Drug Repositioning
Repurposing of Nano-Engineered Piroxicam as an Approach for Cutaneous Wound Healing
J Pharm Sci. 2024 Jun 9:S0022-3549(24)00224-7. doi: 10.1016/j.xphs.2024.06.003. Online ahead of print.
ABSTRACT
Drug repurposing is a potential strategy to overcome the huge economic expenses of wound healing products. This work aims to develop a topical gel of piroxicam encapsulated into a nanospanlastics vesicular system as an effective, dermal wound dressing. Firstly, piroxicam was entrapped into nanospanlastics formulations and optimized utilizing 23 full factorial experimental designs. The scrutinized factors were Span 60: Edge activator ratio, edge activator type, and permeation enhancer type. The measured responses were vesicle size (VS), polydispersity index (PDI), and % entrapment efficiency (EE). The optimized formula was further adopted into an alginate-pectin gel matrix to maximize adherence to the skin. The rheology and in-vitro release were studied for the developed nanospanlastics gel. Cytotoxicity and wound healing potential using scratch assay were assessed on human adult dermal fibroblast cells. The optimal piroxicam nanospanlastics formula demonstrated a VS of 124.1±1.3nm, PDI of 0.21±0.01, and EE% of 97.27±0.21%. About 70.0±0.9% and 57.4±0.1% of piroxicam were released from nanospanlastics dispersion and gel within 24h, respectively. Nanospanlastics gel of piroxicam flowed in a non-Newtonian pseudoplastic shear thinning pattern. It was also biocompatible with the human dermal fibroblast cells and significantly promoted their migration rate which suggests an auspicious cutaneous wound healing aptitude.
PMID:38862089 | DOI:10.1016/j.xphs.2024.06.003
Computer-aided drug discovery strategies for novel therapeutics for prostate cancer leveraging next-generating sequencing data
Expert Opin Drug Discov. 2024 Jun 11:1-13. doi: 10.1080/17460441.2024.2365370. Online ahead of print.
ABSTRACT
INTRODUCTION: Prostate cancer (PC) is the most common malignancy and accounts for a significant proportion of cancer deaths among men. Although initial therapy success can often be observed in patients diagnosed with localized PC, many patients eventually develop disease recurrence and metastasis. Without effective treatments, patients with aggressive PC display very poor survival. To curb the current high mortality rate, many investigations have been carried out to identify efficacious therapeutics. Compared to de novo drug designs, computational methods have been widely employed to offer actionable drug predictions in a fast and cost-efficient way. Particularly, powered by an increasing availability of next-generation sequencing molecular profiles from PC patients, computer-aided approaches can be tailored to screen for candidate drugs.
AREAS COVERED: Herein, the authors review the recent advances in computational methods for drug discovery utilizing molecular profiles from PC patients. Given the uniqueness in PC therapeutic needs, they discuss in detail the drug discovery goals of these studies, highlighting their translational values for clinically impactful drug nomination.
EXPERT OPINION: Evolving molecular profiling techniques may enable new perspectives for computer-aided approaches to offer drug candidates for different tumor microenvironments. With ongoing efforts to incorporate new compounds into large-scale high-throughput screens, the authors envision continued expansion of drug candidate pools.
PMID:38860709 | DOI:10.1080/17460441.2024.2365370
Drug Repurposing Patent Applications January-March 2024
Assay Drug Dev Technol. 2024 Jun 11. doi: 10.1089/adt.2024.047. Online ahead of print.
NO ABSTRACT
PMID:38860380 | DOI:10.1089/adt.2024.047
Repositioning of antiarrhythmics for prostate cancer treatment: a novel strategy to reprogram cancer-associated fibroblasts towards a tumor-suppressive phenotype
J Exp Clin Cancer Res. 2024 Jun 11;43(1):161. doi: 10.1186/s13046-024-03081-0.
ABSTRACT
BACKGROUND: Cancer-associated fibroblasts (CAFs) play a significant role in fueling prostate cancer (PCa) progression by interacting with tumor cells. A previous gene expression analysis revealed that CAFs up-regulate genes coding for voltage-gated cation channels, as compared to normal prostate fibroblasts (NPFs). In this study, we explored the impact of antiarrhythmic drugs, known cation channel inhibitors, on the activated state of CAFs and their interaction with PCa cells.
METHODS: The effect of antiarrhythmic treatment on CAF activated phenotype was assessed in terms of cell morphology and fibroblast activation markers. CAF contractility and migration were evaluated by 3D gel collagen contraction and scratch assays, respectively. The ability of antiarrhythmics to impair CAF-PCa cell interplay was investigated in CAF-PCa cell co-cultures by assessing tumor cell growth and expression of epithelial-to-mesenchymal transition (EMT) markers. The effect on in vivo tumor growth was assessed by subcutaneously injecting PCa cells in SCID mice and intratumorally administering the medium of antiarrhythmic-treated CAFs or in co-injection experiments, where antiarrhythmic-treated CAFs were co-injected with PCa cells.
RESULTS: Activated fibroblasts show increased membrane conductance for potassium, sodium and calcium, consistently with the mRNA and protein content analysis. Antiarrhythmics modulate the expression of fibroblast activation markers. Although to a variable extent, these drugs also reduce CAF motility and hinder their ability to remodel the extracellular matrix, for example by reducing MMP-2 release. Furthermore, conditioned medium and co-culture experiments showed that antiarrhythmics can, at least in part, reverse the protumor effects exerted by CAFs on PCa cell growth and plasticity, both in androgen-sensitive and castration-resistant cell lines. Consistently, the transcriptome of antiarrhythmic-treated CAFs resembles that of tumor-suppressive NPFs. In vivo experiments confirmed that the conditioned medium or the direct coinjection of antiarrhythmic-treated CAFs reduced the tumor growth rate of PCa xenografts.
CONCLUSIONS: Collectively, such data suggest a new therapeutic strategy for PCa based on the repositioning of antiarrhythmic drugs with the aim of normalizing CAF phenotype and creating a less permissive tumor microenvironment.
PMID:38858661 | DOI:10.1186/s13046-024-03081-0
Management of Neisseria gonorrhoeae infection: from drug resistance to drug repurposing
Expert Opin Ther Pat. 2024 Jun 10. doi: 10.1080/13543776.2024.2367005. Online ahead of print.
ABSTRACT
INTRODUCTION: Neisseria gonorrhoeae is a common sexually transmitted disease connected with extensive drug resistance to many antibiotics. Presently, only expanded spectrum cephalosporins (ceftriaxone and cefixime) and azithromycin remain useful for its management.
AREAS COVERED: New chemotypes for the classical antibiotic drug targets gyrase/topoisomerase IV afforded inhibitors with potent binding to these enzymes, by an inhibition mechanism distinct from that of fluoroquinolones, and thus less prone to mutations. The α-carbonic anhydrase from the genome of this bacterium (NgCAα) was also validated as an antibacterial target.
EXPERT OPINION: By exploiting different subunits from the gyrase/topoisomerase IV as well as new chemotypes, two new antibiotics reached Phase II/III clinical trials, zoliflodacin and gepotidacin. They possess a novel inhibition mechanism, binding in distinct parts of the enzyme compared to the fluoroquinolones. Other chemotypes with inhibitory activity on these enzymes were also reported. NgCAα inhibitors belonging to a variety of classes were obtained, with several sulfonamides showing MIC values in the range of 0.25 - 4 µg/mL and significant activity in animal models of this infection. Acetazolamide and similar CA inhibitors might be thus repurposed as antiinfectives. The scientific/patent literature has been searched for on PubMed, ScienceDirect, Espacenet, and PatentGuru, from 2016 to 2024.
PMID:38856987 | DOI:10.1080/13543776.2024.2367005
Drug repositioning identifies histone deacetylase inhibitors that promote innate immunity in non-tuberculous mycobacterial infection
Can J Microbiol. 2024 Jun 10. doi: 10.1139/cjm-2023-0127. Online ahead of print.
ABSTRACT
Non-tuberculosis infections in immunocompromised patients represent a cause for concern, given the increased risks of infection, and limited treatments available. Herein, we report that molecules for binding to the catalytic site of histone deacetylase (HDAC) inhibit its activity, thus increasing the innate immune response against environmental mycobacteria. The action of HDAC inhibitors (iHDACs) was explored in a model of type II pneumocytes and macrophages infection by Mycobacterium aurum. The results show that the use of 1,3-diphenylurea increases the expression of the TLR-4 in M. aurum infected MDMs, as well as the production of defb4, IL-1β, IL-12, and IL-6. Moreover, we observed that aminoacetanilide upregulates the expression of TLR-4 together with TLR-9, defb4, CAMP, RNase 6, RNase 7, IL-1β, IL-12, and IL-6 in T2P. Results conclude that the tested iHDACs selectively modulate the expression of cytokines and antimicrobial peptides that are associated with reduction of non-tuberculous mycobacteria infection.
PMID:38855942 | DOI:10.1139/cjm-2023-0127
Identification of Novel Inhibitors for ERα Target of Breast Cancer By In Silico Approach
Curr Comput Aided Drug Des. 2024 Jun 5. doi: 10.2174/0115734099301866240527100128. Online ahead of print.
ABSTRACT
BACKGROUND: Estrogen alpha has been recognized as a perilous factor in breast cancer cell proliferation and has been proficiently treated in breast cancer chemotherapy with the development of selective estrogen receptor modulators (SERMs).
OBJECTIVES: The major aim of this study was to identify the potential inhibitors against the most influential target ERα receptor by in silico studies of 115 phytochemicals from 17 medicinal plants using in silico molecular docking studies.
METHODS: The molecular docking investigation was carried out by a genetic algorithm using the Auto Dock Vina program, and the validation of docking was also performed using molecular dynamic (MD) simulation by the Desmond tool of Schrödinger molecular modeling. The ADME( T) studies were performed by SWISS ADME and ProTox-II.
RESULTS: The top ten highest binding energy phytochemicals identified were amyrin acetate (- 10.7 kcal/mol), uscharine (-10.5 kcal/mol), voruscharin (-10.0 kcal/mol), cyclitols (-10.0 kcal/mol), taraxeryl acetate (-9.9 kcal/mol), amyrin (-9.9 kcal/mol), barringtogenol C (-9.9 kcal/mol), calactin (-9.9 kcal/mol), 3-beta taraxerol (-9.8 kcal/mol), and calotoxin (-9.8 kcal/mol). A molecular docking study revealed that these phytochemical constituents showed higher binding affinity compared to the reference standard tamoxifen (-6.6 kcal/mol) towards the target protein ERα. The results of MD studies showed that all four tested compounds possess comparatively stable ligand-protein complexes with ERα target as compared to the tamoxifen- ERα complex.
CONCLUSION: Among the ten compounds, phytochemical amyrin acetate (triterpenoids) formed a more stable complex as well as exhibited greater binding affinity than standard tamoxifen. ADMET studies for the top ten phytochemicals showed a good safety profile. Additionally, these compounds are being reported for the first time in this study as possible inhibitors of ERα for the treatment of breast cancer by adopting the concept of drug repurposing. Hence, these phytochemicals can be further studied and can be used as a parent core molecule to develop novel lead molecules for breast cancer therapy.
PMID:38847264 | DOI:10.2174/0115734099301866240527100128
Computational drug discovery approaches identify mebendazole as a candidate treatment for autosomal dominant polycystic kidney disease
Front Pharmacol. 2024 May 23;15:1397864. doi: 10.3389/fphar.2024.1397864. eCollection 2024.
ABSTRACT
Autosomal dominant polycystic kidney disease (ADPKD) is a rare genetic disorder characterised by numerous renal cysts, the progressive expansion of which can impact kidney function and lead eventually to renal failure. Tolvaptan is the only disease-modifying drug approved for the treatment of ADPKD, however its poor side effect and safety profile necessitates the need for the development of new therapeutics in this area. Using a combination of transcriptomic and machine learning computational drug discovery tools, we predicted that a number of existing drugs could have utility in the treatment of ADPKD, and subsequently validated several of these drug predictions in established models of disease. We determined that the anthelmintic mebendazole was a potent anti-cystic agent in human cellular and in vivo models of ADPKD, and is likely acting through the inhibition of microtubule polymerisation and protein kinase activity. These findings demonstrate the utility of combining computational approaches to identify and understand potential new treatments for traditionally underserved rare diseases.
PMID:38846086 | PMC:PMC11154008 | DOI:10.3389/fphar.2024.1397864
Computational therapeutic repurposing of tavaborole targeting arginase-1 for venous leg ulcer
Comput Biol Chem. 2024 May 27;111:108112. doi: 10.1016/j.compbiolchem.2024.108112. Online ahead of print.
ABSTRACT
Venous leg ulcers (VLUs) pose a growing healthcare challenge due to aging, obesity, and sedentary lifestyles. Despite various treatments available, addressing the complex nature of VLUs remains difficult. In this context, this study investigates repurposing boronated drugs to inhibit arginase 1 activity for VLU treatment. The molecular docking study conducted by Schrodinger GLIDE targeted the binuclear manganese cluster of arginase 1 enzyme (2PHO). Further, the ligand-protein complex was subjected to molecular dynamic studies at 500 ns in Gromacs-2019.4. Trajectory analysis was performed using the GROMACS simulation package of protein RMSD, RMSF, RG, SASA, and H-Bond. The docking study revealed intriguing results where the tavaborole showed a better docking score (-3.957 Kcal/mol) compared to the substrate L-arginine (-3.379 Kcal/mol) and standard L-norvaline (-3.141 Kcal/mol). Tavaborole interaction with aspartic acid ultimately suggests that the drug molecule binds to the catalytic site of arginase 1, potentially influencing the enzyme's function. The dynamics study revealed the compounds' stability and compactness of the protein throughout the simulation. The RMSD, RMSF, SASA, RG, inter and intra H-bond, PCA, FEL, and MMBSA studies affirmed the ligand-protein and protein complex flexibility, compactness, binding energy, van der waals energy, and solvation dynamics. These results revealed the stability and the interaction of the ligand with the catalytic site of arginase 1 enzyme, triggering the study towards the VLU treatment.
PMID:38843583 | DOI:10.1016/j.compbiolchem.2024.108112
Blocking CCR5 activity by maraviroc augmentation in post-stroke depression: a proof-of-concept clinical trial
BMC Neurol. 2024 Jun 6;24(1):190. doi: 10.1186/s12883-024-03683-3.
ABSTRACT
BACKGROUND: Post-stroke depression (PSD) is a significant impediment to successful rehabilitation and recovery after a stroke. Current therapeutic options are limited, leaving an unmet demand for specific and effective therapeutic options. Our objective was to investigate the safety of Maraviroc, a CCR5 antagonist, as a possible mechanism-based add-on therapeutic option for PSD in an open-label proof-of-concept clinical trial.
METHODS: We conducted a 10-week clinical trial in which ten patients with subcortical and cortical stroke, suffering from PSD. were administered a daily oral dose of 300 mg Maraviroc. Participants were then monitored for an additional eight weeks. The primary outcome measure was serious treatment-emergent adverse events (TEAEs) and TEAEs leading to discontinuation. The secondary outcome measure was a change in the Montgomery-Asberg Depression Rating Scale (MADRS).
RESULTS: Maraviroc was well tolerated, with no reports of serious adverse events or discontinuations due to intolerance. The MADRS scores substantially reduced from baseline to week 10 (mean change: -16.4 ± 9.3; p < 0.001). By the conclusion of the treatment phase, a favorable response was observed in five patients, with four achieving remission. The time to response was relatively short, approximately three weeks. After the cessation of treatment, MADRS scores increased at week 18 by 6.1 ± 9.6 points (p = 0.014).
CONCLUSIONS: Our proof-of-concept study suggests that a daily dosage of 300 mg of Maraviroc may represent a well-tolerated and potentially effective pharmacological approach to treating PSD. Further comprehensive placebo-controlled studies are needed to assess the impact of Maraviroc augmentation on PSD.
TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT05932550, Retrospectively registered: 28/06/2023.
PMID:38844862 | DOI:10.1186/s12883-024-03683-3
Artificial intelligence in drug repurposing for rare diseases: a mini-review
Front Med (Lausanne). 2024 May 22;11:1404338. doi: 10.3389/fmed.2024.1404338. eCollection 2024.
ABSTRACT
Drug repurposing, the process of identifying new uses for existing drugs beyond their original indications, offers significant advantages in terms of reduced development time and costs, particularly in addressing unmet medical needs in rare diseases. Artificial intelligence (AI) has emerged as a transformative force in healthcare, and by leveraging AI technologies, researchers aim to overcome some of the challenges associated with rare diseases. This review presents concrete case studies, as well as pre-existing platforms, initiatives, and companies that demonstrate the application of AI for drug repurposing in rare diseases. Despite representing a modest part of the literature compared to other diseases such as COVID-19 or cancer, the growing interest, and investment in AI for drug repurposing in rare diseases underscore its potential to accelerate treatment availability for patients with unmet medical needs.
PMID:38841574 | PMC:PMC11150798 | DOI:10.3389/fmed.2024.1404338
Prescribed Drug Use and Aneurysmal Subarachnoid Hemorrhage Incidence: A Drug-Wide Association Study
Neurology. 2024 Jun 25;102(12):e209479. doi: 10.1212/WNL.0000000000209479. Epub 2024 Jun 5.
ABSTRACT
BACKGROUND AND OBJECTIVES: Current benefits of invasive intracranial aneurysm treatment to prevent aneurysmal subarachnoid hemorrhage (aSAH) rarely outweigh treatment risks. Most intracranial aneurysms thus remain untreated. Commonly prescribed drugs reducing aSAH incidence may provide leads for drug repurposing. We performed a drug-wide association study (DWAS) to systematically investigate the association between commonly prescribed drugs and aSAH incidence.
METHODS: We defined all aSAH cases between 2000 and 2020 using International Classification of Diseases codes from the Secure Anonymised Information Linkage databank. Each case was matched with 9 controls based on age, sex, and year of database entry. We investigated commonly prescribed drugs (>2% in study population) and defined 3 exposure windows relative to the most recent prescription before index date (i.e., occurrence of aSAH): current (within 3 months), recent (3-12 months), and past (>12 months). A logistic regression model was fitted to compare drug use across these exposure windows vs never use, controlling for age, sex, known aSAH risk factors, and health care utilization. The family-wise error rate was kept at p < 0.05 through Bonferroni correction.
RESULTS: We investigated exposure to 205 commonly prescribed drugs between 4,879 aSAH cases (mean age 61.4, 61.2% women) and 43,911 matched controls. We found similar trends for lisinopril and amlodipine, with a decreased aSAH risk for current use (lisinopril odds ratio [OR] 0.63, 95% CI 0.44-0.90, amlodipine OR 0.82, 95% CI 0.65-1.04) and an increased aSAH risk for recent use (lisinopril OR 1.30, 95% CI 0.61-2.78, amlodipine OR 1.61, 95% CI 1.04-2.48). A decreased aSAH risk in current use was also found for simvastatin (OR 0.78, 95% CI 0.64-0.96), metformin (OR 0.58, 95% CI 0.43-0.78), and tamsulosin (OR 0.55, 95% CI 0.32-0.93). By contrast, an increased aSAH risk was found for current use of warfarin (OR 1.35, 95% CI 1.02-1.79), venlafaxine (OR 1.67, 95% CI 1.01-2.75), prochlorperazine (OR 2.15, 95% CI 1.45-3.18), and co-codamol (OR 1.31, 95% CI 1.10-1.56).
DISCUSSION: We identified several drugs associated with aSAH, of which 5 drugs (lisinopril and possibly amlodipine, simvastatin, metformin, and tamsulosin) showed a decreased aSAH risk. Future research should build on these signals to further assess the effectiveness of these drugs in reducing aSAH incidence.
CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that some commonly prescribed drugs are associated with subsequent development of aSAH.
PMID:38838229 | DOI:10.1212/WNL.0000000000209479
Knowledge Graph Convolutional Network with Heuristic Search for Drug Repositioning
J Chem Inf Model. 2024 Jun 5. doi: 10.1021/acs.jcim.4c00737. Online ahead of print.
ABSTRACT
Drug repositioning is a strategy of repurposing approved drugs for treating new indications, which can accelerate the drug discovery process, reduce development costs, and lower the safety risk. The advancement of biotechnology has significantly accelerated the speed and scale of biological data generation, offering significant potential for drug repositioning through biomedical knowledge graphs that integrate diverse entities and relations from various biomedical sources. To fully learn the semantic information and topological structure information from the biological knowledge graph, we propose a knowledge graph convolutional network with a heuristic search, named KGCNH, which can effectively utilize the diversity of entities and relationships in biological knowledge graphs, as well as topological structure information, to predict the associations between drugs and diseases. Specifically, we design a relation-aware attention mechanism to compute the attention scores for each neighboring entity of a given entity under different relations. To address the challenge of randomness of the initial attention scores potentially impacting model performance and to expand the search scope of the model, we designed a heuristic search module based on Gumbel-Softmax, which uses attention scores as heuristic information and introduces randomness to assist the model in exploring more optimal embeddings of drugs and diseases. Following this module, we derive the relation weights, obtain the embeddings of drugs and diseases through neighborhood aggregation, and then predict drug-disease associations. Additionally, we employ feature-based augmented views to enhance model robustness and mitigate overfitting issues. We have implemented our method and conducted experiments on two data sets. The results demonstrate that KGCNH outperforms competing methods. In particular, case studies on lithium and quetiapine confirm that KGCNH can retrieve more actual drug-disease associations in the top prediction results.
PMID:38837744 | DOI:10.1021/acs.jcim.4c00737
Towards precision medicine in vascular anomalies: Could protein kinase C inhibitors be repurposed for GNAQ/11-related phakomatoses?
Skin Res Technol. 2024 Jun;30(6):e13736. doi: 10.1111/srt.13736.
NO ABSTRACT
PMID:38837501 | DOI:10.1111/srt.13736
Drug-target interaction predictions with multi-view similarity network fusion strategy and deep interactive attention mechanism
Bioinformatics. 2024 Jun 5:btae346. doi: 10.1093/bioinformatics/btae346. Online ahead of print.
ABSTRACT
MOTIVATION: Accurately identifying the drug-target interactions (DTIs) is one of the crucial steps in the drug discovery and drug repositioning process. Currently, many computational-based models have already been proposed for DTI prediction and achieved some significant improvement. However, these approaches pay little attention to fuse the multi-view similarity networks related to drugs and targets in an appropriate way. Besides, how to fully incorporate the known interaction relationships to accurately represent drugs and targets is not well investigated. Therefore, there is still a need to improve the accuracy of DTI prediction models.
RESULTS: In this study, we propose a novel approach that employs Multi-view similarity network fusion strategy and deep Interactive attention mechanism to predict Drug-Target Interactions (MIDTI). First, MIDTI constructs multi-view similarity networks of drugs and targets with their diverse information and integrates these similarity networks effectively in an unsupervised manner. Then, MIDTI obtains the embeddings of drugs and targets from multi-type networks simultaneously. After that, MIDTI adopts the deep interactive attention mechanism to further learn their discriminative embeddings comprehensively with the known DTI relationships. Finally, we feed the learned representations of drugs and targets to the multilayer perceptron (MLP) model and predict the underlying interactions. Extensive results indicate that MIDTI significantly outperforms other baseline methods on the DTI prediction task. The results of the ablation experiments also confirm the effectiveness of the attention mechanism in the multi-view similarity network fusion strategy and the deep interactive attention mechanism.
AVAILABILITY: https://github.com/XuLew/MIDTI.
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
PMID:38837345 | DOI:10.1093/bioinformatics/btae346
Integrated systems biology analysis of acute lymphoblastic leukemia: unveiling molecular signatures and drug repurposing opportunities
Ann Hematol. 2024 Jun 5. doi: 10.1007/s00277-024-05821-w. Online ahead of print.
ABSTRACT
Acute lymphoblastic leukemia (ALL) is a hematological malignancy characterized by aberrant proliferation and accumulation of lymphoid precursor cells within the bone marrow. The tyrosine kinase inhibitor (TKI), imatinib mesylate, has played a significant role in the treatment of Philadelphia chromosome-positive ALL (Ph + ALL). However, the achievement of durable and sustained therapeutic success remains a challenge due to the development of TKI resistance during the clinical course.The primary objective of this investigation is to propose a novel and efficacious treatment approach through drug repositioning, targeting ALL and its Ph + subtype by identifying and addressing differentially expressed genes (DEGs). This study involves a comprehensive analysis of transcriptome datasets pertaining to ALL and Ph + ALL in order to identify DEGs associated with the progression of these diseases to identify possible repurposable drugs that target identified hub proteins.The outcomes of this research have unveiled 698 disease-related DEGs for ALL and 100 for Ph + ALL. Furthermore, a subset of drugs, specifically glipizide for Ph + ALL, and maytansine and isoprenaline for ALL, have been identified as potential candidates for therapeutic intervention. Subsequently, cytotoxicity assessments were performed to confirm the in vitro cytotoxic effects of these selected drugs on both ALL and Ph + ALL cell lines.In conclusion, this study offers a promising avenue for the management of ALL and Ph + ALL through drug repurposed drugs. Further investigations are necessary to elucidate the mechanisms underlying cell death, and clinical trials are recommended to validate the promising results obtained through drug repositioning strategies.
PMID:38836918 | DOI:10.1007/s00277-024-05821-w
Chemosensitizing effect of pentoxifylline in sensitive and multidrug-resistant non-small cell lung cancer cells
Cancer Drug Resist. 2024 May 20;7:19. doi: 10.20517/cdr.2024.04. eCollection 2024.
ABSTRACT
Aim: Multidrug resistance (MDR) is frequent in non-small cell lung cancer (NSCLC) patients, which can be due to its fibrotic stroma. This work explores the combination of pentoxifylline, an anti-fibrotic and chitinase 3-like-1 (CHI3L1) inhibitor drug, with conventional chemotherapy to improve NSCLC treatment. Methods: The effect of pentoxifylline in the expression levels of P-glycoprotein (P-gp), CHI3L1 and its main downstream proteins, as well as on cell death, cell cycle profile, and P-gp activity was studied in two pairs of sensitive and MDR counterpart NSCLC cell lines (NCI-H460/NCI-H460/R and A549/A549-CDR2). Association studies between CHI3L1 gene expression and NSCLC patients' survival were performed using The Cancer Genome Atlas (TCGA) analysis. The sensitizing effect of pentoxifylline to different drug regimens was evaluated in both sensitive and MDR NSCLC cell lines. The cytotoxicity of the drug combinations was assessed in MCF10A non-tumorigenic cells. Results: Pentoxifylline slightly decreased the expression levels of CHI3L1, β-catenin and signal transducer and activator of transcription 3 (STAT3), and caused a significant increase in the G1 phase of the cell cycle in both pairs of NSCLC cell lines. A significant increase in the % of cell death was observed in the sensitive NCI-H460 cell line. TCGA analysis revealed that high levels of CHI3L1 are associated with low overall survival (OS) in NSCLC patients treated with vinorelbine. Moreover, pentoxifylline sensitized both pairs of sensitive and MDR NSCLC cell lines to the different drug regimens, without causing significant toxicity to non-tumorigenic cells. Conclusion: This study suggests the possibility of combining pentoxifylline with chemotherapy to increase NSCLC therapeutic response, even in cases of MDR.
PMID:38835347 | PMC:PMC11149106 | DOI:10.20517/cdr.2024.04
Systematic druggable genome-wide Mendelian randomization identifies therapeutic targets for lung cancer
BMC Cancer. 2024 Jun 4;24(1):680. doi: 10.1186/s12885-024-12449-6.
ABSTRACT
BACKGROUND: Drug repurposing provides a cost-effective approach to address the need for lung cancer prevention and therapeutics. We aimed to identify actionable druggable targets using Mendelian randomization (MR).
METHODS: Summary-level data of gene expression quantitative trait loci (eQTLs) were sourced from the eQTLGen resource. We procured genetic associations with lung cancer and its subtypes from the TRICL, ILCCO studies (discovery) and the FinnGen study (replication). We implemented Summary-data-based Mendelian Randomization analysis to identify potential therapeutic targets for lung cancer. Colocalization analysis was further conducted to assess whether the identified signal pairs shared a causal genetic variant.
FINDINGS: In the main analysis dataset, we identified 55 genes that demonstrate a causal relationship with lung cancer and its subtypes. However, in the replication cohort, only three genes were found to have such a causal association with lung cancer and its subtypes, and of these, HYKK (also known as AGPHD1) was consistently present in both the primary analysis dataset and the replication cohort. Following HEIDI tests and colocalization analyses, it was revealed that HYKK (AGPHD1) is associated with an increased risk of squamous cell carcinoma of the lung, with an odds ratio and confidence interval of OR = 1.28,95%CI = 1.24 to 1.33.
INTERPRETATION: We have found that the HYKK (AGPHD1) gene is associated with an increased risk of squamous cell carcinoma of the lung, suggesting that this gene may represent a potential therapeutic target for both the prevention and treatment of lung squamous cell carcinoma.
PMID:38834983 | DOI:10.1186/s12885-024-12449-6
Protein target similarity is positive predictor of in vitro antipathogenic activity: a drug repurposing strategy for Plasmodium falciparum
J Cheminform. 2024 May 30;16(1):63. doi: 10.1186/s13321-024-00856-7.
ABSTRACT
Drug discovery is an intricate and costly process. Repurposing existing drugs and active compounds offers a viable pathway to develop new therapies for various diseases. By leveraging publicly available biomedical information, it is possible to predict compounds' activity and identify their potential targets across diverse organisms. In this study, we aimed to assess the antiplasmodial activity of compounds from the Repurposing, Focused Rescue, and Accelerated Medchem (ReFRAME) library using in vitro and bioinformatics approaches. We assessed the in vitro antiplasmodial activity of the compounds using blood-stage and liver-stage drug susceptibility assays. We used protein sequences of known targets of the ReFRAME compounds with high antiplasmodial activity (EC50 < 10 uM) to conduct a protein-pairwise search to identify similar Plasmodium falciparum 3D7 proteins (from PlasmoDB) using NCBI protein BLAST. We further assessed the association between the compounds' in vitro antiplasmodial activity and level of similarity between their known and predicted P. falciparum target proteins using simple linear regression analyses. BLAST analyses revealed 735 P. falciparum proteins that were similar to the 226 known protein targets associated with the ReFRAME compounds. Antiplasmodial activity of the compounds was positively associated with the degree of similarity between the compounds' known targets and predicted P. falciparum protein targets (percentage identity, E value, and bit score), the number of the predicted P. falciparum targets, and their respective mutagenesis index and fitness scores (R2 between 0.066 and 0.92, P < 0.05). Compounds predicted to target essential P. falciparum proteins or those with a druggability index of 1 showed the highest antiplasmodial activity.
PMID:38831351 | DOI:10.1186/s13321-024-00856-7
Identification of Orthosteric and Allosteric Pharmacological Chaperones for Mucopolysaccharidosis type IIIB
Chembiochem. 2024 Jun 3:e202400081. doi: 10.1002/cbic.202400081. Online ahead of print.
ABSTRACT
Mucopolysaccharidosis type IIIB (MPS IIIB) is an autosomal inherited disease caused by mutations in gene encoding the lysosomal enzyme N-acetyl-alpha-glucosaminidase (NAGLU). These mutations result in reduced NAGLU activity, preventing it from catalyzing the hydrolysis of the glycosaminoglycan heparan sulfate (HS). There are currently no approved treatments for MPS IIIB. A novel approach in the treatment of lysosomal storage diseases is the use of pharmacological chaperones (PC). In this study, we used a drug repurposing approach to identify and characterize novel potential PCs for NAGLU enzyme. We modeled the interaction of natural and artificial substrates within the active cavity of NAGLU (orthosteric site) and predicted potential allosteric sites. We performed a virtual screening for both the orthosteric and the predicted allosteric site against a curated database of human tested molecules. Considering the binding affinity and predicted blood-brain barrier permeability and gastrointestinal absorption, we selected atovaquone and piperaquine as orthosteric and allosteric PCs. The PCs were evaluated by their capacity to bind NAGLU and the ability to restore the enzymatic activity in human MPS IIIB fibroblasts These results represent novel PCs described for MPS IIIB and demonstrate the potential to develop novel therapeutic alternatives for this and other protein deficiency diseases.
PMID:38830828 | DOI:10.1002/cbic.202400081