cycle arrest essential for DNA repair processes. This finding suggests that chlorpromazine may be a potential therapeutic strategy to overcome TMZ resistance in GBM cells by inhibiting their DNA repair mechanisms.
PMID:39026284 | DOI:10.1186/s12967-024-05501-3
Human brain proteome-wide association study provides insights into the genetic components of protein abundance in obesity
Int J Obes (Lond). 2024 Jul 18. doi: 10.1038/s41366-024-01592-6. Online ahead of print.
ABSTRACT
BACKGROUNDS: Genome-wide association studies have identified multiple genetic variants associated with obesity. However, most obesity-associated loci were waiting to be translated into new biological insights. Given the critical role of brain in obesity development, we sought to explore whether obesity-associated genetic variants could be mapped to brain protein abundances.
METHODS: We performed proteome-wide association studies (PWAS) and colocalization analyses to identify genes whose cis-regulated brain protein abundances were associated with obesity-related traits, including body fat percentage, trunk fat percentage, body mass index, visceral adipose tissue, waist circumference, and waist-to-hip ratio. We then assessed the druggability of the identified genes and conducted pathway enrichment analysis to explore their functional relevance. Finally, we evaluated the effects of the significant PWAS genes at the brain transcriptional level.
RESULTS: By integrating human brain proteomes from discovery (ROSMAP, N = 376) and validation datasets (BANNER, N = 198) with genome-wide summary statistics of obesity-related phenotypes (N ranged from 325,153 to 806,834), we identified 51 genes whose cis-regulated brain protein abundance was associated with obesity. These 51 genes were enriched in 11 metabolic processes, e.g., small molecule metabolic process and metabolic pathways. Fourteen of the 51 genes had high drug repurposing value. Ten of the 51 genes were also associated with obesity at the transcriptome level, suggesting that genetic variants likely confer risk of obesity by regulating mRNA expression and protein abundance of these genes.
CONCLUSIONS: Our study provides new insights into the genetic component of human brain protein abundance in obesity. The identified proteins represent promising therapeutic targets for future drug development.
PMID:39025989 | DOI:10.1038/s41366-024-01592-6
Explainable drug repurposing via path based knowledge graph completion
Sci Rep. 2024 Jul 18;14(1):16587. doi: 10.1038/s41598-024-67163-x.
ABSTRACT
Drug repurposing aims to find new therapeutic applications for existing drugs in the pharmaceutical market, leading to significant savings in time and cost. The use of artificial intelligence and knowledge graphs to propose repurposing candidates facilitates the process, as large amounts of data can be processed. However, it is important to pay attention to the explainability needed to validate the predictions. We propose a general architecture to understand several explainable methods for graph completion based on knowledge graphs and design our own architecture for drug repurposing. We present XG4Repo (eXplainable Graphs for Repurposing), a framework that takes advantage of the connectivity of any biomedical knowledge graph to link compounds to the diseases they can treat. Our method allows methapaths of different types and lengths, which are automatically generated and optimised based on data. XG4Repo focuses on providing meaningful explanations to the predictions, which are based on paths from compounds to diseases. These paths include nodes such as genes, pathways, side effects, or anatomies, so they provide information about the targets and other characteristics of the biomedical mechanism that link compounds and diseases. Paths make predictions interpretable for experts who can validate them and use them in further research on drug repurposing. We also describe three use cases where we analyse new uses for Epirubicin, Paclitaxel, and Predinisone and present the paths that support the predictions.
PMID:39025897 | DOI:10.1038/s41598-024-67163-x
Drug Repurposing Patent Applications January-March 2024
Assay Drug Dev Technol. 2024 Jul;22(5):265-275. doi: 10.1089/adt.2024.047. Epub 2024 Jun 11.
NO ABSTRACT
PMID:39024477 | DOI:10.1089/adt.2024.047
In-silico discovery of common molecular signatures for which SARS-CoV-2 infections and lung diseases stimulate each other, and drug repurposing
PLoS One. 2024 Jul 18;19(7):e0304425. doi: 10.1371/journal.pone.0304425. eCollection 2024.
ABSTRACT
COVID-19 caused by SARS-CoV-2 is a global health issue. It is yet a severe risk factor to the patients, who are also suffering from one or more chronic diseases including different lung diseases. In this study, we explored common molecular signatures for which SARS-CoV-2 infections and different lung diseases stimulate each other, and associated candidate drug molecules. We identified both SARS-CoV-2 infections and different lung diseases (Asthma, Tuberculosis, Cystic Fibrosis, Pneumonia, Emphysema, Bronchitis, IPF, ILD, and COPD) causing top-ranked 11 shared genes (STAT1, TLR4, CXCL10, CCL2, JUN, DDX58, IRF7, ICAM1, MX2, IRF9 and ISG15) as the hub of the shared differentially expressed genes (hub-sDEGs). The gene ontology (GO) and pathway enrichment analyses of hub-sDEGs revealed some crucial common pathogenetic processes of SARS-CoV-2 infections and different lung diseases. The regulatory network analysis of hub-sDEGs detected top-ranked 6 TFs proteins and 6 micro RNAs as the key transcriptional and post-transcriptional regulatory factors of hub-sDEGs, respectively. Then we proposed hub-sDEGs guided top-ranked three repurposable drug molecules (Entrectinib, Imatinib, and Nilotinib), for the treatment against COVID-19 with different lung diseases. This recommendation is based on the results obtained from molecular docking analysis using the AutoDock Vina and GLIDE module of Schrödinger. The selected drug molecules were optimized through density functional theory (DFT) and observing their good chemical stability. Finally, we explored the binding stability of the highest-ranked receptor protein RELA with top-ordered three drugs (Entrectinib, Imatinib, and Nilotinib) through 100 ns molecular dynamic (MD) simulations with YASARA and Desmond module of Schrödinger and observed their consistent performance. Therefore, the findings of this study might be useful resources for the diagnosis and therapies of COVID-19 patients who are also suffering from one or more lung diseases.
PMID:39024368 | DOI:10.1371/journal.pone.0304425
The Raf kinase inhibitors Dabrafenib and Regorafenib impair Zika virus replication via distinct mechanisms
J Virol. 2024 Jul 18:e0061824. doi: 10.1128/jvi.00618-24. Online ahead of print.
ABSTRACT
Zika virus (ZIKV) is a re-emerging mosquito-borne flavivirus that has been associated with congenital neurological defects in fetuses born to infected mothers. At present, no vaccine or antiviral therapy is available to combat this devastating disease. Repurposing drugs that target essential host factors exploited by viruses is an attractive therapeutic approach. Here, we screened a panel of clinically approved small-molecule kinase inhibitors for their antiviral effects against a clinical isolate of ZIKV and thoroughly characterized their mechanisms of action. We found that the Raf kinase inhibitors Dabrafenib and Regorafenib potently impair the replication of ZIKV, but not that of its close relative dengue virus. Time-of-addition experiments showed that both inhibitors target ZIKV infection at post-entry steps. We found that Dabrafenib, but not Regorafenib, interfered with ZIKV genome replication by impairing both negative- and positive-strand RNA synthesis. Regorafenib, on the other hand, altered steady-state viral protein levels, viral egress, and blocked NS1 secretion. We also observed Regorafenib-induced ER fragmentation in ZIKV-infected cells, which might contribute to its antiviral effects. Because these inhibitors target different steps of the ZIKV infection cycle, their use in combination therapy may amplify their antiviral effects which could be further explored for future therapeutic strategies against ZIKV and possibly other flaviviruses.
IMPORTANCE: There is an urgent need to develop effective therapeutics against re-emerging arboviruses associated with neurological disorders like Zika virus (ZIKV). We identified two FDA-approved kinase inhibitors, Dabrafenib and Regorafenib, as potent inhibitors of contemporary ZIKV strains at distinct stages of infection despite overlapping host targets. Both inhibitors reduced viral titers by ~1 to 2 log10 (~10-fold to 100-fold) with minimal cytotoxicity. Furthermore, we show that Dabrafenib inhibits ZIKV RNA replication whereas Regorafenib inhibits ZIKV translation and egress. Regorafenib has the added benefit of limiting NS1 secretion, which contributes to the pathogenesis and disease progression of several flaviviruses. Because these inhibitors affect distinct post-entry steps of ZIKV infection, their therapeutic potential may be amplified by combination therapy and likely does not require prophylactic administration. This study provides further insight into ZIKV-host interactions and has implications for the development of novel antivirals against ZIKV and possibly other flaviviruses.
PMID:39023323 | DOI:10.1128/jvi.00618-24
Repurposing of the analgesic Neurotropin for MASLD/MASH treatment
Hepatol Commun. 2024 Jul 18;8(8):e0480. doi: 10.1097/HC9.0000000000000480. eCollection 2024 Aug 1.
ABSTRACT
BACKGROUND: The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) has increased in recent decades. Approximately 25% of patients with MASLD progress to metabolic dysfunction-associated steatohepatitis, which is characterized by hepatic steatosis plus hepatocyte damage, inflammation, and fibrosis. We previously reported that Neurotropin (NTP), a drug used for relieving pain in Japan and China, inhibits lipid accumulation in hepatocytes by preventing mitochondrial dysfunction. We hypothesized that inhibiting hepatic steatosis and inflammation by NTP can be an effective strategy for treating MASLD and tested this hypothesis in a MASLD mouse model.
METHODS: Six-week-old C57BL/6NJ male mice were fed a normal diet and normal drinking water or a high-fat diet with high fructose/glucose water for 12 weeks. During the last 6 weeks, the mice were also given high-dose NTP, low-dose NTP, or control treatment. Histologic, biochemical, and functional tests were conducted. MitoPlex, a new proteomic platform, was used to measure mitochondrial proteins, as mitochondrial dysfunction was previously reported to be associated with MASLD progression.
RESULTS: NTP inhibited the development of hepatic steatosis, injury, inflammation, and fibrosis induced by feeding a high-fat diet plus high fructose/glucose in drinking water. NTP also inhibited HSC activation. MitoPlex analysis revealed that NTP upregulated the expression of mitochondrial proteins related to oxidative phosphorylation, the tricarboxylic acid cycle, mitochondrial dynamics, and fatty acid transport.
CONCLUSIONS: Our results indicate that NTP prevents the development of hepatic steatosis, injury, and inflammation by preserving mitochondrial function in the liver and inhibits liver fibrosis by suppressing HSC activation. Thus, repurposing NTP may be a beneficial option for treating MASLD/metabolic dysfunction-associated steatohepatitis.
PMID:39023282 | DOI:10.1097/HC9.0000000000000480
PBPK-led assessment of antimalarial drugs as candidates for Covid-19: Simulating concentrations at the site of action to inform repurposing strategies
Clin Transl Sci. 2024 Jul;17(7):e13865. doi: 10.1111/cts.13865.
ABSTRACT
The urgent need for safe, efficacious, and accessible drug treatments to treat coronavirus disease 2019 (COVID-19) prompted a global effort to evaluate drug repurposing opportunities. Pyronaridine and amodiaquine are both components of approved antimalarials with in vitro activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In vitro activity does not always translate to clinical efficacy across a therapeutic dose range. This study applied available, verified, physiologically based pharmacokinetic (PBPK) models for pyronaridine, amodiaquine, and its active metabolite N-desethylamodiaquine (DEAQ) to predict drug concentrations in lung tissue relative to plasma or blood in the default healthy virtual population. Lung exposures were compared to published data across the reported range of in vitro EC50 values against SARS-CoV-2. In the multicompartment permeability-limited PBPK model, the predicted total Cmax in lung mass for pyronaridine was 34.2 μM on Day 3, 30.5-fold greater than in blood (1.12 μM) and for amodiaquine was 0.530 μM, 8.83-fold greater than in plasma (0.060 μM). In the perfusion-limited PBPK model, the DEAQ predicted total Cmax on Day 3 in lung mass (30.2 μM) was 21.4-fold greater than for plasma (1.41 μM). Based on the available in vitro data, predicted drug concentrations in lung tissue for pyronaridine and DEAQ, but not amodiaquine, appeared sufficient to inhibit SARS-CoV-2 replication. Simulations indicated standard dosing regimens of pyronaridine-artesunate and artesunate-amodiaquine have potential to treat COVID-19. These findings informed repurposing strategies to select the most relevant compounds for clinical investigation in COVID-19. Clinical data for model verification may become available from ongoing clinical studies.
PMID:39020517 | DOI:10.1111/cts.13865
In Silico drug repurposing pipeline using deep learning and structure based approaches in epilepsy
Sci Rep. 2024 Jul 17;14(1):16562. doi: 10.1038/s41598-024-67594-6.
ABSTRACT
Due to considerable global prevalence and high recurrence rate, the pursuit of effective new medication for epilepsy treatment remains an urgent and significant challenge. Drug repurposing emerges as a cost-effective and efficient strategy to combat this disorder. This study leverages the transformer-based deep learning methods coupled with molecular binding affinity calculation to develop a novel in-silico drug repurposing pipeline for epilepsy. The number of candidate inhibitors against 24 target proteins encoded by gain-of-function genes implicated in epileptogenesis ranged from zero to several hundreds. Our pipeline has repurposed the medications with most anti-epileptic drugs and nearly half psychiatric medications, highlighting the effectiveness of our pipeline. Furthermore, Lomitapide, a cholesterol-lowering drug, first emerged as particularly noteworthy, exhibiting high binding affinity for 10 targets and verified by molecular dynamics simulation and mechanism analysis. These findings provided a novel perspective on therapeutic strategies for other central nervous system disease.
PMID:39020064 | DOI:10.1038/s41598-024-67594-6
Antibacterial activity of closantel against methicillin-resistant <em>Staphylococcus aureus</em> and itsbiofilm
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2024 Apr 28;49(4):611-620. doi: 10.11817/j.issn.1672-7347.2024.230442.
ABSTRACT
OBJECTIVES: The antimicrobial resistance of Staphylococcus aureus (S. aureus) has become a challenge in the treatment of infectious diseases. It is of great clinical value to discovery effective antimicrobial agents against multi-drug resistant S. aureus and its biofilms. This study aims to explore the antibacterial activity of the antiparasitic drug closantel against methicillin-resistant S. aureus and its biofilms through drug repurposing.
METHODS: The sensitivity of S. aureus to closantel was assessed using microbroth dilution and disk diffusion methods. The bacteriostatic and bactericidal activities of closantel were determined by time-kill curves and colony count. Scanning electron microscopy combined with SYTOX Green and DiSC3(5) fluorescence probes were used to study the bactericidal mechanism of closantel. The influence of resistance was assessed by continuous exposure to sub-inhibitory concentrations of closantel. The anti-biofilm activity was evaluated using 96-well plates and crystal violet staining, and cytotoxicity was measured using the CCK-8 assay.
RESULTS: The minimal inhibitory concentration (MIC) of closantel for both methicillin-sensitive and methicillin-resistant S. aureus ranged from 0.125 to 1.000 μg/mL. Disk diffusion tests showed that 80 μg of closantel created an inhibition zone, which increased in diameter with higher drug amounts. Sub-inhibitory concentrations (0.031 μg/mL) of closantel significantly inhibited S. aureus proliferation, reducing bacterial turbidity from 0.26±0.00 to 0.11±0.01 (t=16.06, P<0.001), with stronger inhibition at higher concentrations. Closantel at 0.25×MIC inhibited S. aureus proliferation for 12 hours, while 1×MIC inhibited it for over 24 hours, with the number of viable bacteria decreasing as the drug concentration increased. Mechanistic studies indicated that closantel effectively disrupted the integrity of S. aureus cell membranes, significantly increasing SYTOX Green and DiSC3(5) fluorescence intensity. Even after 25 days of continuous exposure to sub-inhibitory concentrations of closantel, no resistance developed. Closantel at 0.0625 μg/mL significantly inhibited biofilm formation, reducing it from 1.29±0.16 to 0.62±0.04 (t=11.62, P<0.001), showing a clear dose-dependent effect. Closantel at 2 μg/mL also significantly eradicated established biofilms, reducing biofilm mass from 1.62±0.34 to 0.51±0.39 (t=4.84, P<0.01). Additionally, closantel exhibited extremely low cytotoxicity, with half-maximal lethal concentrations for HepG2 liver cancer cells and normal LO2 liver cells both exceeding 64 μg/mL.
CONCLUSIONS: Closantel exhibits strong antibacterial activity against S. aureus and its biofilm with low cytotoxicity against human cells, making it a promising candidate for new therapeutic strategies against S. aureus-related infections.
PMID:39019790 | DOI:10.11817/j.issn.1672-7347.2024.230442
Antihypertensive Drugs for the Prevention of Atrial Fibrillation: A Drug Target Mendelian Randomization Study
Hypertension. 2024 Aug;81(8):1766-1775. doi: 10.1161/HYPERTENSIONAHA.123.21858. Epub 2024 Jun 19.
ABSTRACT
BACKGROUND: We investigated the potential impact of antihypertensive drugs for atrial fibrillation (AF) prevention through a drug target Mendelian randomization study to avoid the potential limitations of clinical studies.
METHODS: Validated published single-nucleotide polymorphisms (SNPs) that mimic the action of 12 antihypertensive drug classes, including alpha-adrenoceptor blockers, adrenergic neuron blockers, angiotensin-converting enzyme inhibitors, angiotensin-II receptor blockers, beta-adrenoceptor blockers, centrally acting antihypertensive drugs, calcium channel blockers, loop diuretics, potassium-sparing diuretics and mineralocorticoid receptor antagonists, renin inhibitors, thiazides and related diuretic agents, and vasodilators were used. We estimated, via their corresponding gene and protein targets, the downstream effect of these drug classes to prevent AF via systolic blood pressure using 2-sample Mendelian randomization analyses. The SNPs were extracted from 2 European genome-wide association studies for the drug classes (n=317 754; n=757 601) and 1 European genome-wide association study for AF (n=1 030 836).
RESULTS: Drug target Mendelian randomization analyses supported the significant preventive causal effects of lowering systolic blood pressure per 10 mm Hg via alpha-adrenoceptor blockers (n=11 SNPs; odds ratio [OR], 0.34 [95% CI, 0.21-0.56]; P=2.74×10-05), beta-adrenoceptor blockers (n=17 SNPs; OR, 0.52 [95% CI, 0.35-0.78]; P=1.62×10-03), calcium channel blockers (n=49 SNPs; OR, 0.50 [95% CI, 0.36-0.70]; P=4.51×10-05), vasodilators (n=19 SNPs; OR, 0.53 [95% CI, 0.34-0.84]; P=7.03×10-03), and all 12 antihypertensive drug classes combined (n=158 SNPs; OR, 0.64 [95% CI, 0.54-0.77]; P=8.50×10-07) on AF risk.
CONCLUSIONS: Our results indicated that lowering systolic blood pressure via protein targets of various antihypertensive drugs seems promising for AF prevention. Our findings inform future clinical trials and have implications for repurposing antihypertensive drugs for AF prevention.
PMID:39018378 | DOI:10.1161/HYPERTENSIONAHA.123.21858
Targeting AKR1B10 by drug repurposing with epalrestat overcomes chemoresistance in non-small cell lung cancer patient-derived tumor organoids
Clin Cancer Res. 2024 Jul 17. doi: 10.1158/1078-0432.CCR-23-3980. Online ahead of print.
ABSTRACT
PURPOSE: Systemic treatments given to non-small cell lung cancer (NSCLC) patients are often ineffective due to drug resistance. In the present study, we investigated patient-derived tumor organoids (PDTOs) and matched tumor tissues from surgically treated NSCLC patients to identify drug repurposing targets to overcome resistance towards standard-of-care platinum-based doublet chemotherapy.
EXPERIMENTAL DESIGN: PDTOs were established from ten prospectively enrolled non-metastatic NSCLC patients from resected tumors. PDTOs were compared with matched tumor tissues by histopathology/immunohistochemistry, whole exome and transcriptome sequencing. PDTO growths and drug responses were determined by measuring 3D tumoroid volumes, cell viability, and proliferation/apoptosis. Differential gene expression analysis identified drug-repurposing targets. Validations were performed with internal/external NSCLC patient data sets. NSCLC cell lines were used for aldo-keto reductase 1B10 (AKR1B10) knockdown studies and xenograft models to determine the intratumoral bioavailability of epalrestat.
RESULTS: PDTOs retained histomorphology and pathological biomarker expression, mutational/transcriptomic signatures, and cellular heterogeneity of the matched tumor tissues. Five (50%) PDTOs were chemoresistant towards carboplatin/paclitaxel. Chemoresistant PDTOs and matched tumor tissues demonstrated overexpression of AKR1B10. Epalrestat, an orally available AKR1B10 inhibitor in clinical use for diabetic polyneuropathy, was repurposed to overcome chemoresistance of PDTOs. In vivo efficacy of epalrestat to overcome drug resistance corresponded to intratumoral epalrestat levels.
CONCLUSIONS: PDTOs are efficient preclinical models recapitulating the tumor characteristics and are suitable for drug testing. AKR1B10 can be targeted by repurposing epalrestat to overcome chemoresistance in NSCLC. Epalrestat has the potential to advance to clinical trials in drug-resistant NSCLC patients due to favorable toxicity, pharmacological profile, and bioavailability.
PMID:39017606 | DOI:10.1158/1078-0432.CCR-23-3980
Activation of the PGE<sub>2</sub>-EP2 pathway as a potential drug target for treating eosinophilic rhinosinusitis
Front Immunol. 2024 Jul 1;15:1409458. doi: 10.3389/fimmu.2024.1409458. eCollection 2024.
ABSTRACT
Current treatments of eosinophilic chronic rhinosinusitis (ECRS) involve corticosteroids with various adverse effects and costly therapies such as dupilumab, highlighting the need for improved treatments. However, because of the lack of a proper mouse ECRS model that recapitulates human ECRS, molecular mechanisms underlying this disease are incompletely understood. ECRS is often associated with aspirin-induced asthma, suggesting that dysregulation of lipid mediators in the nasal mucosa may underlie ECRS pathology. We herein found that the expression of microsomal PGE synthase-1 (encoded by PTGES) was significantly lower in the nasal mucosa of ECRS patients than that of non-ECRS subjects. Histological, transcriptional, and lipidomics analyses of Ptges-deficient mice revealed that defective PGE2 biosynthesis facilitated eosinophil recruitment into the nasal mucosa, elevated expression of type-2 cytokines and chemokines, and increased pro-allergic and decreased anti-allergic lipid mediators following challenges with Aspergillus protease and ovalbumin. A nasal spray containing agonists for the PGE2 receptor EP2 or EP4, including omidenepag isopropyl that has been clinically used for treatment of glaucoma, markedly reduced intranasal eosinophil infiltration in Ptges-deficient mice. These results suggest that the present model using Ptges-deficient mice is more relevant to human ECRS than are previously reported models and that eosinophilic inflammation in the nasal mucosa can be efficiently blocked by activation of the PGE2-EP2 pathway. Furthermore, our findings suggest that drug repositioning of omidenepag isopropyl may be useful for treatment of patients with ECRS.
PMID:39015572 | PMC:PMC11250097 | DOI:10.3389/fimmu.2024.1409458
Drug repurposing of pyrazolotriazine derivatives as potential anti-SARS-CoV-2 agents: in vitro and in silico studies
BMC Chem. 2024 Jul 16;18(1):132. doi: 10.1186/s13065-024-01233-z.
ABSTRACT
The search for new molecules targeting SARS-CoV-2 has been a priority since 2020. The continuous evolution of new mutants increases the need for more research in the area. One way to find new leads is to repurpose existing drugs and molecules against the required target. Here, we present the in vitro and in silico screening of ten previously synthesized and reported compounds as anti-COVID 19 agents. The compounds were screened in vitro against VERO-E6 cells to find their Cytotoxic Concentration (CC50) and their Inhibitory Concentration (IC50). Compounds 1, 2, and 5 revealed a promising anti-SARS-CoV-2 of (IC50 = 2.4, 11.2 and 2.8 µM), respectively while compounds 3 and 7 showed moderate activity of (IC50 = 17.8 and 26.1 µM) compared to Chloroquine which showed an IC50 of 24.9 µM. Among tested compounds, 1 showed the highest selectivity (CC50/IC50) of 192.8. Docking, molecular dynamics and ADME studies were done to investigate potential interactions between compounds and SARS-CoV-2 targets as well as to study the possibility of using them as lead compounds.
PMID:39014447 | DOI:10.1186/s13065-024-01233-z