Drug Repositioning
Identification of Fasudil as a collaborator to promote the anti-tumor effect of lenvatinib in hepatocellular carcinoma by inhibiting GLI2-mediated hedgehog signaling pathway
Pharmacol Res. 2024 Jan 25:107082. doi: 10.1016/j.phrs.2024.107082. Online ahead of print.
ABSTRACT
Lenvatinib is a frontline tyrosine kinase inhibitor for patients with advanced hepatocellular carcinoma (HCC). However, just 25% of patients benefit from the treatment, and acquired resistance always develops. To date, there are neither effective medications to combat lenvatinib resistance nor accurate markers that might predict how well a patient would respond to the lenvatinib treatment. Thus, novel strategies to recognize and deal with lenvatinib resistance are desperately needed. In the current study, a robust Lenvatinib Resistance index (LRi) model to predict lenvatinib response status in HCC was first established. Subsequently, five candidate drugs (Mercaptopurine, AACOCF3, NU1025, Fasudil, and Exisulind) that were capable of reversing lenvatinib resistance signature were initially selected by performing the connectivity map (CMap) analysis, and fasudil finally stood out by conducting a series of cellular functional assays in vitro and xenograft mouse model. Transcriptomics revealed that the co-administration of lenvatinib and fasudil overcame lenvatinib resistance by remodeling the hedgehog signaling pathway. Mechanistically, the feedback activation of EGFR by lenvatinib led to the activation of the GLI2-ABCC1 pathway, which supported the HCC cell's survival and proliferation. Notably, co-administration of lenvatinib and fasudil significantly inhibited IHH, the upstream switch of the hedgehog pathway, to counteract GLI2 activation and finally enhance the effectiveness of lenvatinib. These findings elucidated a novel EGFR-mediated mechanism of lenvatinib resistance and provided a practical approach to overcoming drug resistance in HCC through meaningful drug repurposing strategies.
PMID:38280440 | DOI:10.1016/j.phrs.2024.107082
Aspirin as a potential drug repurposing candidate targeting estrogen receptor alpha in breast cancer: a molecular dynamics and in-vitro study
J Biomol Struct Dyn. 2024 Jan 27:1-12. doi: 10.1080/07391102.2024.2308780. Online ahead of print.
ABSTRACT
Estrogen receptor alpha (ERα) is expressed by 70% of breast cancers (BCs). Any deregulation in ERα signaling is crucial for the initiation and progression of BC. Because of development of resistance to anti-estrogenic compounds, repurposing existing drugs is an apt strategy to avoid a long drug-discovery process. Substantial epidemiologic evidence suggests that Aspirin use reduces the risk of different cancers including BC, while its role as an adjuvant or a possible antineoplastic agent in cancer treatment is being investigated. In this study, we attempted to explore possibilities of ERα inhibition by Aspirin which may act through competitive binding to the ligand binding domain (LBD) of ERα. A list of 48 ERα-LBD crystal structures bound with agonists, antagonists, and selective ER modulators (SERMs) was thoroughly analysed to determine interaction patterns specific to each ligand category. Exhaustive docking and 500 ns molecular dynamics (MD) studies were performed on three ERα - Aspirin complexes generated using agonist, antagonist, and SERM-bound crystal structures. Besides, three ERα crystal structures bound to agonist, antagonist, and SERM respectively were also subjected to MD simulations. Aspirin showed good affinity to LBD of ERα. Comparative analyses of binding patterns, conformational changes and molecular interaction profiles from the docking results and MD trajectories suggests that Aspirin was most stable in complex generated using SERM bound crystal structure of ERα and showed interactions with Gly-521, Ala-350, Leu-525 and Thr-347 like SERMs. In addition, in-vitro assays, qPCR, and immunofluorescent assay demonstrated the decline in the expression of ERα in MCF-7 upon treatment with Aspirin. These preliminary bioinformatical and in-vitro findings may form the basis to consider Aspirin as a potential candidate for targeting ERα, especially in tamoxifen-resistant cancers.Communicated by Ramaswamy H. Sarma.
PMID:38279948 | DOI:10.1080/07391102.2024.2308780
The landscape of the methodology in drug repurposing using human genomic data: a systematic review
Brief Bioinform. 2024 Jan 22;25(2):bbad527. doi: 10.1093/bib/bbad527.
ABSTRACT
The process of drug development is expensive and time-consuming. In contrast, drug repurposing can be introduced to clinical practice more quickly and at a reduced cost. Over the last decade, there has been a significant expansion of large biobanks that link genomic data to electronic health record data, public availability of various databases containing biological and clinical information and rapid development of novel methodologies and algorithms in integrating different sources of data. This review aims to provide a thorough summary of different strategies that utilize genomic data to seek drug-repositioning opportunities. We searched MEDLINE and EMBASE databases to identify eligible studies up until 1 May 2023, with a total of 102 studies finally included after two-step parallel screening. We summarized commonly used strategies for drug repurposing, including Mendelian randomization, multi-omic-based and network-based studies and illustrated each strategy with examples, as well as the data sources implemented. By leveraging existing knowledge and infrastructure to expedite the drug discovery process and reduce costs, drug repurposing potentially identifies new therapeutic uses for approved drugs in a more efficient and targeted manner. However, technical challenges when integrating different types of data and biased or incomplete understanding of drug interactions are important hindrances that cannot be disregarded in the pursuit of identifying novel therapeutic applications. This review offers an overview of drug repurposing methodologies, providing valuable insights and guiding future directions for advancing drug repurposing studies.
PMID:38279645 | DOI:10.1093/bib/bbad527
Role of biomarkers and molecular signaling pathways in acute lung injury
Fundam Clin Pharmacol. 2024 Jan 26. doi: 10.1111/fcp.12987. Online ahead of print.
ABSTRACT
BACKGROUND: Acute lung injury (ALI) is caused by bacterial, fungal, and viral infections. When pathogens invade the lungs, the immune system responds by producing cytokines, chemokines, and interferons to promote the infiltration of phagocytic cells, which are essential for pathogen clearance. Their excess production causes an overactive immune response and a pathological hyper-inflammatory state, which leads to ALI. Until now, there is no particular pharmaceutical treatment available for ALI despite known inflammatory mediators like neutrophil extracellular traps (NETs) and reactive oxygen species (ROS).
OBJECTIVES: Therefore, the primary objective of this review is to provide the clear overview on the mechanisms controlling NETs, ROS formation, and other relevant processes during the pathogenesis of ALI. In addition, we have discussed the significance of epithelial and endothelial damage indicators and several molecular signaling pathways associated with ALI.
METHODS: The literature review was done from Web of Science, Scopus, PubMed, and Google Scholar for ALI, NETs, ROS, inflammation, biomarkers, Toll- and nucleotide-binding oligomerization domain (NOD)-like receptors, alveolar damage, pro-inflammatory cytokines, and epithelial/endothelial damage alone or in combination.
RESULTS: This review summarized the main clinical signs of ALI, including the regulation and distinct function of epithelial and endothelial biomarkers, NETs, ROS, and pattern recognition receptors (PRRs).
CONCLUSION: However, no particular drugs including vaccine for ALI has been established. Furthermore, there is a lack of validated diagnostic tools and a poor predictive rationality of current therapeutic biomarkers. Hence, extensive and precise research is required to speed up the process of drug testing and development by the application of artificial intelligence technologies, structure-based drug design, in-silico approaches, and drug repurposing.
PMID:38279523 | DOI:10.1111/fcp.12987
Bezafibrate attenuates immobilization-induced muscle atrophy in mice
Sci Rep. 2024 Jan 26;14(1):2240. doi: 10.1038/s41598-024-52689-x.
ABSTRACT
Muscle atrophy due to fragility fractures or frailty worsens not only activity of daily living and healthy life expectancy, but decreases life expectancy. Although several therapeutic agents for muscle atrophy have been investigated, none is yet in clinical use. Here we report that bezafibrate, a drug used to treat hyperlipidemia, can reduce immobilization-induced muscle atrophy in mice. Specifically, we used a drug repositioning approach to screen 144 drugs already utilized clinically for their ability to inhibit serum starvation-induced elevation of Atrogin-1, a factor related to muscle atrophy, in myotubes in vitro. Two candidates were selected, and here we demonstrate that one of them, bezafibrate, significantly reduced muscle atrophy in an in vivo model of muscle atrophy induced by leg immobilization. In gastrocnemius muscle, immobilization reduced muscle weight by an average of ~ 17.2%, and bezafibrate treatment prevented ~ 40.5% of that atrophy. In vitro, bezafibrate significantly inhibited expression of the inflammatory cytokine Tnfa in lipopolysaccharide-stimulated RAW264.7 cells, a murine macrophage line. Finally, we show that expression of Tnfa and IL-1b is induced in gastrocnemius muscle in the leg immobilization model, an activity significantly antagonized by bezafibrate administration in vivo. We conclude that bezafibrate could serve as a therapeutic agent for immobilization-induced muscle atrophy.
PMID:38279013 | DOI:10.1038/s41598-024-52689-x
Repurposing Therapeutic Drugs Complexed to Vanadium in Cancer
Pharmaceuticals (Basel). 2023 Dec 21;17(1):12. doi: 10.3390/ph17010012.
ABSTRACT
Repurposing drugs by uncovering new indications for approved drugs accelerates the process of establishing new treatments and reduces the high costs of drug discovery and development. Metal complexes with clinically approved drugs allow further opportunities in cancer therapy-many vanadium compounds have previously shown antitumor effects, which makes vanadium a suitable metal to complex with therapeutic drugs, potentially improving their efficacy in cancer treatment. In this review, covering the last 25 years of research in the field, we identified non-oncology-approved drugs suitable as ligands to obtain different vanadium complexes. Metformin-decavanadate, vanadium-bisphosphonates, vanadyl(IV) complexes with non-steroidal anti-inflammatory drugs, and cetirizine and imidazole-based oxidovanadium(IV) complexes, each has a parent drug known to have different medicinal properties and therapeutic indications, and all showed potential as novel anticancer treatments. Nevertheless, the precise mechanisms of action for these vanadium compounds against cancer are still not fully understood.
PMID:38275998 | DOI:10.3390/ph17010012
Targeted Therapies and Drug Resistance in Advanced Breast Cancer, Alternative Strategies and the Way beyond
Cancers (Basel). 2024 Jan 22;16(2):466. doi: 10.3390/cancers16020466.
ABSTRACT
"Targeted therapy" or "precision medicine" is a therapeutic strategy launched over two decades ago. It relies on drugs that inhibit key molecular mechanisms/pathways or genetic/epigenetic alterations that promote different cancer hallmarks. Many clinical trials, sponsored by multinational drug companies, have been carried out. During this time, research has increasingly uncovered the complexity of advanced breast cancer disease. Despite high expectations, patients have seen limited benefits from these clinical trials. Commonly, only a minority of trials are successful, and the few approved drugs are costly. The spread of this expensive therapeutic strategy has constrained the resources available for alternative research. Meanwhile, due to the high cost/benefit ratio, other therapeutic strategies have been proposed by researchers over time, though they are often not pursued due to a focus on precision medicine. Notable among these are drug repurposing and counteracting micrometastatic disease. The former provides an obvious answer to expensive targeted therapies, while the latter represents a new field to which efforts have recently been devoted, offering a "way beyond" the current research.
PMID:38275906 | DOI:10.3390/cancers16020466
The Potential of a Stratified Approach to Drug Repurposing in Alzheimer's Disease
Biomolecules. 2023 Dec 21;14(1):11. doi: 10.3390/biom14010011.
ABSTRACT
Alzheimer's disease (AD) is a complex neurodegenerative condition that is characterized by the build-up of amyloid-beta plaques and neurofibrillary tangles. While multiple theories explaining the aetiology of the disease have been suggested, the underlying cause of the disease is still unknown. Despite this, several modifiable and non-modifiable factors that increase the risk of developing AD have been identified. To date, only eight AD drugs have ever gained regulatory approval, including six symptomatic and two disease-modifying drugs. However, not all are available in all countries and high costs associated with new disease-modifying biologics prevent large proportions of the patient population from accessing them. With the current patient population expected to triple by 2050, it is imperative that new, effective, and affordable drugs become available to patients. Traditional drug development strategies have a 99% failure rate in AD, which is far higher than in other disease areas. Even when a drug does reach the market, additional barriers such as high cost and lack of accessibility prevent patients from benefiting from them. In this review, we discuss how a stratified medicine drug repurposing approach may address some of the limitations and barriers that traditional strategies face in relation to drug development in AD. We believe that novel, stratified drug repurposing studies may expedite the discovery of alternative, effective, and more affordable treatment options for a rapidly expanding patient population in comparison with traditional drug development methods.
PMID:38275752 | DOI:10.3390/biom14010011
Ezetimibe Induces Paraptosis through Niemann-Pick C1-like 1 Inhibition of Mammalian-Target-of-Rapamycin Signaling in Hepatocellular Carcinoma Cells
Genes (Basel). 2023 Dec 19;15(1):4. doi: 10.3390/genes15010004.
ABSTRACT
Currently, hepatocellular carcinoma (HCC) is characterized by its unfavorable prognosis and resistance to conventional chemotherapy and radiotherapy. Drug repositioning, an approach aimed at identifying novel therapeutic applications for existing drugs, presents a cost-effective strategy for developing new anticancer agents. We explored the anticancer properties of Ezetimibe, a widely used oral lipid-lowering drug, in the context of HCC. Our findings demonstrate that Ezetimibe effectively suppresses HCC cell proliferation through paraptosis, an apoptotic-independent cell death pathway. The examination of HCC cells lines treated with Ezetimibe using light microscopy and transmission electron microscopy (TEM) showed cytoplasmic vacuolation in the perinuclear region. Notably, the nuclear membrane remained intact in both Ezetimibe-treated and untreated HCC cell lines. Probe staining assays confirmed that the cytoplasmic vacuoles originated from dilated endoplasmic reticulum (ER) compartments rather than mitochondria. Furthermore, a dose-dependent accumulation of reactive oxygen species (ROS) was observed in Ezetimibe-treated HCC cell lines. Co-treatment with the general antioxidant NAC attenuated vacuolation and improved cell viability in Ezetimibe-treated HCC cells. Moreover, Ezetimibe induced paraptosis through proteasome activity inhibition and initiation of the unfolded protein response (UPR) in HCC cell lines. In our in vivo experiment, Ezetimibe significantly impeded the growth of HCC tumors. Furthermore, when combined with Sorafenib, Ezetimibe exhibited a synergistic antitumor effect on HCC cell lines. Mechanistically, Ezetimibe induced paraptosis by targeting NPC1L1 to inhibit the PI3K/AKT/mTOR signaling pathway. In conclusion, our study highlights the potential of Ezetimibe as an anticancer agent by triggering paraptosis in HCC cells.
PMID:38275586 | DOI:10.3390/genes15010004
Unlocking the Medicinal Mysteries: Preventing Lacunar Stroke with Drug Repurposing
Biomedicines. 2023 Dec 20;12(1):17. doi: 10.3390/biomedicines12010017.
ABSTRACT
Currently, only the general control of the risk factors is known to prevent lacunar cerebral infarction, but it is unknown which type of medication for controlling the risk factors has a causal relationship with reducing the risk of lacunar infarction. To unlock this medical mystery, drug-target Mendelian randomization analysis was applied to estimate the effect of common antihypertensive agents, hypolipidemic agents, and hypoglycemic agents on lacunar stroke. Lacunar stroke data for the transethnic analysis were derived from meta-analyses comprising 7338 cases and 254,798 controls. We have confirmed that genetic variants mimicking calcium channel blockers were found to most stably prevent lacunar stroke. The genetic variants at or near HMGCR, NPC1L1, and APOC3 were predicted to decrease lacunar stroke incidence in drug-target MR analysis. These variants mimic the effects of statins, ezetimibe, and antisense anti-apoC3 agents, respectively. Genetically proxied GLP1R agonism had a marginal effect on lacunar stroke, while a genetically proxied improvement in overall glycemic control was associated with reduced lacunar stroke risk. Here, we show that certain categories of drugs currently used in clinical practice can more effectively reduce the risk of stroke. Repurposing several drugs with well-established safety and low costs for lacunar stroke prevention should be given high priority when doctors are making decisions in clinical practice. This may contribute to healthier brain aging.
PMID:38275377 | DOI:10.3390/biomedicines12010017
Disulfiram: A novel repurposed drug for cancer therapy
Chin Med J (Engl). 2024 Jan 26. doi: 10.1097/CM9.0000000000002909. Online ahead of print.
ABSTRACT
Cancer is a major global health issue. Effective therapeutic strategies can prolong patients' survival and reduce the costs of treatment. Drug repurposing, which identifies new therapeutic uses for approved drugs, is a promising approach with the advantages of reducing research costs, shortening development time, and increasing efficiency and safety. Disulfiram (DSF), an Food and Drug Administration (FDA)-approved drug used to treat chronic alcoholism, has a great potential as an anticancer drug by targeting diverse human malignancies. Several studies show the antitumor effects of DSF, particularly the combination of DSF and copper (DSF/Cu), on a wide range of cancers such as glioblastoma (GBM), breast cancer, liver cancer, pancreatic cancer, and melanoma. In this review, we summarize the antitumor mechanisms of DSF/Cu, including induction of intracellular reactive oxygen species (ROS) and various cell death signaling pathways, and inhibition of proteasome activity, as well as inhibition of nuclear factor-kappa B (NF-κB) signaling. Furthermore, we highlight the ability of DSF/Cu to target cancer stem cells (CSCs), which provides a new approach to prevent tumor recurrence and metastasis. Strikingly, DSF/Cu inhibits several molecular targets associated with drug resistance, and therefore it is becoming a novel option to increase the sensitivity of chemo-resistant and radio-resistant patients. Studies of DSF/Cu may shed light on its improved application to clinical tumor treatment.
PMID:38275022 | DOI:10.1097/CM9.0000000000002909
Exploring gene-drug interactions for personalized treatment of post-traumatic stress disorder
Front Comput Neurosci. 2024 Jan 11;17:1307523. doi: 10.3389/fncom.2023.1307523. eCollection 2023.
ABSTRACT
INTRODUCTION: Post-Traumatic Stress Disorder (PTSD) is a mental disorder that can develop after experiencing traumatic events. The aim of this work is to explore the role of genes and genetic variations in the development and progression of PTSD.
METHODS: Through three methodological approaches, 122 genes and 184 Single Nucleotide Polymorphisms (SNPs) associated with PTSD were compiled into a single gene repository for PTSD. Using PharmGKB and DrugTargetor, 323 drug candidates were identified to target these 122 genes. The top 17 drug candidates were selected based on the statistical significance of the genetic associations, and their promiscuity (number of associated genestargets) and were further assessed for their suitability in terms of bioavailability and drug-like characteristics. Through functional analysis, insights were gained into the biological processes, cellular components, and molecular functions involved in PTSD. This formed the foundation for the next aspect of this study which was to propose an efficient treatment for PTSD by exploring drug repurposing methods.
RESULTS: The main aim was to identify the drugs with the most favorable profile that can be used as a pharmacological approach for PTSD treatment. More in particular, according to the genetic variations present in each individual, the relevant biological pathway can be identified, and the drug candidate proposed will specifically target said pathway, accounting for the personalized aspect of this work. The results showed that the drugs used as off-label treatment for PTSD have favorable pharmacokinetic profiles and the potential drug candidates that arose from DrugTargetor were not very promising. Clozapine showed a promising pharmacokinetic profile and has been linked with decreased psychiatric symptoms. Ambrucin also showed a promising pharmacokinetic profile but has been mostly linked with cancer treatment.
PMID:38274128 | PMC:PMC10808814 | DOI:10.3389/fncom.2023.1307523
Computational analysis of RNA methyltransferase Rv3366 as a potential drug target for combating drug-resistant <em>Mycobacterium tuberculosis</em>
Front Mol Biosci. 2024 Jan 11;10:1348337. doi: 10.3389/fmolb.2023.1348337. eCollection 2023.
ABSTRACT
Mycobacterium tuberculosis (M.tb) remains a formidable global health threat. The increasing drug resistance among M.tb clinical isolates is exacerbating the current tuberculosis (TB) burden. In this study we focused on identifying novel repurposed drugs that could be further investigated as potential anti-TB drugs. We utilized M.tb RNA methyltransferase Rv3366 (spoU) as a potential drug target due to its imperative activity in RNA modification and no structural homology with human proteins. Using computational modeling approaches the structure of Rv3366 was determined followed by high throughput virtual screening of Food and Drug Administration (FDA) approved drugs to screen potential binders of Rv3366. Molecular dynamics (MD) simulations were performed to assess the drug-protein binding interactions, complex stability and rigidity. Through this multi-step structure-based drug repurposing workflow two promising inhibitors of Rv3366 were identified, namely, Levodopa and Droxidopa. This study highlights the significance of targeting M.tb RNA methyltransferases to combat drug-resistant M.tb. and proposes Levodopa and Droxidopa as promising inhibitors of Rv3366 for future pre-clinical investigations.
PMID:38274093 | PMC:PMC10808684 | DOI:10.3389/fmolb.2023.1348337
Antifungal activity of the repurposed drug disulfiram against <em>Cryptococcus neoformans</em>
Front Pharmacol. 2024 Jan 11;14:1268649. doi: 10.3389/fphar.2023.1268649. eCollection 2023.
ABSTRACT
Fungal infections have become clinically challenging owing to the emergence of drug resistance in invasive fungi and the rapid increase in the number of novel pathogens. The development of drug resistance further restricts the use of antifungal agents. Therefore, there is an urgent need to identify alternative treatments for Cryptococcus neoformans (C. neoformans). Disulfiram (DSF) has a good human safety profile and promising applications as an antiviral, antifungal, antiparasitic, and anticancer agent. However, the effect of DSF on Cryptococcus is yet to be thoroughly investigated. This study investigated the antifungal effects and the mechanism of action of DSF against C. neoformans to provide a new theoretical foundation for the treatment of Cryptococcal infections. In vitro studies demonstrated that DSF inhibited Cryptococcus growth at minimum inhibitory concentrations (MICs) ranging from 1.0 to 8.0 μg/mL. Combined antifungal effects have been observed for DSF with 5-fluorocytosine, amphotericin B, terbinafine, or ketoconazole. DSF exerts significant protective effects and synergistic effects combined with 5-FU for Galleria mellonella infected with C. neoformans. Mechanistic investigations showed that DSF dose-dependently inhibited melanin, urease, acetaldehyde dehydrogenase, capsule and biofilm viability of C. neoformans. Further studies indicated that DSF affected C. neoformans by interfering with multiple biological pathways, including replication, metabolism, membrane transport, and biological enzyme activity. Potentially essential targets of these pathways include acetaldehyde dehydrogenase, catalase, ATP-binding cassette transporter (ABC transporter), and iron-sulfur cluster transporter. These findings provide novel insights into the application of DSF and contribute to the understanding of its mechanisms of action in C. neoformans.
PMID:38273827 | PMC:PMC10808519 | DOI:10.3389/fphar.2023.1268649
Drug repurposing platform for deciphering the druggable SARS-CoV-2 interactome
Antiviral Res. 2024 Jan 23:105813. doi: 10.1016/j.antiviral.2024.105813. Online ahead of print.
ABSTRACT
The coronavirus disease 2019 (COVID-19) pandemic has heavily challenged the global healthcare system. Despite the vaccination programs, the new virus variants are circulating. Further research is required for understanding of the biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and for discovery of therapeutic agents against the virus. Here, we took advantage of drug repurposing to identify if existing drugs could inhibit SARS-CoV-2 infection. We established an open high-throughput platform for in vitro screening of drugs against SARS-CoV-2 infection. We screened ∼1000 drugs for their ability to inhibit SARS-CoV-2-induced cell death in the African green monkey kidney cell line (Vero-E6), analyzed how the hit compounds affect the viral N (nucleocapsid) protein expression in human cell lines using high-content microscopic imaging and analysis, determined the hit drug targets in silico, and assessed their ability to cause phospholipidosis, which can interfere with the viral replication. Duvelisib was found by in silico interaction assay as a potential drug targeting virus-host protein interactions. The predicted interaction between PARP1 and S protein, affected by Duvelisib, was further validated by immunoprecipitation. Our results represent a rapidly applicable platform for drug repurposing and evaluation of the new emerging viruses' responses to the drugs. Further in silico studies help us to discover the druggable host pathways involved in the infectious cycle of SARS-CoV-2.
PMID:38272320 | DOI:10.1016/j.antiviral.2024.105813
Nanoformulations of Chemotherapeutic Activators for cGAS-STING Pathway in Tumor Chemoimmunotherapy
Drug Discov Today. 2024 Jan 23:103892. doi: 10.1016/j.drudis.2024.103892. Online ahead of print.
ABSTRACT
Chemotherapeutic drugs to activate the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway have been exploited for tumor chemoimmunotherapy. The clinical translation of chemotherapeutic cGAS-STING activators is hindered by the lack of safe, efficient, and specific delivery strategies. Nanodrug delivery systems (NDDS) designed for reducing toxic effects and improving transport effectiveness potentiate in vivo delivery of chemotherapeutic cGAS-STING activators. cGAS-STING monotherapy often encounters tumor resistance without providing satisfactory therapeutic benefit; therefore combination therapy is desirable. This review describes NDDS strategies for surmounting delivery obstacles of chemotherapeutic cGAS-STING activators and highlights combinatorial regimens, which utilize therapeutics that work by different mechanisms, for optimal therapy.
PMID:38272174 | DOI:10.1016/j.drudis.2024.103892
Exploring NCATS in-house biomedical data for evidence-based drug repurposing
PLoS One. 2024 Jan 25;19(1):e0289518. doi: 10.1371/journal.pone.0289518. eCollection 2024.
ABSTRACT
Drug repurposing is a strategy for identifying new uses of approved or investigational drugs that are outside the scope of the original medical indication. Even though many repurposed drugs have been found serendipitously in the past, the increasing availability of large volumes of biomedical data has enabled more systemic, data-driven approaches for drug candidate identification. At National Center of Advancing Translational Sciences (NCATS), we invent new methods to generate new data and information publicly available to spur innovation and scientific discovery. In this study, we aimed to explore and demonstrate biomedical data generated and collected via two NCATS research programs, the Toxicology in the 21st Century program (Tox21) and the Biomedical Data Translator (Translator) for the application of drug repurposing. These two programs provide complementary types of biomedical data from uncovering underlying biological mechanisms with bioassay screening data from Tox21 for chemical clustering, to enrich clustered chemicals with scientific evidence mined from the Translator towards drug repurposing. 129 chemical clusters have been generated and three of them have been further investigated for drug repurposing candidate identification, which is detailed as case studies.
PMID:38271343 | DOI:10.1371/journal.pone.0289518
Machine learning in onco-pharmacogenomics: a path to precision medicine with many challenges
Front Pharmacol. 2024 Jan 9;14:1260276. doi: 10.3389/fphar.2023.1260276. eCollection 2023.
ABSTRACT
Over the past two decades, Next-Generation Sequencing (NGS) has revolutionized the approach to cancer research. Applications of NGS include the identification of tumor specific alterations that can influence tumor pathobiology and also impact diagnosis, prognosis and therapeutic options. Pharmacogenomics (PGx) studies the role of inheritance of individual genetic patterns in drug response and has taken advantage of NGS technology as it provides access to high-throughput data that can, however, be difficult to manage. Machine learning (ML) has recently been used in the life sciences to discover hidden patterns from complex NGS data and to solve various PGx problems. In this review, we provide a comprehensive overview of the NGS approaches that can be employed and the different PGx studies implicating the use of NGS data. We also provide an excursus of the ML algorithms that can exert a role as fundamental strategies in the PGx field to improve personalized medicine in cancer.
PMID:38264526 | PMC:PMC10803549 | DOI:10.3389/fphar.2023.1260276
Plasma protein signatures of adult asthma
Allergy. 2024 Jan 23. doi: 10.1111/all.16000. Online ahead of print.
ABSTRACT
BACKGROUND: Adult asthma is complex and incompletely understood. Plasma proteomics is an evolving technique that can both generate biomarkers and provide insights into disease mechanisms. We aimed to identify plasma proteomic signatures of adult asthma.
METHODS: Protein abundance in plasma was measured in individuals from the Agricultural Lung Health Study (ALHS) (761 asthma, 1095 non-case) and the Atherosclerosis Risk in Communities study (470 asthma, 10,669 non-case) using the SOMAScan 5K array. Associations with asthma were estimated using covariate adjusted logistic regression and meta-analyzed using inverse-variance weighting. Additionally, in ALHS, we examined phenotypes based on both asthma and seroatopy (asthma with atopy (n = 207), asthma without atopy (n = 554), atopy without asthma (n = 147), compared to neither (n = 948)).
RESULTS: Meta-analysis of 4860 proteins identified 115 significantly (FDR<0.05) associated with asthma. Multiple signaling pathways related to airway inflammation and pulmonary injury were enriched (FDR<0.05) among these proteins. A proteomic score generated using machine learning provided predictive value for asthma (AUC = 0.77, 95% CI = 0.75-0.79 in training set; AUC = 0.72, 95% CI = 0.69-0.75 in validation set). Twenty proteins are targeted by approved or investigational drugs for asthma or other conditions, suggesting potential drug repurposing. The combined asthma-atopy phenotype showed significant associations with 20 proteins, including five not identified in the overall asthma analysis.
CONCLUSION: This first large-scale proteomics study identified over 100 plasma proteins associated with current asthma in adults. In addition to validating previous associations, we identified many novel proteins that could inform development of diagnostic biomarkers and therapeutic targets in asthma management.
PMID:38263798 | DOI:10.1111/all.16000
The Repurposing of Cellular Proteins during Enterovirus A71 Infection
Viruses. 2023 Dec 31;16(1):75. doi: 10.3390/v16010075.
ABSTRACT
Viruses pose a great threat to people's lives. Enterovirus A71 (EV-A71) infects children and infants all over the world with no FDA-approved treatment to date. Understanding the basic mechanisms of viral processes aids in selecting more efficient drug targets and designing more effective antivirals to thwart this virus. The 5'-untranslated region (5'-UTR) of the viral RNA genome is composed of a cloverleaf structure and an internal ribosome entry site (IRES). Cellular proteins that bind to the cloverleaf structure regulate viral RNA synthesis, while those that bind to the IRES also known as IRES trans-acting factors (ITAFs) regulate viral translation. In this review, we survey the cellular proteins currently known to bind the 5'-UTR and influence viral gene expression with emphasis on comparing proteins' functions and localizations pre- and post-(EV-A71) infection. A comprehensive understanding of how the host cell's machinery is hijacked and reprogrammed by the virus to facilitate its replication is crucial for developing effective antivirals.
PMID:38257775 | DOI:10.3390/v16010075