Drug Repositioning
Repurposing disulfiram with CuET nanocrystals: Enhancing anti-pyroptotic effect through NLRP3 inflammasome inhibition for treating inflammatory bowel diseases
Acta Pharm Sin B. 2024 Jun;14(6):2698-2715. doi: 10.1016/j.apsb.2024.03.003. Epub 2024 Mar 15.
ABSTRACT
Drug repurposing offers a valuable strategy for identifying new therapeutic applications for existing drugs. Recently, disulfiram (DSF), a drug primarily used for alcohol addiction treatment, has emerged as a potential treatment for inflammatory diseases by inhibiting pyroptosis, a form of programmed cell death. The therapeutic activity of DSF can be further enhanced by the presence of Cu2+, although the underlying mechanism of this enhancement remains unclear. In this study, we investigated the mechanistic basis of Cu2+-induced enhancement and discovered that it is attributed to the formation of a novel copper ethylthiocarbamate (CuET) complex. CuET exhibited significantly stronger anti-pyroptotic activity compared to DSF and employed a distinct mechanism of action. However, despite its potent activity, CuET suffered from poor solubility and limited permeability, as revealed by our druggability studies. To overcome these intrinsic limitations, we developed a scalable method to prepare CuET nanocrystals (CuET NCs) using a metal coordination-driven self-assembly approach. Pharmacokinetic studies demonstrated that CuET NCs exhibited a 6-fold improvement in bioavailability. Notably, CuET NCs exhibited high biodistribution in the intestine, suggesting their potential application for the treatment of inflammatory bowel diseases (IBDs). To evaluate their therapeutic efficacy in vivo, we employed a murine model of DSS-induced colitis and observed that CuET NCs effectively attenuated inflammation and ameliorated colitis symptoms. Our findings highlight the discovery of CuET as a potent anti-pyroptotic agent, and the development of CuET NCs represents a novel approach to enhance the druggability of CuET.
PMID:38828135 | PMC:PMC11143773 | DOI:10.1016/j.apsb.2024.03.003
Cross-phenotype associations between Alzheimer's Disease and its comorbidities may provide clues to progression
AMIA Jt Summits Transl Sci Proc. 2024 May 31;2024:623-631. eCollection 2024.
ABSTRACT
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide, with one in nine people over the age of 65 living with the disease in 2023. In this study, we used a phenome wide association study (PheWAS) approach to identify cross-phenotype between previously identified genetic associations for AD and electronic health record (EHR) diagnoses from the UK Biobank (UKBB) (n=361,194 of European ancestry) and the eMERGE Network (n=105,108 of diverse ancestry). Based on 497 previously identified AD-associated variants from the Alzheimer's Disease Variant Portal (ADVP), we found significant associations primarily in immune and cardiac related diseases in our PheWAS. Replicating variants have widespread impacts on immune genes in diverse tissue types. This study demonstrates the potential of using the PheWAS strategy to improve our understanding of AD progression as well as identify potential drug repurposing opportunities for new treatment and disease prevention strategies.
PMID:38827078 | PMC:PMC11141840
Polygenic and transcriptional risk scores identify chronic obstructive pulmonary disease subtypes
medRxiv [Preprint]. 2024 May 20:2024.05.20.24307621. doi: 10.1101/2024.05.20.24307621.
ABSTRACT
RATIONALE: Genetic variants and gene expression predict risk of chronic obstructive pulmonary disease (COPD), but their effect on COPD heterogeneity is unclear.
OBJECTIVES: Define high-risk COPD subtypes using both genetics (polygenic risk score, PRS) and blood gene expression (transcriptional risk score, TRS) and assess differences in clinical and molecular characteristics.
METHODS: We defined high-risk groups based on PRS and TRS quantiles by maximizing differences in protein biomarkers in a COPDGene training set and identified these groups in COPDGene and ECLIPSE test sets. We tested multivariable associations of subgroups with clinical outcomes and compared protein-protein interaction networks and drug repurposing analyses between high-risk groups.
MEASUREMENTS AND MAIN RESULTS: We examined two high-risk omics-defined groups in non-overlapping test sets (n=1,133 NHW COPDGene, n=299 African American (AA) COPDGene, n=468 ECLIPSE). We defined "High activity" (low PRS/high TRS) and "severe risk" (high PRS/high TRS) subgroups. Participants in both subgroups had lower body-mass index (BMI), lower lung function, and alterations in metabolic, growth, and immune signaling processes compared to a low-risk (low PRS, low TRS) reference subgroup. "High activity" but not "severe risk" participants had greater prospective FEV 1 decline (COPDGene: -51 mL/year; ECLIPSE: - 40 mL/year) and their proteomic profiles were enriched in gene sets perturbed by treatment with 5-lipoxygenase inhibitors and angiotensin-converting enzyme (ACE) inhibitors.
CONCLUSIONS: Concomitant use of polygenic and transcriptional risk scores identified clinical and molecular heterogeneity amongst high-risk individuals. Proteomic and drug repurposing analysis identified subtype-specific enrichment for therapies and suggest prior drug repurposing failures may be explained by patient selection.
PMID:38826461 | PMC:PMC11142287 | DOI:10.1101/2024.05.20.24307621
Identification of therapeutic drug target of Shigella Flexneri serotype X through subtractive genomic approach and in-silico screening based on drug repurposing
Infect Genet Evol. 2024 May 30:105611. doi: 10.1016/j.meegid.2024.105611. Online ahead of print.
ABSTRACT
Shigellosis, induced by Shigella flexneri, constitutes a significant health burden in developing nations, particularly impacting socioeconomically disadvantaged communities. Designated as the second most prevalent cause of diarrheal illness by the World Health Organization (WHO), it precipitates an estimated 212,000 fatalities annually. Within the spectrum of S. flexneri strains, serotype X is notably pervasive and resilient, yet its comprehensive characterization remains deficient. The present investigation endeavors to discern potential pharmacological targets and repurpose existing drug compounds against S. flexneri serotype X. Employing the framework of subtractive genomics, the study interrogates the reference genome of S. flexneri Serotype X (strain 2,002,017; UP000001884) to delineate its proteome into categories of non-homologous, non-paralogous, essential, virulent, and resistant constituents, thereby facilitating the identification of therapeutic targets. Subsequently, a screening of approximately 9000 compounds from the FDA library against the identified drug target aims to delineate efficacious agents for combating S. flexneri serotype X infections. The application of subtractive genomics methodology yields prognostic insights, unveiling non-paralogous proteins (n = 4122), non-homologues (n = 1803), essential (n = 1246), drug-like (n = 389), resistant (n = 167), alongside 42 virulent proteins within the reference proteome. This iterative process culminates in the identification of Serine O-acetyltransferase as a viable drug target. Subsequent virtual screening endeavors to unearth FDA-approved medicinal compounds capable of inhibiting Serine O-acetyltransferase. Noteworthy candidates such as DB12983, DB15085, DB16098, DB16185, and DB16262 emerge, exhibiting potential for mitigating S. flexneri Serotype X. Despite the auspicious findings, diligent scrutiny is imperative to ascertain the efficacy and safety profile of the proposed drug candidates vis-à-vis S. flexneri.
PMID:38823431 | DOI:10.1016/j.meegid.2024.105611
Repurposing Drugs for the Treatment of Osteoarthritis
Osteoarthritis Cartilage. 2024 May 29:S1063-4584(24)01207-X. doi: 10.1016/j.joca.2024.05.008. Online ahead of print.
ABSTRACT
OBJECTIVE: Currently, no disease-modifying therapies for osteoarthritis (OA) exist, and attempts to identify novel cellular targets have been challenging. Risk factors for OA include advanced age, obesity, and metabolic syndrome. This creates an attractive opportunity to repurpose existing drugs that are used to treat comorbidities commonly encountered in patients with OA, if those drugs possess OA disease modifying properties.
METHODS: This narrative review incorporates findings from knee or hand OA randomized clinical trials, post-hoc clinical trial analyses, prospective cohort studies, and observational data.
RESULTS: Drugs used for the treatment of rheumatoid arthritis (methotrexate; TNFa, IL-1, and IL-6 pathway inhibitors; hydroxychloroquine), atopic/allergic disease (anti-histamines), osteoporosis (bisphosphonates and vitamin D), type 2 diabetes (metformin and GLP-1 agonists), and cardiovascular disease (atorvastatin, fish oil, and beta blockers) were reviewed for their potential benefit in OA. This review outlines the successful attributes of repurposed drugs, the challenges in repurposing drugs, and strategies for future clinical trials to support OA drug repurposing. Potential drug candidates for OA may be identified through the use of existing datasets and via collaborations with researchers in other fields to include OA endpoints in future clinical trials.
CONCLUSION: Given the association of OA with several commonly treated comorbidities, drug repurposing is an appealing approach that could provide a favorable benefit-to-risk ratio for chronic OA treatment.
PMID:38821468 | DOI:10.1016/j.joca.2024.05.008
A systematic review of novel cannabinoids and their targets: insights into the significance of structure in activity
Eur J Pharmacol. 2024 May 29:176679. doi: 10.1016/j.ejphar.2024.176679. Online ahead of print.
ABSTRACT
To provide a comprehensive framework of the current information on the potency and efficacy of interaction between phyto- and synthetic cannabinoids and their respective receptors, an electronic search of the PubMed, Scopus, and EMBASE literature was performed. Experimental studies included reports of mechanistic data providing affinity, efficacy, and half-maximal effective concentration (EC50). Among the 108 included studies, 174 structures, and 16 targets were extracted. The most frequent ligands belonged to the miscellaneous category with 40.2% followed by phytocannabinoid-similar, indole-similar, and pyrrole-similar structures with an abundance of 17.8%, 16.6%, and 12% respectively. 64.8% of structures acted as agonists, 17.1 % appeared as inverse agonists, 10.8% as antagonists, and 7.2% of structures were reported with antagonist/ inverse agonist properties. Our outcomes identify the affinity, EC50, and efficacy of the interactions between cannabinoids and their corresponding receptors and the subsequent response, evaluated in the available evidence. Considering structures' significance and very important effects of on the activities, the obtained results also provide clues to drug repurposing.
PMID:38821167 | DOI:10.1016/j.ejphar.2024.176679
Effect of COVID-19 pandemic on influenza; observation of a tertiary level virology laboratory
Virusdisease. 2024 Mar;35(1):27-33. doi: 10.1007/s13337-024-00860-3. Epub 2024 Apr 2.
ABSTRACT
The lockdown enforced amid the COVID-19 pandemic has affected the occurrence and trends of various respiratory virus infections, with a particular focus on influenza. Our study seeks to analyze the repercussions of the COVID-19 pandemic on the positivity of the influenza virus throughout a 4-year span, encompassing both the pre-COVID-19 era (2018 and 2019) and the COVID-19 period (2020 and 2021). Data collected from patients clinically diagnosed with Influenza-like Illness and Severe Acute Respiratory Illness (SARI) from January 2018 to December 2021 for influenza virus detection were acquired and analyzed through multiplex RT-qPCR. The statistical analysis was conducted using SPSS (Statistical Package for Social Sciences) Version 21.0 Software. A total of 4464 samples were tested over 4 years (2018-2021), with 3201 samples from the pre-COVID era and 1263 samples from the COVID era. Influenza A positivity dropped from 17.7 to 9.57% and Influenza B positivity decreased from 3.74 to 2.61%. Subtyping revealed changes in prevalence for both viruses. Seasonal variations showed more pronounced peaks in the pre-COVID-19 era with reduced activity during lockdown. Influenza A saw a resurgence in August 2021. Throughout the COVID-19 pandemic (2020-2021) SARI cases did not decrease. The positivity rate for Influenza A slightly rose to 7.79% from 4.23% in the COVID period (2020-2021). This increase correlates with heightened hospitalization rates during the pandemic, sparking concerns of potential coinfection with coronavirus and Influenza A. The notable drop in influenza cases in 2020-2021 is likely due to stringent precautions, lockdowns, drug repurposing, and prioritized testing, indicating no reduction in influenza transmission. Increased influenza positivity in SARI patients during COVID-19 highlights a heightened risk of coinfection. Emphasizing solely on COVID-19 may lead to underreporting of other respiratory pathogens, including influenza viruses.
PMID:38817401 | PMC:PMC11133273 | DOI:10.1007/s13337-024-00860-3
Desloratadine <em>via</em> its anti-inflammatory and antioxidative properties ameliorates TNBS-induced experimental colitis in rats
Immunopharmacol Immunotoxicol. 2024 May 30:1-14. doi: 10.1080/08923973.2024.2360043. Online ahead of print.
ABSTRACT
BACKGROUND: Intestinal mucosal immune cells, notably mast cells, are pivotal in ulcerative colitis (UC) pathophysiology. Its activation elevates tissue concentrations of histamine. Inhibiting colonic histamine release could be an effective therapeutic strategy for treating UC. Experimental model like 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats mimic human IBD, aiding treatment investigations. Drug repurposing is a promising strategy to explore new indications for established drugs. Desloratadine (DES) is second-generation antihistamine utilized for managing allergies by blocking histamine action in the body. It also has reported anti-inflammatory and antioxidant actions.
OBJECTIVE: DES was investigated for its repurposing potential in UC by preclinical screening in TNBS-induced colitis in Wistar rats.
METHODS: Therapeutic efficacy of DES was evaluated both individually and in combination with standard drug 5-aminosalicylicacid (5-ASA). Rats were orally administered DES (10 mg/kg), 5-ASA (25 mg/kg), and DES + 5-ASA (5 mg + 12.15 mg) following the induction of colitis. Parameters including disease activity score rate (DASR), colon/body weight ratio (CBWR), colon length, diameter, pH, histological injury, and scoring were evaluated. Inflammatory biomarkers such as IL-1β, TNF-α, along with reduced glutathione (GSH), and malondialdehyde (MDA) were assessed.
RESULTS: Significant protective effects of DES, especially in combination with 5-ASA, against TNBS-induced inflammation were observed as evidenced by reduced DASR, CBWR, and improved colon morphology. Drugs significantly lowered plasma and colon histamine and, cytokines levels. GSH restoration, and decreased MDA content were also observed.
CONCLUSION: DES and DES + 5-ASA demonstrated potential in alleviating colonic inflammation associated with TNBS-induced colitis in rats. The effect can be attributed to its antihistamine, anticytokine, and antioxidative properties.
PMID:38816915 | DOI:10.1080/08923973.2024.2360043
Antidepressant-induced membrane trafficking regulates blood-brain barrier permeability
Mol Psychiatry. 2024 May 30. doi: 10.1038/s41380-024-02626-1. Online ahead of print.
ABSTRACT
As the most prescribed psychotropic drugs in current medical practice, antidepressant drugs (ADs) of the selective serotonin reuptake inhibitor (SSRI) class represent prime candidates for drug repurposing. The mechanisms underlying their mode of action, however, remain unclear. Here, we show that common SSRIs and selected representatives of other AD classes bidirectionally regulate fluid-phase uptake at therapeutic concentrations and below. We further characterize membrane trafficking induced by a canonical SSRI fluvoxamine to show that it involves enhancement of clathrin-mediated endocytosis, endosomal system, and exocytosis. RNA sequencing analysis showed few fluvoxamine-associated differences, consistent with the effect being independent of gene expression. Fluvoxamine-induced increase in membrane trafficking boosted transcytosis in cell-based blood-brain barrier models, while a single injection of fluvoxamine was sufficient to enable brain accumulation of a fluid-phase fluorescent tracer in vivo. These findings reveal modulation of membrane trafficking by ADs as a possible cellular mechanism of action and indicate their clinical repositioning potential for regulating drug delivery to the brain.
PMID:38816584 | DOI:10.1038/s41380-024-02626-1
Exploring current and emerging therapies for porphyrias
Liver Int. 2024 May 30. doi: 10.1111/liv.15979. Online ahead of print.
ABSTRACT
Porphyrias are rare, mostly inherited disorders resulting from altered activity of specific enzymes in the haem synthesis pathway that lead to accumulation of pathway intermediates. Photocutaneous symptoms occur when excess amounts of photoreactive porphyrins circulate in the blood to the skin, whereas increases in potentially neurotoxic porphyrin precursors are associated with neurovisceral symptoms. Current therapies are suboptimal and their mechanisms are not well established. As described here, emerging therapies address underlying disease mechanisms by introducing a gene, RNA or other specific molecule with the potential to cure or slow progression of the disease. Recent progress in nanotechnology and nanoscience, particularly regarding particle design and formulation, is expanding disease targets. More secure and efficient drug delivery systems have extended our toolbox for transferring specific molecules, especially into hepatocytes, and led to proof-of-concept studies in animal models. Repurposing existing drugs as molecular chaperones or haem synthesis inhibitors is also promising. This review summarizes key examples of these emerging therapeutic approaches and their application for hepatic and erythropoietic porphyrias.
PMID:38813953 | DOI:10.1111/liv.15979
Identification of Molecular Mechanisms of Ameloblastoma and Drug Repositioning by Integration of Bioinformatics Analysis and Molecular Docking Simulation
Bioinform Biol Insights. 2024 May 28;18:11779322241256459. doi: 10.1177/11779322241256459. eCollection 2024.
ABSTRACT
BACKGROUND: Ameloblastoma (AM) is a benign tumor locally originated from odontogenic epithelium that is commonly found in the jaw. This tumor makes aggressive invasions and has a high recurrence rate. This study aimed to investigate the differentially expressed genes (DEGs), biological function alterations, disease targets, and existing drugs for AM using bioinformatics analysis.
METHODS: The data set of AM was retrieved from the GEO database (GSE132474) and identified the DEGs using bioinformatics analysis. The biological alteration analysis was applied to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Protein-protein interaction (PPI) network analysis and hub gene identification were screened through NetworkAnalyst. The transcription factor-protein network was constructed via OmicsNet. We also identified candidate compounds from L1000CDS2 database. The target of AM and candidate compounds were verified using docking simulation.
RESULTS: Totally, 611 DEGs were identified. The biological function enrichment analysis revealed glycosaminoglycan and GABA (γ-aminobutyric acid) signaling were most significantly up-regulated and down-regulated in AM, respectively. Subsequently, hub genes and transcription factors were screened via the network and showed FOS protein was found in both networks. Furthermore, we evaluated FOS protein to be a therapeutic target in AMs. Candidate compounds were screened and verified using docking simulation. Tanespimycin showed the greatest affinity binding value to bind FOS protein.
CONCLUSIONS: This study presented the underlying molecular mechanisms of disease pathogenesis, biological alteration, and important pathways of AMs and provided a candidate compound, Tanespimycin, targeting FOS protein for the treatment of AMs.
PMID:38812739 | PMC:PMC11135093 | DOI:10.1177/11779322241256459
Toward structure-multiple activity relationships (SMARts) using computational approaches: A polypharmacological perspective
Drug Discov Today. 2024 May 27:104046. doi: 10.1016/j.drudis.2024.104046. Online ahead of print.
ABSTRACT
In the current era of biological big data, which are rapidly populating the biological chemical space, in silico polypharmacology drug design approaches help to decode structure-multiple activity relationships (SMARts). Current computational methods can predict or categorize multiple properties simultaneously, which aids the generation, identification, curation, prioritization, optimization, and repurposing of molecules. Computational methods have generated opportunities and challenges in medicinal chemistry, pharmacology, food chemistry, toxicology, bioinformatics, and chemoinformatics. It is anticipated that computer-guided SMARts could contribute to the full automatization of drug design and drug repurposing campaigns, facilitating the prediction of new biological targets, side and off-target effects, and drug-drug interactions.
PMID:38810721 | DOI:10.1016/j.drudis.2024.104046
Deciphering molecular bridges: Unveiling the interplay between metabolic syndrome and Alzheimer's disease through a systems biology approach and drug repurposing
PLoS One. 2024 May 29;19(5):e0304410. doi: 10.1371/journal.pone.0304410. eCollection 2024.
ABSTRACT
The association between Alzheimer's disease and metabolic disorders as significant risk factors is widely acknowledged. However, the intricate molecular mechanism intertwining these conditions remains elusive. To address this knowledge gap, we conducted a thorough investigation using a bioinformatics method to illuminate the molecular connections and pathways that provide novel perspectives on these disorders' pathological and clinical features. Microarray datasets (GSE5281, GSE122063) from the Gene Expression Omnibus (GEO) database facilitated the way to identify genes with differential expression in Alzheimer's disease (141 genes). Leveraging CoreMine, CTD, and Gene Card databases, we extracted genes associated with metabolic conditions, including hypertension, non-alcoholic fatty liver disease, and diabetes. Subsequent analysis uncovered overlapping genes implicated in metabolic conditions and Alzheimer's disease, revealing shared molecular links. We utilized String and HIPPIE databases to visualize these shared genes' protein-protein interactions (PPI) and constructed a PPI network using Cytoscape and MCODE plugin. SPP1, CD44, IGF1, and FLT1 were identified as crucial molecules in the main cluster of Alzheimer's disease and metabolic syndrome. Enrichment analysis by the DAVID dataset was employed and highlighted the SPP1 as a novel target, with its receptor CD44 playing a significant role in the inflammatory cascade and disruption of insulin signaling, contributing to the neurodegenerative aspects of Alzheimer's disease. ECM-receptor interactions, focal adhesion, and the PI3K/Akt pathways may all mediate these effects. Additionally, we investigated potential medications by repurposing the molecular links using the DGIdb database, revealing Tacrolimus and Calcitonin as promising candidates, particularly since they possess binding sites on the SPP1 molecule. In conclusion, our study unveils crucial molecular bridges between metabolic syndrome and AD, providing insights into their pathophysiology for therapeutic interventions.
PMID:38809924 | DOI:10.1371/journal.pone.0304410
Repurposing of drugs against bacterial infections: A pharmacovigilance-based data mining approach
Drug Dev Res. 2024 Jun;85(4):e22211. doi: 10.1002/ddr.22211.
ABSTRACT
The World Health Organization (WHO) has published a list of priority pathogens that urgently require research to develop new antibiotics. The main aim of the current study is to identify potential marketed drugs that can be repurposed against bacterial infections. A pharmacovigilance-based drug repurposing approach was used to identify potential drugs. OpenVigil 2.1 tool was used to query the FDA Adverse Event Reporting System database. The reporting odds ratio (ROR) < 1, ROR95CI upper bound <1, and no. of cases ≥30 were used for filtering and sorting of drugs. Sunburst plot was used to represent drugs in a hierarchical order using the Anatomical Therapeutic Chemical classification. Molecular docking and dynamics were performed using the Maestro and Desmond modules of Schrodinger 2023 software respectively. A total of 40 drugs with different classes were identified based on the pharmacovigilance approach which has antibacterial potential. The molecular docking results have shown energetically favored binding conformation of lisinopril against 3-deoxy-manno-octulosonate cytidylyltransferase, UDP-2,3-diacylglucosamine hydrolase, and penicillin-binding protein 3 (PBP3) of Pseudomonas aeruginosa; olmesartan, atorvastatin against lipoteichoic acids flippase LtaA and rosiglitazone and varenicline against d-alanine ligase of Staphylococcus aureus; valsartan against peptidoglycan deacetylase (SpPgdA) and atorvastatin against CDP-activated ribitol for teichoic acid precursors of Streptococcus pneumoniae. Further, molecular dynamic results have shown the stability of identified drugs in the active site of bacterial targets except lisinopril with PBP3. Lisinopril, olmesartan, atorvastatin, rosiglitazone, varenicline, and valsartan have been identified as potential drugs for repurposing against bacterial infection.
PMID:38807372 | DOI:10.1002/ddr.22211
Strategies for the design of analogs of auranofin endowed with anticancer potential
Expert Opin Drug Discov. 2024 May 27:1-13. doi: 10.1080/17460441.2024.2355329. Online ahead of print.
ABSTRACT
INTRODUCTION: Auranofin (AF) is a well-established, FDA-approved, antiarthritic gold drug that is currently being reevaluated for a variety of therapeutic indications through drug repurposing. AF has shown great promise as a potential anticancer agent and has been approved for a few clinical trials in cancer. The renewed interest in AF has led to extensive research into the design, preparation and biological evaluation of auranofin analogs, which may have an even better pharmacological profile than the parent drug.
AREAS COVERED: This article reviews the strategies for chemical modification of the AF scaffold. Several auranofin analogs have been prepared and characterized for medical application in the field of cancer treatment over the last 20 years. Some emerging structure-function relationships are proposed and discussed.
EXPERT OPINION: The chemical modification of the AF scaffold has been the subject of intense activity in recent years and this strategy has led to the preparation and evaluation of several AF analogs. The case of iodauranofin is a particularly promising example. The availability of homogeneous biological data for a group of AF derivatives allows some initial structure-function relationships to be proposed, which may inspire the design and synthesis of new and better AF analogs for cancer treatment.
PMID:38803122 | DOI:10.1080/17460441.2024.2355329
Exploring the pathways of drug repurposing and Panax ginseng treatment mechanisms in chronic heart failure: a disease module analysis perspective
Sci Rep. 2024 May 27;14(1):12109. doi: 10.1038/s41598-024-61926-2.
ABSTRACT
Chronic Heart Failure (CHF) is a significant global public health issue, with high mortality and morbidity rates and associated costs. Disease modules, which are collections of disease-related genes, offer an effective approach to understanding diseases from a biological network perspective. We employed the multi-Steiner tree algorithm within the NeDRex platform to extract CHF disease modules, and subsequently utilized the Trustrank algorithm to rank potential drugs for repurposing. The constructed disease module was then used to investigate the mechanism by which Panax ginseng ameliorates CHF. The active constituents of Panax ginseng were identified through a comprehensive review of the TCMSP database and relevant literature. The Swiss target prediction database was utilized to determine the action targets of these components. These targets were then cross-referenced with the CHF disease module in the STRING database to establish protein-protein interaction (PPI) relationships. Potential action pathways were uncovered through Gene Ontology (GO) and KEGG pathway enrichment analyses on the DAVID platform. Molecular docking, the determination of the interaction of biological macromolecules with their ligands, and visualization were conducted using Autodock Vina, PLIP, and PyMOL, respectively. The findings suggest that drugs such as dasatinib and mitoxantrone, which have low docking scores with key disease proteins and are reported in the literature as effective against CHF, could be promising. Key components of Panax ginseng, including ginsenoside rh4 and ginsenoside rg5, may exert their effects by targeting key proteins such as AKT1, TNF, NFKB1, among others, thereby influencing the PI3K-Akt and calcium signaling pathways. In conclusion, drugs like dasatinib and midostaurin may be suitable for CHF treatment, and Panax ginseng could potentially mitigate the progression of CHF through a multi-component-multi-target-multi-pathway approach. Disease module analysis emerges as an effective strategy for exploring drug repurposing and the mechanisms of traditional Chinese medicine in disease treatment.
PMID:38802411 | DOI:10.1038/s41598-024-61926-2
Repurposing SGLT2 inhibitors: Treatment of renal proximal tubulopathy in Fanconi-Bickel syndrome with empagliflozin
J Inherit Metab Dis. 2024 May 27. doi: 10.1002/jimd.12752. Online ahead of print.
ABSTRACT
Renal proximal tubulopathy in Fanconi-Bickel syndrome is caused by impaired basolateral glucose transport via GLUT2 and consequently, intracellular accumulation of glucose and glycogen. SGLT2 inhibitors act on apical glucose reabsorption of renal proximal tubular cells. The purpose of this study was to retrospectively describe the first experiences with repurposing the SGLT2 inhibitor empagliflozin to treat the generalized tubulopathy in Fanconi-Bickel syndrome. A case series was conducted of seven persons from five families (five males, two females; three children, who were 14y5m, 2y9m, and 1y6m old) with genetically confirmed Fanconi-Bickel syndrome, off-label treated with empagliflozin. Median (range) age at start of empagliflozin was 27 years (1y6m - 61y) and duration of follow-up under empagliflozin treatment was 169 days (57-344). Under empagliflozin (up to 25 mg/d), biochemical parameters of tubular cell integrity (urinary N-acetyl-glucosaminidase) and/or tubular functions (including urinary α1-microglobulin) improved in all persons with Fanconi-Bickel syndrome, albeit to varying degrees. Clinically, supplementations (i.e., phosphate, alkali, carnitine, and alfacalcidol) could be completely discontinued in the three children, whereas results in the four adult patients were more variable and not as significant. Empagliflozin was well-tolerated and no symptomatic hypoglycemia was observed. In conclusion, SGLT2 inhibitors such as empagliflozin shift the metabolic block in Fanconi-Bickel syndrome, that is, they intervene specifically in the underlying pathophysiology and can thus attenuate renal proximal tubulopathy, especially when started in early childhood.
PMID:38802119 | DOI:10.1002/jimd.12752
Pathogenesis of COVID19 and the applications of US FDA-approved repurposed antiviral drugs to combat SARS-CoV-2 in Saudi Arabia: A recent update by review of literature
Saudi J Biol Sci. 2024 Jul;31(7):104023. doi: 10.1016/j.sjbs.2024.104023. Epub 2024 May 11.
ABSTRACT
Still, there is no cure for the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-caused coronavirus disease 2019 (COVID19). The COVID19 pandemic caused health emergencies which resulted in enormous medical and financial consequences worldwide including Saudi Arabia. Saudi Arabia is the largest Arab country of the Middle East. The urban setting of Saudi Arabia makes it vulnerable towards SARS-CoV-2 (SCV-2). Religious areas of this country are visited by millions of pilgrims every year for the Umrah and Hajj pilgrimage, which contributes to the potential COVID19 epidemic risk. COVID19 throws various challenges to healthcare professionals to choose the right drugs or therapy in clinical settings because of the lack of availability of newer drugs. Current drug development and discovery is an expensive, complex, and long process, which involves a high failure rate in clinical trials. While repurposing of United States Food and Drug Administration (US FDA)-approved antiviral drugs offers numerous benefits including complete pharmacokinetic and safety profiles, which significantly shorten drug development cycles and reduce costs. A range of repurposed US FDA-approved antiviral drugs including ribavirin, lopinavir/ritonavir combination, oseltamivir, darunavir, remdesivir, nirmatrelvir/ritonavir combination, and molnupiravir showed encouraging results in clinical trials in COVID19 treatment. In this article, several COVID19-related discussions have been provided including emerging variants of concern of, COVID19 pathogenesis, COVID19 pandemic scenario in Saudi Arabia, drug repurposing strategies against SCV-2, as well as repurposing of US FDA-approved antiviral drugs that might be considered to combat SCV-2 in Saudi Arabia. Moreover, drug repurposing in the context of COVID19 management along with its limitations and future perspectives have been summarized.
PMID:38799719 | PMC:PMC11127266 | DOI:10.1016/j.sjbs.2024.104023
Low-dose naltrexone extends healthspan and lifespan in <em>C. elegans</em> via SKN-1 activation
iScience. 2024 May 8;27(6):109949. doi: 10.1016/j.isci.2024.109949. eCollection 2024 Jun 21.
ABSTRACT
As the global aging population rises, finding effective interventions to improve aging health is crucial. Drug repurposing, utilizing existing drugs for new purposes, presents a promising strategy for rapid implementation. We explored naltrexone from the Library of Integrated Network-based Cellular Signatures (LINCS) based on several selection criteria. Low-dose naltrexone (LDN) has gained attention for treating various diseases, yet its impact on longevity remains underexplored. Our study on C. elegans demonstrated that a low dose, but not high dose, of naltrexone extended the healthspan and lifespan. This effect was mediated through SKN-1 (NRF2 in mammals) signaling, influencing innate immune gene expression and upregulating oxidative stress responses. With LDN's low side effects profile, our findings underscore its potential as a geroprotector, suggesting further exploration for promoting healthy aging in humans is warranted.
PMID:38799567 | PMC:PMC11126937 | DOI:10.1016/j.isci.2024.109949
Knowledge mapping of graph neural networks for drug discovery: a bibliometric and visualized analysis
Front Pharmacol. 2024 May 10;15:1393415. doi: 10.3389/fphar.2024.1393415. eCollection 2024.
ABSTRACT
INTRODUCTION: In recent years, graph neural network has been extensively applied to drug discovery research. Although researchers have made significant progress in this field, there is less research on bibliometrics. The purpose of this study is to conduct a comprehensive bibliometric analysis of graph neural network applications in drug discovery in order to identify current research hotspots and trends, as well as serve as a reference for future research.
METHODS: Publications from 2017 to 2023 about the application of graph neural network in drug discovery were collected from the Web of Science Core Collection. Bibliometrix, VOSviewer, and Citespace were mainly used for bibliometric studies.
RESULTS AND DISCUSSION: In this paper, a total of 652 papers from 48 countries/regions were included. Research interest in this field is continuously increasing. China and the United States have a significant advantage in terms of funding, the number of publications, and collaborations with other institutions and countries. Although some cooperation networks have been formed in this field, extensive worldwide cooperation still needs to be strengthened. The results of the keyword analysis clarified that graph neural network has primarily been applied to drug-target interaction, drug repurposing, and drug-drug interaction, while graph convolutional neural network and its related optimization methods are currently the core algorithms in this field. Data availability and ethical supervision, balancing computing resources, and developing novel graph neural network models with better interpretability are the key technical issues currently faced. This paper analyzes the current state, hot spots, and trends of graph neural network applications in drug discovery through bibliometric approaches, as well as the current issues and challenges in this field. These findings provide researchers with valuable insights on the current status and future directions of this field.
PMID:38799167 | PMC:PMC11116974 | DOI:10.3389/fphar.2024.1393415