Drug Repositioning
Deciphering molecular bridges: Unveiling the interplay between metabolic syndrome and Alzheimer's disease through a systems biology approach and drug repurposing
PLoS One. 2024 May 29;19(5):e0304410. doi: 10.1371/journal.pone.0304410. eCollection 2024.
ABSTRACT
The association between Alzheimer's disease and metabolic disorders as significant risk factors is widely acknowledged. However, the intricate molecular mechanism intertwining these conditions remains elusive. To address this knowledge gap, we conducted a thorough investigation using a bioinformatics method to illuminate the molecular connections and pathways that provide novel perspectives on these disorders' pathological and clinical features. Microarray datasets (GSE5281, GSE122063) from the Gene Expression Omnibus (GEO) database facilitated the way to identify genes with differential expression in Alzheimer's disease (141 genes). Leveraging CoreMine, CTD, and Gene Card databases, we extracted genes associated with metabolic conditions, including hypertension, non-alcoholic fatty liver disease, and diabetes. Subsequent analysis uncovered overlapping genes implicated in metabolic conditions and Alzheimer's disease, revealing shared molecular links. We utilized String and HIPPIE databases to visualize these shared genes' protein-protein interactions (PPI) and constructed a PPI network using Cytoscape and MCODE plugin. SPP1, CD44, IGF1, and FLT1 were identified as crucial molecules in the main cluster of Alzheimer's disease and metabolic syndrome. Enrichment analysis by the DAVID dataset was employed and highlighted the SPP1 as a novel target, with its receptor CD44 playing a significant role in the inflammatory cascade and disruption of insulin signaling, contributing to the neurodegenerative aspects of Alzheimer's disease. ECM-receptor interactions, focal adhesion, and the PI3K/Akt pathways may all mediate these effects. Additionally, we investigated potential medications by repurposing the molecular links using the DGIdb database, revealing Tacrolimus and Calcitonin as promising candidates, particularly since they possess binding sites on the SPP1 molecule. In conclusion, our study unveils crucial molecular bridges between metabolic syndrome and AD, providing insights into their pathophysiology for therapeutic interventions.
PMID:38809924 | DOI:10.1371/journal.pone.0304410
Repurposing of drugs against bacterial infections: A pharmacovigilance-based data mining approach
Drug Dev Res. 2024 Jun;85(4):e22211. doi: 10.1002/ddr.22211.
ABSTRACT
The World Health Organization (WHO) has published a list of priority pathogens that urgently require research to develop new antibiotics. The main aim of the current study is to identify potential marketed drugs that can be repurposed against bacterial infections. A pharmacovigilance-based drug repurposing approach was used to identify potential drugs. OpenVigil 2.1 tool was used to query the FDA Adverse Event Reporting System database. The reporting odds ratio (ROR) < 1, ROR95CI upper bound <1, and no. of cases ≥30 were used for filtering and sorting of drugs. Sunburst plot was used to represent drugs in a hierarchical order using the Anatomical Therapeutic Chemical classification. Molecular docking and dynamics were performed using the Maestro and Desmond modules of Schrodinger 2023 software respectively. A total of 40 drugs with different classes were identified based on the pharmacovigilance approach which has antibacterial potential. The molecular docking results have shown energetically favored binding conformation of lisinopril against 3-deoxy-manno-octulosonate cytidylyltransferase, UDP-2,3-diacylglucosamine hydrolase, and penicillin-binding protein 3 (PBP3) of Pseudomonas aeruginosa; olmesartan, atorvastatin against lipoteichoic acids flippase LtaA and rosiglitazone and varenicline against d-alanine ligase of Staphylococcus aureus; valsartan against peptidoglycan deacetylase (SpPgdA) and atorvastatin against CDP-activated ribitol for teichoic acid precursors of Streptococcus pneumoniae. Further, molecular dynamic results have shown the stability of identified drugs in the active site of bacterial targets except lisinopril with PBP3. Lisinopril, olmesartan, atorvastatin, rosiglitazone, varenicline, and valsartan have been identified as potential drugs for repurposing against bacterial infection.
PMID:38807372 | DOI:10.1002/ddr.22211
Strategies for the design of analogs of auranofin endowed with anticancer potential
Expert Opin Drug Discov. 2024 May 27:1-13. doi: 10.1080/17460441.2024.2355329. Online ahead of print.
ABSTRACT
INTRODUCTION: Auranofin (AF) is a well-established, FDA-approved, antiarthritic gold drug that is currently being reevaluated for a variety of therapeutic indications through drug repurposing. AF has shown great promise as a potential anticancer agent and has been approved for a few clinical trials in cancer. The renewed interest in AF has led to extensive research into the design, preparation and biological evaluation of auranofin analogs, which may have an even better pharmacological profile than the parent drug.
AREAS COVERED: This article reviews the strategies for chemical modification of the AF scaffold. Several auranofin analogs have been prepared and characterized for medical application in the field of cancer treatment over the last 20 years. Some emerging structure-function relationships are proposed and discussed.
EXPERT OPINION: The chemical modification of the AF scaffold has been the subject of intense activity in recent years and this strategy has led to the preparation and evaluation of several AF analogs. The case of iodauranofin is a particularly promising example. The availability of homogeneous biological data for a group of AF derivatives allows some initial structure-function relationships to be proposed, which may inspire the design and synthesis of new and better AF analogs for cancer treatment.
PMID:38803122 | DOI:10.1080/17460441.2024.2355329
Exploring the pathways of drug repurposing and Panax ginseng treatment mechanisms in chronic heart failure: a disease module analysis perspective
Sci Rep. 2024 May 27;14(1):12109. doi: 10.1038/s41598-024-61926-2.
ABSTRACT
Chronic Heart Failure (CHF) is a significant global public health issue, with high mortality and morbidity rates and associated costs. Disease modules, which are collections of disease-related genes, offer an effective approach to understanding diseases from a biological network perspective. We employed the multi-Steiner tree algorithm within the NeDRex platform to extract CHF disease modules, and subsequently utilized the Trustrank algorithm to rank potential drugs for repurposing. The constructed disease module was then used to investigate the mechanism by which Panax ginseng ameliorates CHF. The active constituents of Panax ginseng were identified through a comprehensive review of the TCMSP database and relevant literature. The Swiss target prediction database was utilized to determine the action targets of these components. These targets were then cross-referenced with the CHF disease module in the STRING database to establish protein-protein interaction (PPI) relationships. Potential action pathways were uncovered through Gene Ontology (GO) and KEGG pathway enrichment analyses on the DAVID platform. Molecular docking, the determination of the interaction of biological macromolecules with their ligands, and visualization were conducted using Autodock Vina, PLIP, and PyMOL, respectively. The findings suggest that drugs such as dasatinib and mitoxantrone, which have low docking scores with key disease proteins and are reported in the literature as effective against CHF, could be promising. Key components of Panax ginseng, including ginsenoside rh4 and ginsenoside rg5, may exert their effects by targeting key proteins such as AKT1, TNF, NFKB1, among others, thereby influencing the PI3K-Akt and calcium signaling pathways. In conclusion, drugs like dasatinib and midostaurin may be suitable for CHF treatment, and Panax ginseng could potentially mitigate the progression of CHF through a multi-component-multi-target-multi-pathway approach. Disease module analysis emerges as an effective strategy for exploring drug repurposing and the mechanisms of traditional Chinese medicine in disease treatment.
PMID:38802411 | DOI:10.1038/s41598-024-61926-2
Repurposing SGLT2 inhibitors: Treatment of renal proximal tubulopathy in Fanconi-Bickel syndrome with empagliflozin
J Inherit Metab Dis. 2024 May 27. doi: 10.1002/jimd.12752. Online ahead of print.
ABSTRACT
Renal proximal tubulopathy in Fanconi-Bickel syndrome is caused by impaired basolateral glucose transport via GLUT2 and consequently, intracellular accumulation of glucose and glycogen. SGLT2 inhibitors act on apical glucose reabsorption of renal proximal tubular cells. The purpose of this study was to retrospectively describe the first experiences with repurposing the SGLT2 inhibitor empagliflozin to treat the generalized tubulopathy in Fanconi-Bickel syndrome. A case series was conducted of seven persons from five families (five males, two females; three children, who were 14y5m, 2y9m, and 1y6m old) with genetically confirmed Fanconi-Bickel syndrome, off-label treated with empagliflozin. Median (range) age at start of empagliflozin was 27 years (1y6m - 61y) and duration of follow-up under empagliflozin treatment was 169 days (57-344). Under empagliflozin (up to 25 mg/d), biochemical parameters of tubular cell integrity (urinary N-acetyl-glucosaminidase) and/or tubular functions (including urinary α1-microglobulin) improved in all persons with Fanconi-Bickel syndrome, albeit to varying degrees. Clinically, supplementations (i.e., phosphate, alkali, carnitine, and alfacalcidol) could be completely discontinued in the three children, whereas results in the four adult patients were more variable and not as significant. Empagliflozin was well-tolerated and no symptomatic hypoglycemia was observed. In conclusion, SGLT2 inhibitors such as empagliflozin shift the metabolic block in Fanconi-Bickel syndrome, that is, they intervene specifically in the underlying pathophysiology and can thus attenuate renal proximal tubulopathy, especially when started in early childhood.
PMID:38802119 | DOI:10.1002/jimd.12752
Pathogenesis of COVID19 and the applications of US FDA-approved repurposed antiviral drugs to combat SARS-CoV-2 in Saudi Arabia: A recent update by review of literature
Saudi J Biol Sci. 2024 Jul;31(7):104023. doi: 10.1016/j.sjbs.2024.104023. Epub 2024 May 11.
ABSTRACT
Still, there is no cure for the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-caused coronavirus disease 2019 (COVID19). The COVID19 pandemic caused health emergencies which resulted in enormous medical and financial consequences worldwide including Saudi Arabia. Saudi Arabia is the largest Arab country of the Middle East. The urban setting of Saudi Arabia makes it vulnerable towards SARS-CoV-2 (SCV-2). Religious areas of this country are visited by millions of pilgrims every year for the Umrah and Hajj pilgrimage, which contributes to the potential COVID19 epidemic risk. COVID19 throws various challenges to healthcare professionals to choose the right drugs or therapy in clinical settings because of the lack of availability of newer drugs. Current drug development and discovery is an expensive, complex, and long process, which involves a high failure rate in clinical trials. While repurposing of United States Food and Drug Administration (US FDA)-approved antiviral drugs offers numerous benefits including complete pharmacokinetic and safety profiles, which significantly shorten drug development cycles and reduce costs. A range of repurposed US FDA-approved antiviral drugs including ribavirin, lopinavir/ritonavir combination, oseltamivir, darunavir, remdesivir, nirmatrelvir/ritonavir combination, and molnupiravir showed encouraging results in clinical trials in COVID19 treatment. In this article, several COVID19-related discussions have been provided including emerging variants of concern of, COVID19 pathogenesis, COVID19 pandemic scenario in Saudi Arabia, drug repurposing strategies against SCV-2, as well as repurposing of US FDA-approved antiviral drugs that might be considered to combat SCV-2 in Saudi Arabia. Moreover, drug repurposing in the context of COVID19 management along with its limitations and future perspectives have been summarized.
PMID:38799719 | PMC:PMC11127266 | DOI:10.1016/j.sjbs.2024.104023
Low-dose naltrexone extends healthspan and lifespan in <em>C. elegans</em> via SKN-1 activation
iScience. 2024 May 8;27(6):109949. doi: 10.1016/j.isci.2024.109949. eCollection 2024 Jun 21.
ABSTRACT
As the global aging population rises, finding effective interventions to improve aging health is crucial. Drug repurposing, utilizing existing drugs for new purposes, presents a promising strategy for rapid implementation. We explored naltrexone from the Library of Integrated Network-based Cellular Signatures (LINCS) based on several selection criteria. Low-dose naltrexone (LDN) has gained attention for treating various diseases, yet its impact on longevity remains underexplored. Our study on C. elegans demonstrated that a low dose, but not high dose, of naltrexone extended the healthspan and lifespan. This effect was mediated through SKN-1 (NRF2 in mammals) signaling, influencing innate immune gene expression and upregulating oxidative stress responses. With LDN's low side effects profile, our findings underscore its potential as a geroprotector, suggesting further exploration for promoting healthy aging in humans is warranted.
PMID:38799567 | PMC:PMC11126937 | DOI:10.1016/j.isci.2024.109949
Knowledge mapping of graph neural networks for drug discovery: a bibliometric and visualized analysis
Front Pharmacol. 2024 May 10;15:1393415. doi: 10.3389/fphar.2024.1393415. eCollection 2024.
ABSTRACT
INTRODUCTION: In recent years, graph neural network has been extensively applied to drug discovery research. Although researchers have made significant progress in this field, there is less research on bibliometrics. The purpose of this study is to conduct a comprehensive bibliometric analysis of graph neural network applications in drug discovery in order to identify current research hotspots and trends, as well as serve as a reference for future research.
METHODS: Publications from 2017 to 2023 about the application of graph neural network in drug discovery were collected from the Web of Science Core Collection. Bibliometrix, VOSviewer, and Citespace were mainly used for bibliometric studies.
RESULTS AND DISCUSSION: In this paper, a total of 652 papers from 48 countries/regions were included. Research interest in this field is continuously increasing. China and the United States have a significant advantage in terms of funding, the number of publications, and collaborations with other institutions and countries. Although some cooperation networks have been formed in this field, extensive worldwide cooperation still needs to be strengthened. The results of the keyword analysis clarified that graph neural network has primarily been applied to drug-target interaction, drug repurposing, and drug-drug interaction, while graph convolutional neural network and its related optimization methods are currently the core algorithms in this field. Data availability and ethical supervision, balancing computing resources, and developing novel graph neural network models with better interpretability are the key technical issues currently faced. This paper analyzes the current state, hot spots, and trends of graph neural network applications in drug discovery through bibliometric approaches, as well as the current issues and challenges in this field. These findings provide researchers with valuable insights on the current status and future directions of this field.
PMID:38799167 | PMC:PMC11116974 | DOI:10.3389/fphar.2024.1393415
In vitro antifungal activity of MMV Pathogen Box® compounds alone or in combination with antifungal drugs against mucormycosis agents
Curr Res Microb Sci. 2024 May 15;6:100242. doi: 10.1016/j.crmicr.2024.100242. eCollection 2024.
ABSTRACT
Mucormycosis is a severe fungal infection that demands immediate and decisive intervention upon suspicion. The causative agents of mucormycosis exhibit inherent resistance to echinocandins and voriconazole, and their in vitro susceptibility to terbinafine is highly variable and species-specific. Considering these factors and the limitations of currently available antifungal therapies, the identification of novel antifungals with potent activity against mucormycosis is of paramount importance. This study aims to identify compounds from the MMV Pathogen Box® presenting antifungal activity against selected mucormycosis agents and to evaluate their potential synergistic effects when combined with antifungal drugs. A screening of the Pathogen Box® compounds was conducted, isolated or in combination with sub-inhibitory concentrations of amphotericin B, isavuconazole or posaconazole, against a Rhizopus oryzae strain. Hits from the screenings were further evaluated against eight Mucoralean strains for minimal inhibitory and fungicidal concentration determinations and to confirm synergistic interactions using the checkerboard method. Ultrastructural studies were performed using scanning electron microscopy. MMV675968 exhibited fungicidal activity against a R. oryzae strain. All but one Rhizopus spp. strains presented MIC ≤ 1 μg/mL, with a geometric mean of 0.78 μg/mL observed across all isolates for this compound, which did not change significantly the cellular structure of this fungus. The combination screening with antifungal drugs revealed six additional compounds potentially active against the R. oryzae strain, two of them demonstrated proven synergism through the checkerboard assay. This first study with the MMV Pathogen Box® and Zigomycetes highlights promising new treatment options for mucormycosis in the future.
PMID:38799088 | PMC:PMC11126940 | DOI:10.1016/j.crmicr.2024.100242
Molecular modeling of some commercially available antiviral drugs and their derivatives against SARS-CoV-2 infection
Narra J. 2024 Apr;4(1):e319. doi: 10.52225/narra.v4i1.319. Epub 2024 Apr 30.
ABSTRACT
Numerous prior studies have identified therapeutic targets that could effectively combat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, including the angiotensin-converting enzyme 2 (ACE2) receptor, RNA-dependent RNA polymerase (RdRp), and Main protease (Mpro). In parallel, antiviral compounds like abacavir, acyclovir, adefovir, amantadine, amprenavir, darunavir, didanosine, oseltamivir, penciclovir, and tenofovir are under investigation for their potential in drug repurposing to address this infection. The aim of the study was to determine the effect of modifying the functional groups of the aforementioned antivirals in silico. Using the genetic optimization for ligand docking algorithm on software Maestro (version 11.1), the modified antivirals were docked onto ACE2 receptor, RdRp, and Mpro. Using QuickProp (Maestro v11.1), PASS (prediction of activity spectra for the substances), and altogether with SwissADME, the ADMET (absorption, distribution, metabolism, excretion, and toxicity) of the modified antivirals, as well as their bioavailability and the predicted activity spectra, were determined. Discovery studio software was used to undertake post-docking analysis. Among the 10 antivirals, N(CH3)2 derivative of darunavir, N(CH3)2 derivative of amprenavir and NCH3 derivative of darunavir exhibited best binding affinities with ACE2 receptor (docking scores: -10.333, -9.527 and -9.695 kJ/mol, respectively). Moreover, NCH3 derivative of abacavir (-6.506 kJ/mol), NO2 derivative of didanosine (-6.877 kJ/mol), NCH3 derivative of darunavir (-7.618 kJ/mol) exerted promising affinity to Mpro. In conclusion, the results of the in silico screenings can serve as a useful information for future experimental works.
PMID:38798846 | PMC:PMC11125382 | DOI:10.52225/narra.v4i1.319
Feature fusion-based food protein subcellular prediction for drug composition
Food Chem. 2024 May 22;454:139747. doi: 10.1016/j.foodchem.2024.139747. Online ahead of print.
ABSTRACT
The structure and function of dietary proteins, as well as their subcellular prediction, are critical for designing and developing new drug compositions and understanding the pathophysiology of certain diseases. As a remedy, we provide a subcellular localization method based on feature fusion and clustering for dietary proteins. Additionally, an enhanced PseAAC (Pseudo-amino acid composition) method is suggested, which builds upon the conventional PseAAC. The study initially builds a novel model of representing the food protein sequence by integrating autocorrelation, chi density, and improved PseAAC to better convey information about the food protein sequence. After that, the dimensionality of the fused feature vectors is reduced by using principal component analysis. With prediction accuracies of 99.24% in the Gram-positive dataset and 95.33% in the Gram-negative dataset, respectively, the experimental findings demonstrate the practicability and efficacy of the proposed approach. This paper is basically exploring pseudo-amino acid composition of not any clinical aspect but exploring a pharmaceutical aspect for drug repositioning.
PMID:38797095 | DOI:10.1016/j.foodchem.2024.139747
Corrigendum to "Antioxidants activities of phytochemicals perspective modulation of autophagy and apoptosis to treating cancer" [Biomed. Pharmacother. 174 (2024) 116497]
Biomed Pharmacother. 2024 May 25:116757. doi: 10.1016/j.biopha.2024.116757. Online ahead of print.
NO ABSTRACT
PMID:38797597 | DOI:10.1016/j.biopha.2024.116757
Combining Mefloquine with an Mcl-1 Inhibitor as a Novel Therapeutic Strategy for the Treatment of Nasopharyngeal Carcinoma
Nutr Cancer. 2024 May 25:1-9. doi: 10.1080/01635581.2024.2358561. Online ahead of print.
ABSTRACT
Considering the established pharmacokinetics and toxicity profiles, drug repurposing has emerged as an alternative therapeutic approach for treating cancer. Mefloquine has previously demonstrated inhibitory effects on multiple cancer types. This study aims to explore the impact of mefloquine on nasopharyngeal carcinoma (NPC). We found that mefloquine, at pharmacologically achievable concentrations, displayed anti-NPC activity while sparing normal counterparts. Mefloquine inhibits proliferation and induces death by reducing the levels of Cyclin A2, Bcl-2, and Bcl-xL. Intriguingly, we observed an increase in the levels of the anti-apoptotic protein Mcl-1. Mefloquine exerts its effects on NPC cells by inducing lysosomal-mediated ROS production, and the heightened expression of Mcl-1 is a consequence of ROS generation in mefloquine-treated NPC cells. The combination of an Mcl-1 inhibitor with mefloquine synergistically inhibits NPC growth in mice without causing substantial toxicity. These findings demonstrate the effectiveness and limited toxicity of mefloquine as a monotherapy and in combination with an Mcl-1 inhibitor. Our research underscores the promise of the mefloquine and Mcl-1 inhibitor combination as a potential treatment for NPC. Additionally, the elevation of Mcl-1 is a compensatory response in cells exposed to oxidative stress, offering a potential target to overcome resistance induced by pro-oxidant therapies.
PMID:38795070 | DOI:10.1080/01635581.2024.2358561
Computational Modeling to Identify Drugs Targeting Metastatic Castration-Resistant Prostate Cancer Characterized by Heightened Glycolysis
Pharmaceuticals (Basel). 2024 Apr 29;17(5):569. doi: 10.3390/ph17050569.
ABSTRACT
Metastatic castration-resistant prostate cancer (mCRPC) remains a deadly disease due to a lack of efficacious treatments. The reprogramming of cancer metabolism toward elevated glycolysis is a hallmark of mCRPC. Our goal is to identify therapeutics specifically associated with high glycolysis. Here, we established a computational framework to identify new pharmacological agents for mCRPC with heightened glycolysis activity under a tumor microenvironment, followed by in vitro validation. First, using our established computational tool, OncoPredict, we imputed the likelihood of drug responses to approximately 1900 agents in each mCRPC tumor from two large clinical patient cohorts. We selected drugs with predicted sensitivity highly correlated with glycolysis scores. In total, 77 drugs predicted to be more sensitive in high glycolysis mCRPC tumors were identified. These drugs represent diverse mechanisms of action. Three of the candidates, ivermectin, CNF2024, and P276-00, were selected for subsequent vitro validation based on the highest measured drug responses associated with glycolysis/OXPHOS in pan-cancer cell lines. By decreasing the input glucose level in culture media to mimic the mCRPC tumor microenvironments, we induced a high-glycolysis condition in PC3 cells and validated the projected higher sensitivity of all three drugs under this condition (p < 0.0001 for all drugs). For biomarker discovery, ivermectin and P276-00 were predicted to be more sensitive to mCRPC tumors with low androgen receptor activities and high glycolysis activities (AR(low)Gly(high)). In addition, we integrated a protein-protein interaction network and topological methods to identify biomarkers for these drug candidates. EEF1B2 and CCNA2 were identified as key biomarkers for ivermectin and CNF2024, respectively, through multiple independent biomarker nomination pipelines. In conclusion, this study offers new efficacious therapeutics beyond traditional androgen-deprivation therapies by precisely targeting mCRPC with high glycolysis.
PMID:38794139 | DOI:10.3390/ph17050569
Research Progress on Spike-Dependent SARS-CoV-2 Fusion Inhibitors and Small Molecules Targeting the S2 Subunit of Spike
Viruses. 2024 Apr 30;16(5):712. doi: 10.3390/v16050712.
ABSTRACT
Since the beginning of the COVID-19 pandemic, extensive drug repurposing efforts have sought to identify small-molecule antivirals with various mechanisms of action. Here, we aim to review research progress on small-molecule viral entry and fusion inhibitors that directly bind to the SARS-CoV-2 Spike protein. Early in the pandemic, numerous small molecules were identified in drug repurposing screens and reported to be effective in in vitro SARS-CoV-2 viral entry or fusion inhibitors. However, given minimal experimental information regarding the exact location of small-molecule binding sites on Spike, it was unclear what the specific mechanism of action was or where the exact binding sites were on Spike for some inhibitor candidates. The work of countless researchers has yielded great progress, with the identification of many viral entry inhibitors that target elements on the S1 receptor-binding domain (RBD) or N-terminal domain (NTD) and disrupt the S1 receptor-binding function. In this review, we will also focus on highlighting fusion inhibitors that target inhibition of the S2 fusion function, either by disrupting the formation of the postfusion S2 conformation or alternatively by stabilizing structural elements of the prefusion S2 conformation to prevent conformational changes associated with S2 function. We highlight experimentally validated binding sites on the S1/S2 interface and on the S2 subunit. While most substitutions to the Spike protein to date in variants of concern (VOCs) have been localized to the S1 subunit, the S2 subunit sequence is more conserved, with only a few observed substitutions in proximity to S2 binding sites. Several recent small molecules targeting S2 have been shown to have robust activity over recent VOC mutant strains and/or greater broad-spectrum antiviral activity for other more distantly related coronaviruses.
PMID:38793593 | DOI:10.3390/v16050712
Additive Cytotoxic and Colony-Formation Inhibitory Effects of Aspirin and Metformin on <em>PI3KCA</em>-Mutant Colorectal Cancer Cells
Int J Mol Sci. 2024 May 15;25(10):5381. doi: 10.3390/ijms25105381.
ABSTRACT
Human malignancies are one of the major health-related issues throughout the world and are anticipated to rise in the future. Despite huge investments made in anticancer drug development, limited success has been obtained and the average number of FDA approvals per year is declining. So, an increasing interest in drug repurposing exists. Metformin (MET) and aspirin (ASP) possess anticancer properties. This work aims to test the effect of these two drugs in combination on colorectal cancer (CRC) cells in vitro. The effects of MET and/or ASP on cell proliferation, viability, migratory ability, anchorage-independent growth ability (colony formation), and nutrient uptake were determined in two (HT-29 and Caco-2) human CRC cell lines. Individually, MET and ASP possessed antiproliferative, cytotoxic, and antimigratory effects and reduced colony formation in HT-29 cells (BRAF- and phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α (PI3KCA)-mutant), although MET did not affect either 3H-deoxy-D-glucose or 14C-butyrate uptake and lactate production, and ASP caused only a small decrease in 14C-butyrate uptake. Moreover, in these cells, the combination of MET and ASP resulted in a tendency to an increase in the cytotoxic effect and in a potentiation of the inhibitory effect on colony formation, although no additive antiproliferative and antimigratory effects, and no effect on nutrient uptake and lactate production were observed. In contrast, MET and ASP, both individually and in combination, were almost devoid of effects on Caco-2 cells (BRAF- and PI3KCA-wild type). We suggest that inhibition of PI3K is the common mechanism involved in the anti-CRC effect of both MET, ASP and their combination and, therefore, that the combination of MET + ASP may especially benefit PI3KCA-mutant CRC cases, which currently have a poor prognostic.
PMID:38791419 | DOI:10.3390/ijms25105381
D<sup>R</sup>e<sup>A</sup>mocracy: A Method to Capitalise on Prior Drug Discovery Efforts to Highlight Candidate Drugs for Repurposing
Int J Mol Sci. 2024 May 13;25(10):5319. doi: 10.3390/ijms25105319.
ABSTRACT
In the area of drug research, several computational drug repurposing studies have highlighted candidate repurposed drugs, as well as clinical trial studies that have tested/are testing drugs in different phases. To the best of our knowledge, the aggregation of the proposed lists of drugs by previous studies has not been extensively exploited towards generating a dynamic reference matrix with enhanced resolution. To fill this knowledge gap, we performed weight-modulated majority voting of the modes of action, initial indications and targeted pathways of the drugs in a well-known repository, namely the Drug Repurposing Hub. Our method, DReAmocracy, exploits this pile of information and creates frequency tables and, finally, a disease suitability score for each drug from the selected library. As a testbed, we applied this method to a group of neurodegenerative diseases (Alzheimer's, Parkinson's, Huntington's disease and Multiple Sclerosis). A super-reference table with drug suitability scores has been created for all four neurodegenerative diseases and can be queried for any drug candidate against them. Top-scored drugs for Alzheimer's Disease include agomelatine, mirtazapine and vortioxetine; for Parkinson's Disease, they include apomorphine, pramipexole and lisuride; for Huntington's, they include chlorpromazine, fluphenazine and perphenazine; and for Multiple Sclerosis, they include zonisamide, disopyramide and priralfimide. Overall, DReAmocracy is a methodology that focuses on leveraging the existing drug-related experimental and/or computational knowledge rather than a predictive model for drug repurposing, offering a quantified aggregation of existing drug discovery results to (1) reveal trends in selected tracks of drug discovery research with increased resolution that includes modes of action, targeted pathways and initial indications for the investigated drugs and (2) score new candidate drugs for repurposing against a selected disease.
PMID:38791356 | DOI:10.3390/ijms25105319
DDCM: A Computational Strategy for Drug Repositioning Based on Support-Vector Regression Algorithm
Int J Mol Sci. 2024 May 12;25(10):5267. doi: 10.3390/ijms25105267.
ABSTRACT
Computational drug-repositioning technology is an effective tool for speeding up drug development. As biological data resources continue to grow, it becomes more important to find effective methods to identify potential therapeutic drugs for diseases. The effective use of valuable data has become a more rational and efficient approach to drug repositioning. The disease-drug correlation method (DDCM) proposed in this study is a novel approach that integrates data from multiple sources and different levels to predict potential treatments for diseases, utilizing support-vector regression (SVR). The DDCM approach resulted in potential therapeutic drugs for neoplasms and cardiovascular diseases by constructing a correlation hybrid matrix containing the respective similarities of drugs and diseases, implementing the SVR algorithm to predict the correlation scores, and undergoing a randomized perturbation and stepwise screening pipeline. Some potential therapeutic drugs were predicted by this approach. The potential therapeutic ability of these drugs has been well-validated in terms of the literature, function, drug target, and survival-essential genes. The method's feasibility was confirmed by comparing the predicted results with the classical method and conducting a co-drug analysis of the sub-branch. Our method challenges the conventional approach to studying disease-drug correlations and presents a fresh perspective for understanding the pathogenesis of diseases.
PMID:38791306 | DOI:10.3390/ijms25105267
Pseudovirus-Based Systems for Screening Natural Antiviral Agents: A Comprehensive Review
Int J Mol Sci. 2024 May 10;25(10):5188. doi: 10.3390/ijms25105188.
ABSTRACT
Since the outbreak of COVID-19, researchers have been working tirelessly to discover effective ways to combat coronavirus infection. The use of computational drug repurposing methods and molecular docking has been instrumental in identifying compounds that have the potential to disrupt the binding between the spike glycoprotein of SARS-CoV-2 and human ACE2 (hACE2). Moreover, the pseudovirus approach has emerged as a robust technique for investigating the mechanism of virus attachment to cellular receptors and for screening targeted small molecule drugs. Pseudoviruses are viral particles containing envelope proteins, which mediate the virus's entry with the same efficiency as that of live viruses but lacking pathogenic genes. Therefore, they represent a safe alternative to screen potential drugs inhibiting viral entry, especially for highly pathogenic enveloped viruses. In this review, we have compiled a list of antiviral plant extracts and natural products that have been extensively studied against enveloped emerging and re-emerging viruses by pseudovirus technology. The review is organized into three parts: (1) construction of pseudoviruses based on different packaging systems and applications; (2) knowledge of emerging and re-emerging viruses; (3) natural products active against pseudovirus-mediated entry. One of the most crucial stages in the life cycle of a virus is its penetration into host cells. Therefore, the discovery of viral entry inhibitors represents a promising therapeutic option in fighting against emerging viruses.
PMID:38791226 | DOI:10.3390/ijms25105188
Structure-Activity Relationships and Therapeutic Applications of Retinoids in View of Potential Benefits from Drug Repurposing Process
Biomedicines. 2024 May 10;12(5):1059. doi: 10.3390/biomedicines12051059.
ABSTRACT
Vitamin A, an essential micronutrient, is integral to various biological processes crucial for organismal development and maintenance. Dietary sources of vitamin A encompass preformed retinol, retinyl esters, and provitamin A carotenoids. Retinoic acid (RA), a key component, plays pivotal roles in vision, cell proliferation, apoptosis, immune function, and gene regulation. Drug repurposing, an effective strategy for identifying new therapeutic applications for existing drugs, has gained prominence in recent years. This review seeks to provide a comprehensive overview of the current research landscape surrounding retinoids and drug repurposing. The scope of this review encompasses a comprehensive examination of retinoids and their potential for repurposing in various therapeutic contexts. Despite their efficacy in treating dermatological conditions, concerns about toxicity persist, driving the search for safer and more potent retinoids. The molecular mechanisms underlying retinoid activity involve binding to retinoic acid receptors (RARs) and retinoid X receptors (RXRs), leading to transcriptional regulation of target genes. This review seeks to shed light on the possibilities for repurposing retinoids to cover a wider spectrum of therapeutic uses by exploring recent scientific progress. It also aims to offer a more comprehensive understanding of the therapeutic prospects of retinoids and the broader impact of drug repositioning in contemporary medicine.
PMID:38791021 | DOI:10.3390/biomedicines12051059