Drug Repositioning
CavitOmiX Drug Discovery: Engineering Antivirals with Enhanced Spectrum and Reduced Side Effects for Arboviral Diseases
Viruses. 2024 Jul 24;16(8):1186. doi: 10.3390/v16081186.
ABSTRACT
Advancing climate change increases the risk of future infectious disease outbreaks, particularly of zoonotic diseases, by affecting the abundance and spread of viral vectors. Concerningly, there are currently no approved drugs for some relevant diseases, such as the arboviral diseases chikungunya, dengue or zika. The development of novel inhibitors takes 10-15 years to reach the market and faces critical challenges in preclinical and clinical trials, with approximately 30% of trials failing due to side effects. As an early response to emerging infectious diseases, CavitOmiX allows for a rapid computational screening of databases containing 3D point-clouds representing binding sites of approved drugs to identify candidates for off-label use. This process, known as drug repurposing, reduces the time and cost of regulatory approval. Here, we present potential approved drug candidates for off-label use, targeting the ADP-ribose binding site of Alphavirus chikungunya non-structural protein 3. Additionally, we demonstrate a novel in silico drug design approach, considering potential side effects at the earliest stages of drug development. We use a genetic algorithm to iteratively refine potential inhibitors for (i) reduced off-target activity and (ii) improved binding to different viral variants or across related viral species, to provide broad-spectrum and safe antivirals for the future.
PMID:39205160 | DOI:10.3390/v16081186
Assessment of the Efficacy of the Antihistamine Drug Rupatadine Used Alone or in Combination against Mycobacteria
Pharmaceutics. 2024 Aug 7;16(8):1049. doi: 10.3390/pharmaceutics16081049.
ABSTRACT
The emergence of drug-resistant mycobacteria has rendered many clinical drugs and regimens ineffective, imposing significant economic and healthcare burden on individuals and society. Repurposing drugs intended for treating other diseases is a time-saving, cost-effective, and efficient approach for identifying excellent antimycobacterial candidates or lead compounds. This study is the first to demonstrate that rupatadine (RTD), a drug used to treat allergic rhinitis, possesses excellent activity against mycobacteria without detectable resistance, particularly Mycobacterium tuberculosis and Mycobacterium marinum, with a minimal inhibitory concentration as low as 3.13 µg/mL. Furthermore, RTD exhibited moderate activity against nonreplicating M. tuberculosis with minimal inhibitory concentrations lower than drugs targeting the cell wall, suggesting that RTD has great potential to be modified and used for the treatment of nonreplicating M. tuberculosis. Additionally, RTD exhibits partial synergistic effects when combined with clofazimine, pretomanid, and TB47 against M. tuberculosis, providing the theoretical foundation for the development of treatment regimens. Transcriptomic profiling leads us to speculate that eight essential genes may be the targets of RTD or may be closely associated with mycobacterial resistance to RTD. In summary, RTD may be a promising hit for further antimycobacterial drug or regimen optimization, especially in the case of nonreplicating mycobacteria.
PMID:39204394 | DOI:10.3390/pharmaceutics16081049
Biopolymeric Insulin Membranes for Antimicrobial, Antioxidant, and Wound Healing Applications
Pharmaceutics. 2024 Jul 30;16(8):1012. doi: 10.3390/pharmaceutics16081012.
ABSTRACT
Delayed wound healing increases the wound's vulnerability to possible infections, which may have lethal outcomes. The treatments available can be effective, but the urgency is not fully encompassed. The drug repositioning strategy proposes effective alternatives for enhancing medical therapies for chronic diseases. Likewise, applying wound dressings as biodegradable membranes is extremely attractive due to their ease of application, therapeutic effectiveness, and feasibility in industrial manufacturing. This article aims to demonstrate the pleiotropic effects during insulin repositioning in wound closure by employing a biopolymeric membrane-type formulation with insulin. We prepared biopolymeric membranes with sodium alginate cross-linked with calcium chloride, supported in a mixture of xanthan gum and guar gum, and plasticized with glycerol and sorbitol. Human insulin was combined with poloxamer 188 as a protein stabilizing agent. Our investigation encompassed physicochemical and mechanical characterization, antioxidant and biological activity through antibacterial tests, cell viability assessments, and scratch assays as an in vitro and in vivo wound model. We demonstrated that our biopolymeric insulin membranes exhibited adequate manipulation and suitable mechanical resistance, transparency, high swelling capability (1100%), and 30% antioxidant activity. Furthermore, they exhibited antibacterial activity (growth inhibition of S. aureus at 85% and P. aeruginosa at 75%, respectively), and insulin promoted wound closure in vitro with a 5.5-fold increase and 72% closure at 24 h. Also, insulin promoted in vivo wound closure with a 3.2-fold increase and 92% closure at 10 days compared with the groups without insulin, and this is the first report that demonstrates this therapeutic effect with two administrations of 0.7 IU. In conclusion, we developed a multifunctional insulin-loaded biopolymeric membrane in this study, with the main activity derived from insulin's role in wound closure and antioxidant activity, augmented by the antimicrobial effect attributed to the polymer poloxamer 188. The synergistic combination of excipients enhances its usefulness and highlights our innovation as a promising material in wound healing materials.
PMID:39204356 | DOI:10.3390/pharmaceutics16081012
Integrative Analysis of Multi-Omics Data to Identify Deregulated Molecular Pathways and Druggable Targets in Chronic Lymphocytic Leukemia
J Pers Med. 2024 Aug 6;14(8):831. doi: 10.3390/jpm14080831.
ABSTRACT
Chronic Lymphocytic Leukemia (CLL) is the most common B-cell malignancy in the Western world, characterized by frequent relapses despite temporary remissions. Our study integrated publicly available proteomic, transcriptomic, and patient survival datasets to identify key differences between healthy and CLL samples. We exposed approximately 1000 proteins that differentiate healthy from cancerous cells, with 608 upregulated and 415 downregulated in CLL cases. Notable upregulated proteins include YEATS2 (an epigenetic regulator), PIGR (Polymeric immunoglobulin receptor), and SNRPA (a splicing factor), which may serve as prognostic biomarkers for this disease. Key pathways implicated in CLL progression involve RNA processing, stress resistance, and immune response deficits. Furthermore, we identified three existing drugs-Bosutinib, Vorinostat, and Panobinostat-for potential further investigation in drug repurposing in CLL. We also found limited correlation between transcriptomic and proteomic data, emphasizing the importance of proteomics in understanding gene expression regulation mechanisms. This generally known disparity highlights once again that mRNA levels do not accurately predict protein abundance due to many regulatory factors, such as protein degradation, post-transcriptional modifications, and differing rates of translation. These results demonstrate the value of integrating omics data to uncover deregulated proteins and pathways in cancer and suggest new therapeutic avenues for CLL.
PMID:39202022 | PMC:PMC11355716 | DOI:10.3390/jpm14080831
A Pilot Phase 2 Randomized Trial to Evaluate the Safety and Potential Efficacy of Etravirine in Friedreich Ataxia Patients
Children (Basel). 2024 Aug 9;11(8):958. doi: 10.3390/children11080958.
ABSTRACT
BACKGROUND: A drug repositioning effort supported the possible use of the anti-HIV drug etravirine as a disease-modifying drug for Friedreich ataxia (FRDA). Etravirine increases frataxin protein and corrects the biochemical defects in cells derived from FRDA patients. Because of these findings, and since etravirine displays a favorable safety profile, we conducted a pilot open-label phase 2 clinical trial assessing the safety and potential efficacy of etravirine in FRDA patients.
METHODS: Thirty-five patients were stratified into three severity groups and randomized to etravirine 200 mg/day or 400 mg/day. They were treated for 4 months. Safety endpoints were the number and type of adverse events and number of dropouts. Efficacy endpoints were represented by changes in peak oxygen uptake and workload as measured by incremental exercise test, SARA score, cardiac measures, measures of QoL and disability. Data were collected 4 months before the start of the treatment (T - 4), at the start (T0), at the end (T4) and 4 months after the termination of the treatment (T + 4).
RESULTS: Etravirine was reasonably tolerated, and adverse events were generally mild. Four months of etravirine treatment did not significantly increase the peak oxygen uptake but was associated with a change in the progression of the SARA score (p value < 0.001), compared to the 4 months pre- and post-treatment. It also significantly increased peak workload (p value = 0.021). No changes in the cardiac measures were observed. Health and QoL measures showed a worsening at the suspension of the drug.
CONCLUSIONS: In this open trial etravirine treatment was safe, reasonably well tolerated and appreciably improved neurological function and exercise performance. Even though a placebo effect cannot be ruled out, these results suggest that etravirine may represent a potential therapeutic agent in FRDA deserving testing in a randomized placebo-controlled clinical trial.
PMID:39201893 | PMC:PMC11352957 | DOI:10.3390/children11080958
Drug Repurposing for COVID-19 by Constructing a Comorbidity Network with Central Nervous System Disorders
Int J Mol Sci. 2024 Aug 16;25(16):8917. doi: 10.3390/ijms25168917.
ABSTRACT
In the post-COVID-19 era, treatment options for potential SARS-CoV-2 outbreaks remain limited. An increased incidence of central nervous system (CNS) disorders has been observed in long-term COVID-19 patients. Understanding the shared molecular mechanisms between these conditions may provide new insights for developing effective therapies. This study developed an integrative drug-repurposing framework for COVID-19, leveraging comorbidity data with CNS disorders, network-based modular analysis, and dynamic perturbation analysis to identify potential drug targets and candidates against SARS-CoV-2. We constructed a comorbidity network based on the literature and data collection, including COVID-19-related proteins and genes associated with Alzheimer's disease, Parkinson's disease, multiple sclerosis, and autism spectrum disorder. Functional module detection and annotation identified a module primarily involved in protein synthesis as a key target module, utilizing connectivity map drug perturbation data. Through the construction of a weighted drug-target network and dynamic network-based drug-repurposing analysis, ubiquitin-carboxy-terminal hydrolase L1 emerged as a potential drug target. Molecular dynamics simulations suggested pregnenolone and BRD-K87426499 as two drug candidates for COVID-19. This study introduces a dynamic-perturbation-network-based drug-repurposing approach to identify COVID-19 drug targets and candidates by incorporating the comorbidity conditions of CNS disorders.
PMID:39201608 | DOI:10.3390/ijms25168917
Metformin Lysosomal Targeting: A Novel Aspect to Be Investigated for Metformin Repurposing in Neurodegenerative Diseases?
Int J Mol Sci. 2024 Aug 15;25(16):8884. doi: 10.3390/ijms25168884.
ABSTRACT
Metformin is a widely employed drug in type 2 diabetes. In addition to warranting good short- and long-term glycemic control, metformin displays many intriguing properties as protection against cardiovascular and neurodegenerative diseases, anti-tumorigenic and longevity promotion. In addition to being a low-cost drug, metformin is generally well tolerated. However, despite the enthusiastic drive to aliment these novel studies, many contradictory results suggest the importance of better elucidating the complexity of metformin action in different tissues/cells to establish its possible employment in neurodegenerative diseases. This review summarises recent data identifying lysosomal-dependent processes and lysosomal targets, such as endosomal Na+/H+ exchangers, presenilin enhancer 2 (PEN2), the lysosomal pathway leading to AMP-activated protein kinase (AMPK) activation, and the transcription factor EB (TFEB), modulated by metformin. Lysosomal dysfunctions resulting in autophagic and lysosomal acidification and biogenesis impairment appear to be hallmarks of many inherited and acquired neurodegenerative diseases. Lysosomes are not yet seen as a sort of cellular dump but are crucial in determining key signalling paths and processes involved in the clearance of aggregated proteins. Thus, the possibility of pharmacologically modulating them deserves great interest. Despite the potentiality of metformin in this context, many additional important issues, such as dosing, should be addressed in the future.
PMID:39201569 | DOI:10.3390/ijms25168884
Common molecular and pathophysiological underpinnings of delirium and Alzheimer's disease: molecular signatures and therapeutic indications
BMC Geriatr. 2024 Aug 29;24(1):716. doi: 10.1186/s12877-024-05289-3.
ABSTRACT
BACKGROUND: Delirium and Alzheimer's disease (AD) are common causes of cognitive dysfunction among older adults. These neurodegenerative diseases share a common and complex relationship, and can occur individually or concurrently, increasing the chance of permanent mental dysfunction. However, the common molecular pathophysiology, key proteomic biomarkers, and functional pathways are largely unknown, whereby delirium is superimposed on AD and dementia.
METHODS: We employed an integrated bioinformatics and system biology analysis approach to decipher such common key proteomic signatures, pathophysiological links between delirium and AD by analyzing the gene expression data of AD-affected human brain samples and comparing them with delirium-associated proteins. The present study identified the common drug target hub-proteins examining the protein-protein interaction (PPI) and gene regulatory network analysis. The functional enrichment and pathway analysis was conducted to reveal the common pathophysiological relationship. Finally, the molecular docking and dynamic simulation was used to computationally identify and validate the potential drug target and repurposable drugs for delirium and AD.
RESULTS: We detected 99 shared differentially expressed genes (sDEGs) associated with AD and delirium. The sDEGs-set enrichment analysis detected the transmission across chemical synapses, neurodegeneration pathways, neuroinflammation and glutamatergic signaling pathway, oxidative stress, and BDNF signaling pathway as the most significant signaling pathways shared by delirium and AD. The disease-sDEGs interaction analysis highlighted the other disease risk factors with delirium and AD development and progression. Among the sDEGs of delirium and AD, the top 10 hub-proteins including ALB, APP, BDNF, CREB1, DLG4, GAD1, GAD2, GFAP, GRIN2B and GRIN2A were found by the PPI network analysis. Based on the maximum molecular docking binding affinities and molecular dynamic simulation (100 ns) results, the ALB and GAD2 were found as prominent drug target proteins when tacrine and donepezil were identified as potential drug candidates for delirium and AD.
CONCLUSION: The study outlined the common key biomolecules and biological pathways shared by delirium and AD. The computationally reported potential drug molecules need a deeper investigation including clinical trials to validate their effectiveness. The outcomes from this study will help to understand the typical pathophysiological relationship between delirium and AD and flag future therapeutic development research for delirium.
PMID:39210294 | DOI:10.1186/s12877-024-05289-3
Clinical, Laboratory Aspects and Management of Factor X Deficiency
Semin Thromb Hemost. 2024 Aug 29. doi: 10.1055/s-0044-1789595. Online ahead of print.
ABSTRACT
Coagulation factor X (FX), originally named Stuart-Prower factor, plays a pivotal role in the coagulation cascade, activating thrombin to promote platelet plug formation and prevent excess blood loss. Genetic variants in F10 may lead to FX deficiency and to impaired coagulation. FX variants are phenotypically classified as being type I, with the concomitant reduction of FX coagulant activity and FX antigen levels or type II, corresponding to a reduction in activity with normal antigen plasma levels. Patients affected with FX deficiency tend to be one of the most seriously affected among those with rare bleeding disorders. They show a variable bleeding tendency strongly associated with FX coagulant activity levels in plasma and may present, in the severe form of the deficiency, life-threatening symptoms such as gastrointestinal and umbilical stump bleeding and intracranial hemorrhages or central nervous system bleeding. Treatment of FX deficiency was originally based on the replacement of the missing factor using fresh frozen plasma, cryoprecipitate and prothrombin complex concentrates; however, a plasma-derived concentrate, shown to be safe and effective in clinical trials, is now available. In addition, novel nonreplacement therapy such as small interference RNA, gene therapy, drug repurposing, and gene editing may also represent novel therapeutic approaches for FX deficiency, but further, much focused studies are needed before considering this emerging therapy in such patients.
PMID:39209291 | DOI:10.1055/s-0044-1789595
NAFLD-associated Hepatocellular Carcinoma (HCC) - a compelling case for repositioning of existing mTORc1 inhibitors
Pharmacol Res. 2024 Aug 27:107375. doi: 10.1016/j.phrs.2024.107375. Online ahead of print.
ABSTRACT
The increasing prevalence of non-alcoholic fatty liver disease (NAFLD) is a growing concern for the high incidence rate of hepatocellular carcinoma (HCC) globally. The progression of NAFLD to HCC is heterogeneous and non-linear, involving intermediate stages of non-alcoholic steatohepatitis (NASH), liver fibrosis, and cirrhosis. There is a high unmet clinical need for appropriate diagnostic, prognostic, and therapeutic options to tackle this emerging epidemic. Unfortunately, at present, there is no validated marker to identify the risk of developing HCC in patients suffering from NAFLD or NASH. Additionally, the current treatment protocols for HCC don't differentiate between viral infection or NAFLD-specific etiology of the HCC and have a limited success rate. The mammalian target of rapamycin complex 1 (mTORc1) is an important protein involved in many vital cellular processes like lipid metabolism, glucose homeostasis, and inflammation. These cellular processes are highly implicated in NAFLD and its progression to severe liver manifestations. Additionally, hyperactivation of mTORc1 is known to promote cell proliferation, which can contribute to the genesis and progression of tumors. Many mTORc1 inhibitors are being evaluated for different types of cancers under various phases of clinical trials. This paper deliberates on the strong pathological implication of the mTORc1 signaling pathway in NAFLD and its progression to NASH and HCC and advocates for a systematic investigation of known mTORc1 inhibitors in suitable pre-clinical models of HCC having NAFLD/NASH-specific etiology.
PMID:39209081 | DOI:10.1016/j.phrs.2024.107375
Comparison between a single- and a multi-point calibration method using LC-MS/MS for measurement of 5-fluorouracil in human plasma
J Mass Spectrom Adv Clin Lab. 2024 Jul 31;33:31-37. doi: 10.1016/j.jmsacl.2024.07.003. eCollection 2024 Aug.
ABSTRACT
When quantifying therapeutic drugs using LC-MS/MS instrumentation in clinical laboratories, batch-mode analysis with a calibration curve consisting of 6-10 concentrations for each analyte is the most widely used approach. However, this is an inefficient use of this technology since it increases cost, delays result availability and precludes random instrument access. Various alternative methods to reduce the calibrator use and improve efficiency without compromising analytical quality have been investigated, and a single-point calibration has been reported to be the simplest, least expensive and the quickest approach. This study compares a single and a multi-point calibration method using LC-MS/MS with 5-fluorouracil (5-FU) as a model drug. The method was validated for quantitative analysis of 5-FU over a concentration range of 0.05-50 mg/L. Patients undergoing cancer treatment with intravenous 5-FU had plasma 5-FU concentrations measured, and their dose adjusted in real time based on the calculated area under the time-concentration curve (AUC). Subsequently, a single point calibration method using a concentration at 0.5 mg/L was compared to the multi-point calibration method in terms of accuracy and precision. A Bland-Altman bias plot and a Passing-Bablok regression analysis showed a good agreement between the two methods (mean difference = -1.87 %, slope = 1.002, respectively) when comparing patient plasma 5-FU concentrations. The calibration method did not impact the AUC results nor the decision on 5-FU dose adjustments. Our study demonstrated that a single point calibration method produced analytically and clinically comparable results to those produced by a multi-point method when quantifying 5-FU and is feasible to be used clinically.
PMID:39206041 | PMC:PMC11350269 | DOI:10.1016/j.jmsacl.2024.07.003
Autophagy and Female Fertility: Mechanisms, Clinical Implications, and Emerging Therapies
Cells. 2024 Aug 14;13(16):1354. doi: 10.3390/cells13161354.
ABSTRACT
Autophagy, an evolutionarily conserved cellular mechanism essential for maintaining internal stability, plays a crucial function in female reproductive ability. In this review, we discuss the complex interplay between autophagy and several facets of female reproductive health, encompassing pregnancy, ovarian functions, gynecologic malignancies, endometriosis, and infertility. Existing research emphasizes the crucial significance of autophagy in embryo implantation, specifically in the endometrium, highlighting its necessity in ensuring proper fetal development. Although some knowledge has been gained, there is still a lack of research on the specific molecular impacts of autophagy on the quality of oocytes, the growth of follicles, and general reproductive health. Autophagy plays a role in the maturation, quality, and development of oocytes. It is also involved in reproductive aging, contributing to reductions in reproductive function that occur with age. This review explores the physiological functions of autophagy in the female reproductive system, its participation in reproductive toxicity, and its important connections with the endometrium and embryo. In addition, this study investigates the possibility of emerging treatment approaches that aim to modify autophagy, using both natural substances and synthetic molecules, to improve female fertility and reproductive outcomes. Additionally, this review intends to inspire future exploration into the intricate role of autophagy in female reproductive health by reviewing recent studies and pinpointing areas where current knowledge is lacking. Subsequent investigations should prioritize the conversion of these discoveries into practical uses in the medical field, which could potentially result in groundbreaking therapies for infertility and other difficulties related to reproduction. Therefore, gaining a comprehensive understanding of the many effects of autophagy on female fertility would not only further the field of reproductive biology but also open new possibilities for diagnostic and treatment methods.
PMID:39195244 | DOI:10.3390/cells13161354
Milteforan, a promising veterinary commercial product against feline sporotrichosis
Microbiol Spectr. 2024 Aug 28:e0047424. doi: 10.1128/spectrum.00474-24. Online ahead of print.
ABSTRACT
Sporotrichosis, the cutaneous mycosis most commonly reported in Latin America, is caused by the Sporothrix clinical clade species, including Sporothrix brasiliensis and Sporothrix schenckii sensu stricto. Due to its zoonotic transmission in Brazil, S. brasiliensis represents a significant health threat to humans and domestic animals. Itraconazole, terbinafine, and amphotericin B are the most used antifungals for treating sporotrichosis. However, many strains of S. brasiliensis and S. schenckii have shown resistance to these agents, highlighting the importance of finding new therapeutic options. Here, we demonstrate that milteforan, a commercial veterinary product against dog leishmaniasis, whose active principle is miltefosine, is a possible therapeutic alternative for the treatment of sporotrichosis, as observed by its fungicidal activity in vitro against different strains of S. brasiliensis and S. schenckii. Fluorescent miltefosine localizes to the Sporothrix cell membrane and mitochondria and causes cell death through increased permeabilization. Milteforan decreases S. brasiliensis fungal burden in A549 pulmonary cells and bone marrow-derived macrophages and also has an immunomodulatory effect by decreasing TNF-α, IL-6, and IL-10 production. Our results suggest milteforan as a possible alternative to treat feline sporotrichosis.
IMPORTANCE: Sporotrichosis is an endemic disease in Latin America caused by different species of Sporothrix. This fungus can infect domestic animals, mainly cats and eventually dogs, as well as humans. Few drugs are available to treat this disease, such as itraconazole, terbinafine, and amphotericin B, but resistance to these agents has risen in the last few years. Alternative new therapeutic options to treat sporotrichosis are essential. Here, we propose milteforan, a commercial veterinary product against dog leishmaniasis, whose active principle is miltefosine, as a possible therapeutic alternative for treating sporotrichosis. Milteforan decreases S. brasiliensis fungal burden in human and mouse cells and has an immunomodulatory effect by decreasing several cytokine production.
PMID:39194287 | DOI:10.1128/spectrum.00474-24
Loss of glycerol catabolism confers carbon-source-dependent artemisinin resistance in <em>Mycobacterium tuberculosis</em>
Antimicrob Agents Chemother. 2024 Aug 28:e0064524. doi: 10.1128/aac.00645-24. Online ahead of print.
ABSTRACT
In view of the urgent need for new antibiotics to treat human infections caused by multidrug-resistant pathogens, drug repurposing is gaining strength due to the relatively low research costs and shorter clinical trials. Such is the case of artemisinin, an antimalarial drug that has recently been shown to display activity against Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. To gain insight into how Mtb is affected by artemisinin, we used RNAseq to assess the impact of artemisinin on gene expression profiles, revealing the induction of several efflux pumps and the KstR2 regulon. To anticipate the artemisinin resistance-conferring mutations that could arise in clinical Mtb strains, we performed an in vitro evolution experiment in the presence of lethal concentrations of artemisinin. We obtained artemisinin-resistant isolates displaying different growth kinetics and drug phenotypes, suggesting that resistance evolved through different pathways. Whole-genome sequencing of nine isolates revealed alterations in the glpK and glpQ1 genes, both involved in glycerol metabolism, in seven and one strains, respectively. We then constructed a glpK mutant and found that loss of glpK increases artemisinin resistance only when glycerol is present as a major carbon source. Our results suggest that mutations in glycerol catabolism genes could be selected during the evolution of resistance to artemisinin when glycerol is available as a carbon source. These results add to recent findings of mutations and phase variants that reduce drug efficacy in carbon-source-dependent ways.
PMID:39194262 | DOI:10.1128/aac.00645-24
Zidovudine in synergistic combination with nitrofurantoin or omadacycline: <em>in vitro</em> and in murine urinary tract or lung infection evaluation against multidrug-resistant <em>Klebsiella pneumoniae</em>
Antimicrob Agents Chemother. 2024 Aug 28:e0034424. doi: 10.1128/aac.00344-24. Online ahead of print.
ABSTRACT
Limited treatment options and multidrug-resistant (MDR) Klebsiella pneumoniae present a significant therapeutic challenge, underscoring the need for novel approaches. Drug repurposing is a promising tool for augmenting the activity of many antibiotics. This study aimed to identify novel synergistic drug combinations against K. pneumoniae based on drug repurposing. We used the clinically isolated GN 172867 MDR strain of K. pneumoniae to determine the reversal resistance activity of zidovudine (AZT). The combined effects of AZT and various antibiotics, including nitrofurantoin (NIT) and omadacycline (OMC), were examined using the checkerboard method, growth curves, and crystal violet assays to assess biofilms. An in vitro combination activity testing was carried out in 12 isolates of K. pneumoniae. In vivo murine urinary tract and lung infection models were used to evaluate the therapeutic effects of AZT + NIT and AZT + OMC, respectively. The fractional inhibitory concentration index and growth curve demonstrated that AZT synergized with NIT or OMC against K. pneumoniae strains. In addition, AZT + NIT inhibited biofilm formation and cleared mature biofilms. In vivo, compared with untreated GN 172867-infected mice, AZT + NIT and AZT + OMC treatment decreased colony counts in multiple tissues (P < 0.05) and pathological scores in the bladder and kidneys (P < 0.05) and increased the survival rate by 60% (P < 0.05). This study evaluated the combination of AZT and antibiotics to treat drug-resistant K. pneumoniae infections and found novel drug combinations for the treatment of acute urinary tract infections. These findings suggest that AZT may exert significant anti-resistance activity.
PMID:39194261 | DOI:10.1128/aac.00344-24
A comprehensive assessment of the association between common drugs and psychiatric disorders using Mendelian randomization and real-world pharmacovigilance database
EBioMedicine. 2024 Aug 26;107:105314. doi: 10.1016/j.ebiom.2024.105314. Online ahead of print.
ABSTRACT
BACKGROUND: Medications prescribed for chronic diseases can lead to short-term neuropsychiatric symptoms, but their long-term effects on brain structures and psychiatric conditions remain unclear.
METHODS: We comprehensively analyzed the FDA Adverse Event Reporting System database and conducted drug target Mendelian Randomization (MR) studies on six categories of common drugs, 477 brain imaging-derived phenotypes (IDPs) and eight psychiatric disorders. Genetic instruments were extracted from expression quantitative trait loci (eQTLs) in blood, brain, and other target tissues, protein quantitative trait loci (pQTLs) in blood, and genome-wide association studies (GWAS) of hemoglobin and cholesterol. Summary statistics for brain IDPs, psychiatric disorders, and gut microbiome were obtained from the BIG40, Psychiatric Genomics Consortium, and MiBioGen. A two-step MR and mediation analysis were employed to screen possible mediators of drug-IDP effects from 119 gut microbiota genera and identify their mediation proportions.
FINDINGS: Among 19 drug classes, six drugs were found to be associated with higher risks of psychiatric adverse events, while 11 drugs were associated with higher risks of gastrointestinal adverse events in the FAERS analysis. We identified ten drug-psychiatric disorder associations, 202 drug-IDP associations, 16 drug-microbiota associations, and four drug-microbiota-IDP causal links. For example, PPARG activation mediated HbA1c reduction caused a higher risk of bipolar disorder (BD) II. Genetically proxied GLP-1R agonists were significantly associated with an increase in the volume of the CA3-head of the right hippocampus and the area of the left precuneus cortex, both of which have been shown to correlate with cognition in previous studies.
INTERPRETATION: Common drugs may affect brain structure and risk of psychiatric disorder. Oral medications in particular may exert some of these effects by influencing gut microbiota. This study calls for greater attention to be paid to the neuropsychiatric adverse effects of drugs and encourages drug repurposing.
FUNDING: National Natural Science Foundation of China (grant No. 82330035, 82130043, 82172685, and 82001223), National Natural Science Foundation of Hunan Province (grant No. 2021SK1010), and the Science Foundation for Distinguished Young Scholars of Changsha (grant No. kq2209006).
PMID:39191171 | DOI:10.1016/j.ebiom.2024.105314
In vitro and in vivo modulatory effects of fluoxetine on gene expression and antioxidant enzymes in CFA-induced chronic inflammatory model: drug repurposing for arthritis
Inflammopharmacology. 2024 Aug 27. doi: 10.1007/s10787-024-01553-5. Online ahead of print.
ABSTRACT
Fluoxetine, being a selective serotonin uptake inhibitor, has been broadly used to modulate the neurotransmission of serotonin in the central nervous system. Fluoxetine performs a number of crucial central nervous system-related tasks, including neuroprotective effects against microglial neurotoxicity and protecting oxidative cell damage produced by stress in a variety of stress-related unfavourable health disorders. Studies have shown that the drug (fluoxetine) also has analgesic and anti-inflammatory characteristics in addition to its other basic benefits. Furthermore, existing treatment approaches (NSAIDs, DMARDs, corticosteroids and other immunosuppressants) for RA have limited effects on chronic immunological models. These facts served as the basis for carrying out a study on fluoxetine to explore its therapeutics in a chronic inflammatory rat model called Freund's complete adjuvant (FCA)-induced arthritis. The therapeutic effect of the fluoxetine in FCA-induced arthritic rats was assessed by paw volume, paw diameter, arthritic index and body weight at specific days through the experiment of 28 days. These findings were further co-investigated by haematological, biochemical parameters and radiographic imaging at the end of experiment. Furthermore, the modulatory effects on gene expression (NF-κB, PGE2, COX2, INF-γ, IL-4 and IL-10) and antioxidant properties were gritty using qRT-PCR and ELISA kits, respectively, in experimental arthritic rats. Fluoxetine at 10, 20 and 40 mg/kg doses reduced (p < 0.001) the serum concentration of C-reactive protein and rheumatoid factor as well as suppressed the expression of PGE2, NF-kB, COX2 and INF-γ when compared to arthritic control. Moreover, fluoxetine (at higher doses) caused significant rise of IL-4 and IL-10. These findings supported the anti-inflammatory and antioxidant potential of fluoxetine in chronic inflammatory model and endorsed it for clinical trials.
PMID:39192161 | DOI:10.1007/s10787-024-01553-5
Next-generation pediatric care: nanotechnology-based and AI-driven solutions for cardiovascular, respiratory, and gastrointestinal disorders
World J Pediatr. 2024 Aug 28. doi: 10.1007/s12519-024-00834-x. Online ahead of print.
ABSTRACT
BACKGROUND: Global pediatric healthcare reveals significant morbidity and mortality rates linked to respiratory, cardiac, and gastrointestinal disorders in children and newborns, mostly due to the complexity of therapeutic management in pediatrics and neonatology, owing to the lack of suitable dosage forms for these patients, often rendering them "therapeutic orphans". The development and application of pediatric drug formulations encounter numerous challenges, including physiological heterogeneity within age groups, limited profitability for the pharmaceutical industry, and ethical and clinical constraints. Many drugs are used unlicensed or off-label, posing a high risk of toxicity and reduced efficacy. Despite these circumstances, some regulatory changes are being performed, thus thrusting research innovation in this field.
DATA SOURCES: Up-to-date peer-reviewed journal articles, books, government and institutional reports, data repositories and databases were used as main data sources.
RESULTS: Among the main strategies proposed to address the current pediatric care situation, nanotechnology is specially promising for pediatric respiratory diseases since they offer a non-invasive, versatile, tunable, site-specific drug release. Tissue engineering is in the spotlight as strategy to address pediatric cardiac diseases, together with theragnostic systems. The integration of nanotechnology and theragnostic stands poised to refine and propel nanomedicine approaches, ushering in an era of innovative and personalized drug delivery for pediatric patients. Finally, the intersection of drug repurposing and artificial intelligence tools in pediatric healthcare holds great potential. This promises not only to enhance efficiency in drug development in general, but also in the pediatric field, hopefully boosting clinical trials for this population.
CONCLUSIONS: Despite the long road ahead, the deepening of nanotechnology, the evolution of tissue engineering, and the combination of traditional techniques with artificial intelligence are the most recently reported strategies in the specific field of pediatric therapeutics.
PMID:39192003 | DOI:10.1007/s12519-024-00834-x
The Genetics and Functional Genomics of Osteoarthritis
Annu Rev Genomics Hum Genet. 2024 Aug;25(1):239-257. doi: 10.1146/annurev-genom-010423-095636.
ABSTRACT
Osteoarthritis is the most prevalent whole-joint degenerative disorder, and is characterized by the degradation of articular cartilage and the underlying bone structures. Almost 600 million people are affected by osteoarthritis worldwide. No curative treatments are available, and management strategies focus mostly on pain relief. Here, we provide a comprehensive overview of the available human genetic and functional genomics studies for osteoarthritis to date and delineate how these studies have helped shed light on disease etiopathology. We highlight genetic discoveries from genome-wide association studies and provide a detailed overview of molecular-level investigations in osteoarthritis tissues, including methylation-, transcriptomics-, and proteomics-level analyses. We review how functional genomics data from different molecular levels have helped to prioritize effector genes that can be used as drug targets or drug-repurposing opportunities. Finally, we discuss future directions with the potential to drive a step change in osteoarthritis research.
PMID:39190913 | DOI:10.1146/annurev-genom-010423-095636
Overview of pro-inflammatory and pro-survival components in neuroinflammatory signalling and neurodegeneration
Ageing Res Rev. 2024 Aug 24:102465. doi: 10.1016/j.arr.2024.102465. Online ahead of print.
ABSTRACT
Neurodegenerative diseases (NDDs) are identified by the progressive deterioration of neurons and a subsequent decline in cognitive function, creating an enormous burden on the healthcare system globally. Neuroinflammation is an intricate procedure that initiates the immune response in the central nervous system (CNS) and significantly impacts the expansion of NDDs. This study scrutinizes the complicated interaction between neuronal degeneration and neuroinflammation, with an appropriate emphasis on their reciprocal impacts. It also describes how neuroinflammatory reactions in NDDs are controlled by activating certain pro-inflammatory transcription factors, including p38 MAPK, FAF1, Toll-like receptors (TLRs), and STAT3. Alternatively, it evaluates the impact of pro-survival transcription factors, such as the SOCS pathway, YY1, SIRT1, and MEF2, which provide neuroprotective protection against damage triggered by neuroinflammation. Moreover, we study the feasibility of accommodating drug repositioning as a therapeutic approach for treating neuroinflammatory disorders. This suggests the use of existing medications for novel utilization in the treatment of NDDs. Furthermore, the study intends to reveal novel biomarkers of neuroinflammation that contribute fundamental observation for the initial detection and diagnosis of these disorders. This study aims to strengthen therapy interference and augment patient outcomes by combining ongoing data and evaluating novel therapeutic and diagnostic approaches. The goal is to devote the growth of an effective strategy to reducing the impact of neuroinflammation on neuronal protection in NDDs.
PMID:39187022 | DOI:10.1016/j.arr.2024.102465