Drug Repositioning
Delivery of precision medicine - <em>Cambridge Prisms: Precision Medicine</em> webinar event transcript
Camb Prism Precis Med. 2023 Sep 11;1:e31. doi: 10.1017/pcm.2023.21. eCollection 2023.
NO ABSTRACT
PMID:38550945 | PMC:PMC10953739 | DOI:10.1017/pcm.2023.21
Ayurgenomics-based frameworks in precision and integrative medicine: Translational opportunities
Camb Prism Precis Med. 2023 Jun 15;1:e29. doi: 10.1017/pcm.2023.15. eCollection 2023.
ABSTRACT
In today's globalized and flat world, a patient can access and seek multiple health and disease management options. A digitally enabled participatory framework that allows an evidence-based informed choice is likely to assume an immense importance in the future. In India, traditional knowledge systems, like Ayurveda, coexist with modern medicine. However, due to limited crosstalk between the clinicians of both disciplines, a patient attempts integrative medicine by seeking both options independently with limited understanding and evidence. There is a need for an integrative medicine platform with a formalized approach, which allows practitioners from the two diverse systems to crosstalk, coexist, and coevolve for an informed cross-referral that benefits the patients. To be successful, this needs frameworks that enable the bridging of disciplines through a common interface with shared ontologies. Ayurgenomics is an emerging discipline that explores the principles and practices of Ayurveda combined with genomics approaches for mainstream integration. The present review highlights how in conjunction with different disciplines and technologies this has provided frameworks for (1) the discovery of molecular correlates to build ontological links between the two systems, (2) the discovery of biomarkers and targets for early actionable interventions, (3) understanding molecular mechanisms of drug action from its usage perspective in Ayurveda with applications in repurposing, (4) understanding the network and P4 medicine perspective of Ayurveda through a common organizing principle, (5) non-invasive stratification of healthy and diseased individuals using a compendium of system-level phenotypes, and (6) developing evidence-based solutions for practice in integrative medicine settings. The concordance between the two contrasting streams has been built through extensive explorations and iterations of the concepts of Ayurveda and genomic observations using state-of-the-art technologies, computational approaches, and model system studies. These highlight the enormous potential of a trans-disciplinary approach in evolving solutions for personalized interventions in integrative medicine settings.
PMID:38550940 | PMC:PMC10953754 | DOI:10.1017/pcm.2023.15
GEFormerDTA: drug target affinity prediction based on transformer graph for early fusion
Sci Rep. 2024 Mar 28;14(1):7416. doi: 10.1038/s41598-024-57879-1.
ABSTRACT
Predicting the interaction affinity between drugs and target proteins is crucial for rapid and accurate drug discovery and repositioning. Therefore, more accurate prediction of DTA has become a key area of research in the field of drug discovery and drug repositioning. However, traditional experimental methods have disadvantages such as long operation cycles, high manpower requirements, and high economic costs, making it difficult to predict specific interactions between drugs and target proteins quickly and accurately. Some methods mainly use the SMILES sequence of drugs and the primary structure of proteins as inputs, ignoring the graph information such as bond encoding, degree centrality encoding, spatial encoding of drug molecule graphs, and the structural information of proteins such as secondary structure and accessible surface area. Moreover, previous methods were based on protein sequences to learn feature representations, neglecting the completeness of information. To address the completeness of drug and protein structure information, we propose a Transformer graph-based early fusion research approach for drug-target affinity prediction (GEFormerDTA). Our method reduces prediction errors caused by insufficient feature learning. Experimental results on Davis and KIBA datasets showed a better prediction of drugtarget affinity than existing affinity prediction methods.
PMID:38548825 | DOI:10.1038/s41598-024-57879-1
Long-term oral meclozine administration improves survival rate and spinal canal stenosis during postnatal growth in a mouse model of achondroplasia in both sexes
JBMR Plus. 2024 Feb 24;8(4):ziae018. doi: 10.1093/jbmrpl/ziae018. eCollection 2024 Apr.
ABSTRACT
Achondroplasia (ACH) is a skeletal dysplasia characterized by short-limbed short stature caused by the gain-of-function mutations in the fibroblast growth factor receptor 3 (FGFR3) gene. Activated FGFR3, which is a negative regulator of bone elongation, impairs the growth of long bones and the spinal arch by inhibiting chondrocyte proliferation and differentiation. Most patients with ACH have spinal canal stenosis in addition to short stature. Meclozine has been found to inhibit FGFR3 via drug repurposing. A 10-d treatment with meclozine promoted long-bone growth in a mouse model of ACH (Fgfr3ach mice). This study aimed to evaluate the effects of long-term meclozine administration on promoting bone growth and the spinal canal in Fgfr3ach mice. Meclozine (2 mg/kg/d) was orally administered to Fgfr3ach mice for 5 d per wk from the age of 7 d to 56 d. Meclozine (2 mg/kg/d) significantly reduced the rate of death or paralysis and improved the length of the body, cranium, and long bones in male and female Fgfr3ach mice. Micro-computed tomography analysis revealed that meclozine ameliorated kyphotic deformities and trabecular parameters, including BMD, bone volume/tissue volume, trabecular thickness, and trabecular number at distal femur of Fgfr3ach mice in both sexes. Histological analyses revealed that the hypertrophic zone in the growth plate was restored in Fgfr3ach mice following meclozine treatment, suggesting upregulation of endochondral ossification. Skeletal preparations demonstrated that meclozine restored the spinal canal diameter in Fgfr3ach mice in addition to improving the length of each bone. The 2 mg/kg/d dose of meclozine reduced the rate of spinal paralysis caused by spinal canal stenosis, maintained the growth plate structure, and recovered the bone quality and growth of axial and appendicular skeletons of Fgfr3ach mice in both sexes. Long-term meclozine administration has the potential to ameliorate spinal paralysis and bone growth in patients with ACH.
PMID:38544920 | PMC:PMC10972533 | DOI:10.1093/jbmrpl/ziae018
Editorial: Strategies in the drug discovery and development for leishmaniasis: immunomodulators, natural products, synthetic compounds, and drug repositioning
Front Cell Infect Microbiol. 2024 Mar 13;14:1384244. doi: 10.3389/fcimb.2024.1384244. eCollection 2024.
NO ABSTRACT
PMID:38544526 | PMC:PMC10966123 | DOI:10.3389/fcimb.2024.1384244
Inactivated Poliovirus Vaccine Booster Reduces the Likelihood of COVID-19 Outcomes in Individuals Primed with Oral Poliovirus Vaccination
Vaccines (Basel). 2024 Feb 20;12(3):219. doi: 10.3390/vaccines12030219.
ABSTRACT
Introduction: Prior research explores whether seasonal and childhood vaccines mitigate the risk of SARS-CoV-2 infection. Although there are trials investigating COVID-19 infection in response to the effects of the oral poliovirus vaccine (OPV), there has been no prior research assessing COVID-19 outcomes in recently immunized adults with the inactivated poliovirus vaccine (IPV). Methods: SARS-CoV-2 infection and COVID-19 symptoms were analyzed across a cohort of 282 adults who received an IPV booster. Bivariate and multivariate regression models explored associations among variables related to vaccination histories and COVID-19 outcomes. Results: One year post-IPV inoculation, participants who had never received OPV were more likely to test positive for SARS-CoV-2 and experience COVID-19 symptoms, compared to those who had previously received OPV (OR = 3.92, 95%CI 2.22-7.03, p < 0.001; OR = 4.45, 95%CI 2.48-8.17, p < 0.001, respectively). Those who had never received OPV experienced COVID-19 symptoms for 6.17 days longer than participants who had previously received OPV (95%CI 3.68-8.67, p < 0.001). Multivariate regression modeling indicated COVID-19 vaccination did not impact SARS-CoV-2 infection or COVID-19 symptoms in this sample of adults who had recently received IPV. Discussion: Findings suggest IPV may boost mucosal immunity among OPV-primed individuals, and COVID-19 vaccination may not provide additional protection among those who had received IPV. Future, larger-scale studies should measure the extent of protective effects against COVID-19 to inform public health policies in resource-deficient settings.
PMID:38543853 | DOI:10.3390/vaccines12030219
Repositioning of the Antihyperlipidemic Drug Fenofibrate for the Management of <em>Aeromonas</em> Infections
Microorganisms. 2024 Feb 25;12(3):465. doi: 10.3390/microorganisms12030465.
ABSTRACT
Fenofibrate is a fibric acid derivative used as an antihyperlipidemic drug in humans. Its active metabolite, fenofibric acid, acts as an agonist to the peroxisome proliferator-activated receptor alpha (PPAR-α), a transcription factor involved in different metabolic pathways. Some studies have reported the potential protective role of this drug in cell lines and in vivo models against bacterial and viral infections. The aim of this study was to assess the in vitro effect of fenofibrate in the macrophage cell line J744A.1 against infections produced by Aeromonas, a pathogen for humans whose resistance to antibiotics has increased in recent decades. Macrophages were infected at MOI 10 with four strains of Aeromonas caviae and Aeromonas hydrophila isolated from human clinical samples and subsequently treated with fenofibrate. It was observed that fenofibrate-treated macrophages showed lower levels of cytotoxicity and intracellular bacteria compared to non-treated macrophages. In addition, the viability of treated macrophages was dependent on the dose of fenofibrate used. Furthermore, transcriptional analysis by RT-qPCR revealed significant differences in the expression of the PPAR-α gene and immune-related genes TNF-α, CCL3, and BAX in fenofibrate-treated macrophages compared to the macrophages without treatment. This study provides evidence that fenofibrate offered some protection in vitro in macrophages against Aeromonas infection. However, further studies are needed with other bacteria to determine its potential antibacterial effect and the route by which this protection is achieved.
PMID:38543516 | DOI:10.3390/microorganisms12030465
Drug Repurposing of Metformin for the Treatment of Haloperidol-Related Behavior Disorders and Oxidative Stress: A Preliminary Study
Pharmaceutics. 2024 Mar 15;16(3):403. doi: 10.3390/pharmaceutics16030403.
ABSTRACT
A particular attribute of the brain lies in the ability to learn, acquire information from the environment, and utilize the learned information. Previous research has noted that various factors (e.g., age, stress, anxiety, pathological issues), including antipsychotic medications, affect the brain and memory. The current study aimed to reveal the effects of chronic metformin treatment on the cognitive performance of rats and on commonly measured markers for oxidative stress. Wistar male rats (n = 40) were randomly divided into four groups: CTR (n = 10)-control group, METF (n = 10)-animals receiving metformin 500 mg/kg, HAL (n = 10)-animals receiving haloperidol 2 mg/kg, and HALMETF (n = 10)-animals receiving haloperidol 2 mg/kg and metformin 500 mg/kg. The medication was administered daily by oral gavage for 40 days. Memory and learning were assessed using the Morris Water Maze (MWM) test. At the end of the MWM, the rodents were decapitated under anesthesia, and the brain and blood samples were assayed by liquid chromatography for markers of oxidative stress (malondialdehyde, MDA, reduced/oxidized glutathione ratio, GSH/GSSG). The quantification of brain-derived neurotrophic factor (BDNF) was performed using the conventional sandwich ELISA technique. In the HALMETF group, metformin attenuated the negative effects of haloperidol. Brain and plasma MDA levels increased in the HAL group. Brain and plasma GSH/GSSG ratios and BDNF levels did not reveal any differences between groups. In conclusion, metformin treatment limits the deleterious cognitive effects of haloperidol. The effect on oxidative stress markers may also point toward an antioxidant-like effect of metformin, but this needs further tests for confirmation.
PMID:38543297 | DOI:10.3390/pharmaceutics16030403
Digital Technology Applications in the Management of Adverse Drug Reactions: Bibliometric Analysis
Pharmaceuticals (Basel). 2024 Mar 19;17(3):395. doi: 10.3390/ph17030395.
ABSTRACT
Adverse drug reactions continue to be not only one of the most urgent problems in clinical medicine, but also a social problem. The aim of this study was a bibliometric analysis of the use of digital technologies to prevent adverse drug reactions and an overview of their main applications to improve the safety of pharmacotherapy. The search was conducted using the Web of Science database for the period 1991-2023. A positive trend in publications in the field of using digital technologies in the management of adverse drug reactions was revealed. A total of 72% of all relevant publications come from the following countries: the USA, China, England, India, and Germany. Among the organizations most active in the field of drug side effect management using digital technologies, American and Chinese universities dominate. Visualization of publication keywords using VOSviewer software 1.6.18 revealed four clusters: "preclinical studies", "clinical trials", "pharmacovigilance", and "reduction of adverse drug reactions in order to improve the patient's quality of life". Molecular design technologies, virtual models for toxicity modeling, data integration, and drug repurposing are among the key digital tools used in the preclinical research phase. Integrating the application of machine learning algorithms for data analysis, monitoring of electronic databases of spontaneous messages, electronic medical records, scientific databases, social networks, and analysis of digital device data into clinical trials and pharmacovigilance systems, can significantly improve the efficiency and safety of drug development, implementation, and monitoring processes. The result of combining all these technologies is a huge synergistic provision of up-to-date and valuable information to healthcare professionals, patients, and health authorities.
PMID:38543181 | DOI:10.3390/ph17030395
Drug Repositioning via Graph Neural Networks: Identifying Novel JAK2 Inhibitors from FDA-Approved Drugs through Molecular Docking and Biological Validation
Molecules. 2024 Mar 19;29(6):1363. doi: 10.3390/molecules29061363.
ABSTRACT
The increasing utilization of artificial intelligence algorithms in drug development has proven to be highly efficient and effective. One area where deep learning-based approaches have made significant contributions is in drug repositioning, enabling the identification of new therapeutic applications for existing drugs. In the present study, a trained deep-learning model was employed to screen a library of FDA-approved drugs to discover novel inhibitors targeting JAK2. To accomplish this, reference datasets containing active and decoy compounds specific to JAK2 were obtained from the DUD-E database. RDKit, a cheminformatic toolkit, was utilized to extract molecular features from the compounds. The DeepChem framework's GraphConvMol, based on graph convolutional network models, was applied to build a predictive model using the DUD-E datasets. Subsequently, the trained deep-learning model was used to predict the JAK2 inhibitory potential of FDA-approved drugs. Based on these predictions, ribociclib, topiroxostat, amodiaquine, and gefitinib were identified as potential JAK2 inhibitors. Notably, several known JAK2 inhibitors demonstrated high potential according to the prediction results, validating the reliability of our prediction model. To further validate these findings and confirm their JAK2 inhibitory activity, molecular docking experiments were conducted using tofacitinib-an FDA-approved drug for JAK2 inhibition. Experimental validation successfully confirmed our computational analysis results by demonstrating that these novel drugs exhibited comparable inhibitory activity against JAK2 compared to tofacitinib. In conclusion, our study highlights how deep learning models can significantly enhance virtual screening efforts in drug discovery by efficiently identifying potential candidates for specific targets such as JAK2. These newly discovered drugs hold promises as novel JAK2 inhibitors deserving further exploration and investigation.
PMID:38542998 | DOI:10.3390/molecules29061363
Understanding the Pathophysiology of Ischemic Stroke: The Basis of Current Therapies and Opportunity for New Ones
Biomolecules. 2024 Mar 4;14(3):305. doi: 10.3390/biom14030305.
ABSTRACT
The majority of approved therapies for many diseases are developed to target their underlying pathophysiology. Understanding disease pathophysiology has thus proven vital to the successful development of clinically useful medications. Stroke is generally accepted as the leading cause of adult disability globally and ischemic stroke accounts for the most common form of the two main stroke types. Despite its health and socioeconomic burden, there is still minimal availability of effective pharmacological therapies for its treatment. In this review, we take an in-depth look at the etiology and pathophysiology of ischemic stroke, including molecular and cellular changes. This is followed by a highlight of drugs, cellular therapies, and complementary medicines that are approved or undergoing clinical trials for the treatment and management of ischemic stroke. We also identify unexplored potential targets in stroke pathogenesis that can be exploited to increase the pool of effective anti-stroke and neuroprotective agents through de novo drug development and drug repurposing.
PMID:38540725 | DOI:10.3390/biom14030305
Drug Repurposing and Lysosomal Storage Disorders: A Trick to Treat
Genes (Basel). 2024 Feb 25;15(3):290. doi: 10.3390/genes15030290.
ABSTRACT
Rare diseases, or orphan diseases, are defined as diseases affecting a small number of people compared to the general population. Among these, we find lysosomal storage disorders (LSDs), a cluster of rare metabolic diseases characterized by enzyme mutations causing abnormal glycolipid storage. Drug repositioning involves repurposing existing approved drugs for new therapeutic applications, offering advantages in cost, time savings, and a lower risk of failure. We present a comprehensive analysis of existing drugs, their repurposing potential, and their clinical implications in the context of LSDs, highlighting the necessity of mutation-specific approaches. Our review systematically explores the landscape of drug repositioning as a means to enhance LSDs therapies. The findings advocate for the strategic repositioning of drugs, accentuating its role in expediting the discovery of effective treatments. We conclude that drug repurposing represents a viable pathway for accelerating therapeutic discovery for LSDs, emphasizing the need for the careful evaluation of drug efficacy and toxicity in disease-specific contexts.
PMID:38540351 | DOI:10.3390/genes15030290
Repurposing of the Cardiovascular Drug Statin for the Treatment of Cancers: Efficacy of Statin-Dipyridamole Combination Treatment in Melanoma Cell Lines
Biomedicines. 2024 Mar 21;12(3):698. doi: 10.3390/biomedicines12030698.
ABSTRACT
Metastatic melanoma has a very poor prognosis. Statins, 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR) inhibitors, are cholesterol-lowering agents with a potential for cancer treatment. The inhibition of HMGCR by statins, however, induces feedback, which paradoxically upregulates HMGCR expression via sterol regulatory element-binding protein-2 (SREBP2). Dipyridamole, an antiplatelet agent, is known to inhibit SREBP2 upregulation. We aimed to demonstrate the efficacy of statin-dipyridamole combination treatment in both human and spontaneously occurring canine melanoma cell lines. The half maximal inhibitory concentration (IC50) of atorvastatin showed a 68-92% reduction when combined with dipyridamole, compared with that of atorvastatin alone. In some melanoma cell lines, cell proliferation was suppressed to almost zero by the combination treatment (≥3 μM atorvastatin). Finally, the BRAF inhibitor, vemurafenib, further potentiated the effects of the combined statin-dipyridamole treatment in BRAF V600E mutation-bearing human melanoma cell lines. In conclusion, the inexpensive and frequently prescribed statin-dipyridamole combination therapy may lead to new developments in the treatment of melanoma and may potentiate the effects of vemurafenib for the targeted therapy of BRAF V600E-mutation bearing melanoma patients. The concordance between the data from canine and human melanoma cell lines reinforces this possibility.
PMID:38540310 | DOI:10.3390/biomedicines12030698
Comparison of the antifungal activity of the pyrimidine analogs flucytosine and carmofur against human-pathogenic dematiaceous fungi
Med Mycol. 2024 Mar 26:myae029. doi: 10.1093/mmy/myae029. Online ahead of print.
ABSTRACT
Chromoblastomycosis (CBM) and pheohyphomycosis (PHM) are the most common implantation mycoses caused by dematiaceous fungi. In the past, flucytosine (5-FC) has been used to treat CBM, but development of resistance is common. Carmofur belongs to the same class as 5-FC and has in vitro inhibitory activity against the main agents of CBM and PHM. The aim of this study was to compare the action of these two pyrimidine analog drugs against CBM and PHM agents. The minimum inhibitory concentration (MIC) and the selectivity index based on cytotoxicity tests of these two drugs against some agents of these mycoses were determined, with carmofur presenting a higher selectivity index than 5-FC. Carmofur demonstrated here synergistic interactions with itraconazole and amphotericin B against Exophiala heteromorpha, Fonsecaea pedrosoi, Fonsecaea monophora and Fonsecaea nubica strains. Additionally, carmofur plus itraconazole demonstrated here synergism against a Phialophora verrucosa strain. To evaluate the development of carmofur resistance, passages in culture medium containing subinhibitory concentrations of this pyrimidine analog were carried out, followed by in vitro susceptibility tests. Exophiala dermatitidis quickly developed resistance, whereas F. pedrosoi took seven passages in carmofur-supplemented medium to develop resistance. Moreover, resistance was permanent in E. dermatitidis but transient in F. pedrosoi. Hence, carmofur has exhibited certain advantages, albeit accompanied by limitations such as the development of resistance, which was expected as with 5-FC. This underscores its therapeutic potential in combination with other drugs, emphasizing the need for a meticulous evaluation of its application in the fight against dematiaceous fungi.
PMID:38533658 | DOI:10.1093/mmy/myae029
Uncovering Cell Cycle Dysregulations and Associated Mechanisms in Cancer and Neurodegenerative Disorders: A Glimpse of Hope for Repurposed Drugs
Mol Neurobiol. 2024 Mar 26. doi: 10.1007/s12035-024-04130-7. Online ahead of print.
ABSTRACT
The cell cycle is the sequence of events orchestrated by a complex network of cell cycle proteins. Unlike normal cells, mature neurons subsist in a quiescent state of the cell cycle, and aberrant cell cycle activation triggers neuronal death accompanied by neurodegeneration. The periodicity of cell cycle events is choreographed by various mechanisms, including DNA damage repair, oxidative stress, neurotrophin activity, and ubiquitin-mediated degradation. Given the relevance of cell cycle processes in cancer and neurodegeneration, this review delineates the overlapping cell cycle events, signaling pathways, and mechanisms associated with cell cycle aberrations in cancer and the major neurodegenerative disorders. We suggest that dysregulation of some common fundamental signaling processes triggers anomalous cell cycle activation in cancer cells and neurons. We discussed the possible use of cell cycle inhibitors for neurodegenerative disorders and described the associated challenges. We propose that a greater understanding of the common mechanisms driving cell cycle aberrations in cancer and neurodegenerative disorders will open a new avenue for the development of repurposed drugs.
PMID:38532240 | DOI:10.1007/s12035-024-04130-7
Repurposing fusidic acid as an antimicrobial against enterococci with a low probability of resistance development
Int Microbiol. 2024 Mar 27. doi: 10.1007/s10123-024-00506-w. Online ahead of print.
ABSTRACT
Drug repurposing constitutes a strategy to combat antimicrobial resistance, by using agents with known safety, pharmacokinetics, and pharmacodynamics. Previous studies have implemented new fusidic acid (FA) front-loading-dose regimens, allowing higher serum levels than those achievable with ordinary doses. As susceptibility breakpoints are affected by serum level, we evaluated the repurposing of FA as an antimicrobial product against enterococci. FA minimum inhibitory concentrations (MICs) against standard enterococci strains; Enterococcus faecalis ATCC 29212 and Enterococcus faecium ATCC 27270 were 2 and 4 µg/mL, respectively. The MIC against 98 enterococcal clinical isolates was ≤ 8 µg/mL; all would be susceptible if categorized according to recalculated breakpoints (≥ 16 µg/mL), based on the serum level achieved using the front-loading regimen. FA administration in vivo, using the BALB/c mouse infection model, significantly reduced bacterial burden by two to three log10 units in the liver and spleen of mice infected with vancomycin-susceptible and -resistant strains. Exposure of the standard enterococcal strains to increasing, but not fixed, FA concentrations resulted in resistant strains (MIC = 128 µg/mL), with thicker cell walls and slower growth rates. Only one mutation (M651I) was detected in the fusA gene of the resistant strain derived from serial passage of E. faecium ATCC 27270, which was retained in the revertant strain after passage in the FA-free medium. In conclusion, FA can be repurposed as an antimicrobial drug against enterococci with a low probability of mutational resistance development, and can be employed for treatment of infections attributable to vancomycin-resistant enterococci.
PMID:38532184 | DOI:10.1007/s10123-024-00506-w
Signature reversion of three disease-associated gene signatures prioritizes cancer drug repurposing candidates
FEBS Open Bio. 2024 Mar 26. doi: 10.1002/2211-5463.13796. Online ahead of print.
ABSTRACT
Drug repurposing is promising because approving a drug for a new indication requires fewer resources than approving a new drug. Signature reversion detects drug perturbations most inversely related to the disease-associated gene signature to identify drugs that may reverse that signature. We assessed the performance and biological relevance of three approaches for constructing disease-associated gene signatures (i.e., limma, DESeq2, and MultiPLIER) and prioritized the resulting drug repurposing candidates for four low-survival human cancers. Our results were enriched for candidates that had been used in clinical trials or performed well in the PRISM drug screen. Additionally, we found that pamidronate and nimodipine, drugs predicted to be efficacious against the brain tumor glioblastoma (GBM), inhibited the growth of a GBM cell line and cells isolated from a patient-derived xenograft (PDX). Our results demonstrate that by applying multiple disease-associated gene signature methods, we prioritized several drug repurposing candidates for low-survival cancers.
PMID:38531616 | DOI:10.1002/2211-5463.13796
Antineoplastics for treating Alzheimer's disease and dementia: Evidence from preclinical and observational studies
Med Res Rev. 2024 Mar 26. doi: 10.1002/med.22033. Online ahead of print.
ABSTRACT
As the world population ages, there will be an increasing need for effective therapies for aging-associated neurodegenerative disorders, which remain untreatable. Dementia due to Alzheimer's disease (AD) is one of the leading neurological diseases in the aging population. Current therapeutic approaches to treat this disorder are solely symptomatic, making the need for new molecular entities acting on the causes of the disease extremely urgent. One of the potential solutions is to use compounds that are already in the market. The structures have known pharmacokinetics, pharmacodynamics, toxicity profiles, and patient data available in several countries. Several drugs have been used successfully to treat diseases different from their original purposes, such as autoimmunity and peripheral inflammation. Herein, we divulge the repurposing of drugs in the area of neurodegenerative diseases, focusing on the therapeutic potential of antineoplastics to treat dementia due to AD and dementia. We briefly touch upon the shared pathological mechanism between AD and cancer and drug repurposing strategies, with a focus on artificial intelligence. Next, we bring out the current status of research on the development of drugs, provide supporting evidence from retrospective, clinical, and preclinical studies on antineoplastic use, and bring in new areas, such as repurposing drugs for the prion-like spreading of pathologies in treating AD.
PMID:38530106 | DOI:10.1002/med.22033
Hematopoietic cell kinase as a nexus for drug repurposing: implications for cancer and HIV therapy
J Biomol Struct Dyn. 2024 Mar 26:1-11. doi: 10.1080/07391102.2024.2331092. Online ahead of print.
ABSTRACT
Hematopoietic cell kinase (HCK) has emerged as a potential target for therapeutic intervention in cancer and HIV infection because of its critical role in critical signaling pathways. Repurposing FDA-approved drugs offers an efficient strategy to identify new treatment options. Here, we address the need for novel therapies in cancer and HIV by investigating the potential of repurposed drugs against HCK. Our goal was to identify promising drug candidates with high binding affinities and specific interactions within the HCK binding pocket. We employed an integrated computational approach combining molecular docking and extensive molecular dynamics (MD) simulations. Initially, we analyzed the binding affinities and interaction patterns of a library of FDA-approved drugs sourced from DrugBank. After careful analysis, we focused on two compounds, Nilotinib and Radotinib, which exhibit exceptional binding affinities and specificity to the HCK binding pocket, including the active site. Additionally, we assessed the pharmacological properties of Nilotinib and Radotinib, making them attractive candidates for further drug development. Extensive all-atom MD simulations spanning 200 nanoseconds (ns) elucidated the conformational dynamics and stability of the HCK-Nilotinib and HCK-Radotinib complexes. These simulations demonstrate the robustness of these complexes over extended timescales. Our findings highlighted the potential of Nilotinib and Radotinib as promising candidates against HCK that offer valuable insights into their binding mechanisms. This computational approach provides a comprehensive understanding of drug interactions with HCK and sets the stage for future experimental validation and drug development endeavors.Communicated by Ramaswamy H. Sarma.
PMID:38529911 | DOI:10.1080/07391102.2024.2331092
Tepotinib and tivantinib as potential inhibitors for the serine/threonine kinase of the mpox virus: insights from structural bioinformatics analysis
J Biomol Struct Dyn. 2024 Mar 26:1-11. doi: 10.1080/07391102.2024.2323699. Online ahead of print.
ABSTRACT
The serine/threonine kinase (STK) plays a central role as the primary kinase in poxviruses, directing phosphoryl transfer reactions. Such reactions are pivotal for the activation of certain proteins during viral replication, assembly, and maturation. Therefore, targeting this key protein is anticipated to impede virus replication. In this work, a structural bioinformatics approach was employed to evaluate the potential of drug-like kinase inhibitors in binding to the ATP-binding pocket on the STK of the Mpox virus. Virtual screening of known kinase inhibitors revealed that the top 10 inhibitors exhibited binding affinities ranging from -8.59 to -12.05 kcal/mol. The rescoring of compounds using the deep-learning default model in GNINA was performed to predict accurate binding poses. Subsequently, the top three inhibitors underwent unbiased molecular dynamics (MD) simulations for 100 ns. Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) analysis and Principal Component Analysis (PCA) suggested tepotinib as a competitive inhibitor for Mpox virus STK as evidenced by its binding free energy and the induction of similar conformational behavior of the enzyme. Nevertheless, it is sensible to experimentally test all top 10 compounds, as scoring functions and energy calculations may not consistently align with experimental findings. These insights are poised to provide an attempt to identify an effective inhibitor for the Mpox virus.Communicated by Ramaswamy H. Sarma.
PMID:38529847 | DOI:10.1080/07391102.2024.2323699