Drug Repositioning

Scientific figures interpreted by ChatGPT: strengths in plot recognition and limits in color perception

Fri, 2024-04-05 06:00

NPJ Precis Oncol. 2024 Apr 5;8(1):84. doi: 10.1038/s41698-024-00576-z.

ABSTRACT

Emerging studies underscore the promising capabilities of large language model-based chatbots in conducting basic bioinformatics data analyses. The recent feature of accepting image inputs by ChatGPT, also known as GPT-4V(ision), motivated us to explore its efficacy in deciphering bioinformatics scientific figures. Our evaluation with examples in cancer research, including sequencing data analysis, multimodal network-based drug repositioning, and tumor clonal evolution, revealed that ChatGPT can proficiently explain different plot types and apply biological knowledge to enrich interpretations. However, it struggled to provide accurate interpretations when color perception and quantitative analysis of visual elements were involved. Furthermore, while the chatbot can draft figure legends and summarize findings from the figures, stringent proofreading is imperative to ensure the accuracy and reliability of the content.

PMID:38580746 | DOI:10.1038/s41698-024-00576-z

Categories: Literature Watch

Codelivery of ivermectin and methyl dihydrojasmonate in nanostructured lipid carrier for synergistic antileukemia therapy

Fri, 2024-04-05 06:00

Int J Pharm. 2024 Apr 3:124086. doi: 10.1016/j.ijpharm.2024.124086. Online ahead of print.

ABSTRACT

Chronic myeloid leukemia is a life-threatening blood-cancer prevalent among children and adolescents. Research for innovative therapeutics combine drug-repurposing, phytotherapeutics and nanodrug-delivery. Ivermectin (Ivn) is a potent anthelmintic, repurposed for antileukemic-activity. However, Ivn exerts off-target toxicity. Methyl-dihydrojasmonate (MJ) is a phytochemical of known antileukemic potential. Herein, we developed for the first-time Ivn/MJ-coloaded nanostructured-lipid-carrier (Ivn@MJ-NLC) for leveraging the antileukemic-activity of the novel Ivn/MJ-combination while ameliorating possible adverse-effects. The developed Ivn@MJ-NLC possessed optimum-nanosize (97 ± 12.70 nm), PDI (0.33 ± 0.02), entrapment for Ivn (97.48 ± 1.48 %) and MJ (99.48 ± 0.57 %) and controlled-release of Ivn (83 % after 140 h) and MJ (80.98 ± 2.45 % after 48 h). In-vitro K562 studies verified Ivn@MJ-NLC prominent cytotoxicity (IC50 = 35.01 ± 2.23 µg/mL) with pronounced Ivn/MJ-synergism (combination-index = 0.59) at low-concentrations (5-10 µg/mL Ivn). Superior Ivn@MJ-NLC cytocompatibility was established on oral-epithelial-cells (OEC) with high OEC/K562 viability-ratio (1.49-1.85). The innovative Ivn@MJ-NLC enhanced K562-nuclear-fragmentation and afforded upregulation of caspase-3 and BAX (1.71 ± 0.07 and 1.45 ± 0.07-fold-increase, respectively) compared to control. Ex-vivo hemocompatibility and in-vivo-biocompatibility of parenteral-Ivn@MJ-NLC, compared to Ivn-solution, was verified via biochemical-blood analysis, histological and histomorphometric studies of liver and kidney tissues. Our findings highlight Ivn@MJ-NLC as an Ivn/MJ synergistic antileukemic platform, ameliorating possible adverse-effects.

PMID:38580074 | DOI:10.1016/j.ijpharm.2024.124086

Categories: Literature Watch

Predicting associations between drugs and G protein-coupled receptors using a multi-graph convolutional network

Fri, 2024-04-05 06:00

Comput Biol Chem. 2024 Apr 2;110:108060. doi: 10.1016/j.compbiolchem.2024.108060. Online ahead of print.

ABSTRACT

Developing new drugs is an expensive, time-consuming process that frequently involves safety concerns. By discovering novel uses for previously verified drugs, drug repurposing helps to bypass the time-consuming and costly process of drug development. As the largest family of proteins targeted by verified drugs, G protein-coupled receptors (GPCR) are vital to efficiently repurpose drugs by inferring their associations with drugs. Drug repurposing may be sped up by computational models that predict the strength of novel drug-GPCR pairs interaction. To this end, a number of models have been put forth. In existing methods, however, drug structure, drug-drug interactions, GPCR sequence, and subfamily information couldn't simultaneously be taken into account to detect novel drugs-GPCR relationships. In this study, based on a multi-graph convolutional network, an end-to-end deep model was developed to efficiently and precisely discover latent drug-GPCR relationships by combining data from multi-sources. We demonstrated that our model, based on multi-graph convolutional networks, outperformed rival deep learning techniques as well as non-deep learning models in terms of inferring drug-GPCR relationships. Our results indicated that integrating data from multi-sources can lead to further advancement.

PMID:38579550 | DOI:10.1016/j.compbiolchem.2024.108060

Categories: Literature Watch

Twelve Years of Drug Prioritization to Help Accelerate Disease Modification Trials in Parkinson's Disease: The International Linked Clinical Trials initiative

Fri, 2024-04-05 06:00

J Parkinsons Dis. 2024 Apr 5. doi: 10.3233/JPD-230363. Online ahead of print.

ABSTRACT

In 2011, the UK medical research charity Cure Parkinson's set up the international Linked Clinical Trials (iLCT) committee to help expedite the clinical testing of potentially disease modifying therapies for Parkinson's disease (PD). The first committee meeting was held at the Van Andel Institute in Grand Rapids, Michigan in 2012. This group of PD experts has subsequently met annually to assess and prioritize agents that may slow the progression of this neurodegenerative condition, using a systematic approach based on preclinical, epidemiological and, where possible, clinical data. Over the last 12 years, 171 unique agents have been evaluated by the iLCT committee, and there have been 21 completed clinical studies and 20 ongoing trials associated with the initiative. In this review, we briefly outline the iLCT process as well as the clinical development and outcomes of some of the top prioritized agents. We also discuss a few of the lessons that have been learnt, and we conclude with a perspective on what the next decade may bring, including the introduction of multi-arm, multi-stage clinical trial platforms and the possibility of combination therapies for PD.

PMID:38578902 | DOI:10.3233/JPD-230363

Categories: Literature Watch

Morphological profiling in human neural progenitor cells classifies hits in a pilot drug screen for Alzheimer's disease

Fri, 2024-04-05 06:00

Brain Commun. 2024 Mar 28;6(2):fcae101. doi: 10.1093/braincomms/fcae101. eCollection 2024.

ABSTRACT

Alzheimer's disease accounts for 60-70% of dementia cases. Current treatments are inadequate and there is a need to develop new approaches to drug discovery. Recently, in cancer, morphological profiling has been used in combination with high-throughput screening of small-molecule libraries in human cells in vitro. To test feasibility of this approach for Alzheimer's disease, we developed a cell morphology-based drug screen centred on the risk gene, SORL1 (which encodes the protein SORLA). Increased Alzheimer's disease risk has been repeatedly linked to variants in SORL1, particularly those conferring loss or decreased expression of SORLA, and lower SORL1 levels are observed in post-mortem brain samples from individuals with Alzheimer's disease. Consistent with its role in the endolysosomal pathway, SORL1 deletion is associated with enlarged endosomes in neural progenitor cells and neurons. We, therefore, hypothesized that multi-parametric, image-based cell phenotyping would identify features characteristic of SORL1 deletion. An automated morphological profiling method (Cell Painting) was adapted to neural progenitor cells and used to determine the phenotypic response of SORL1-/- neural progenitor cells to treatment with compounds from a small internationally approved drug library (TargetMol, 330 compounds). We detected distinct phenotypic signatures for SORL1-/- neural progenitor cells compared to isogenic wild-type controls. Furthermore, we identified 16 compounds (representing 14 drugs) that reversed the mutant morphological signatures in neural progenitor cells derived from three SORL1-/- induced pluripotent stem cell sub-clones. Network pharmacology analysis revealed the 16 compounds belonged to five mechanistic groups: 20S proteasome, aldehyde dehydrogenase, topoisomerase I and II, and DNA synthesis inhibitors. Enrichment analysis identified DNA synthesis/damage/repair, proteases/proteasome and metabolism as key pathways/biological processes. Prediction of novel targets revealed enrichment in pathways associated with neural cell function and Alzheimer's disease. Overall, this work suggests that (i) a quantitative phenotypic metric can distinguish induced pluripotent stem cell-derived SORL1-/- neural progenitor cells from isogenic wild-type controls and (ii) phenotypic screening combined with multi-parametric high-content image analysis is a viable option for drug repurposing and discovery in this human neural cell model of Alzheimer's disease.

PMID:38576795 | PMC:PMC10994270 | DOI:10.1093/braincomms/fcae101

Categories: Literature Watch

Using genetics and proteomics data to identify proteins causally related to COVID-19, healthspan and lifespan: a Mendelian randomization study

Thu, 2024-04-04 06:00

Aging (Albany NY). 2024 Apr 3;16. doi: 10.18632/aging.205711. Online ahead of print.

ABSTRACT

BACKGROUND: COVID-19 pandemic poses a heavy burden on public health and accounts for substantial mortality and morbidity. Proteins are building blocks of life, but specific proteins causally related to COVID-19, healthspan and lifespan have not been systematically examined.

METHODS: We conducted a Mendelian randomization study to assess the effects of 1,361 plasma proteins on COVID-19, healthspan and lifespan, using large GWAS of severe COVID-19 (up to 13,769 cases and 1,072,442 controls), COVID-19 hospitalization (32,519 cases and 2,062,805 controls) and SARS-COV2 infection (122,616 cases and 2,475,240 controls), healthspan (n = 300,477) and parental lifespan (~0.8 million of European ancestry).

RESULTS: We identified 35, 43, and 63 proteins for severe COVID, COVID-19 hospitalization, and SARS-COV2 infection, and 4, 32, and 19 proteins for healthspan, father's attained age, and mother's attained age. In addition to some proteins reported previously, such as SFTPD related to severe COVID-19, we identified novel proteins involved in inflammation and immunity (such as ICAM-2 and ICAM-5 which affect COVID-19 risk, CXCL9, HLA-DRA and LILRB4 for healthspan and lifespan), apoptosis (such as FGFR2 and ERBB4 which affect COVID-19 risk and FOXO3 which affect lifespan) and metabolism (such as PCSK9 which lowers lifespan). We found 2, 2 and 3 proteins shared between COVID-19 and healthspan/lifespan, such as CXADR and LEFTY2, shared between severe COVID-19 and healthspan/lifespan. Three proteins affecting COVID-19 and seven proteins affecting healthspan/lifespan are targeted by existing drugs.

CONCLUSIONS: Our study provided novel insights into protein targets affecting COVID-19, healthspan and lifespan, with implications for developing new treatment and drug repurposing.

PMID:38575325 | DOI:10.18632/aging.205711

Categories: Literature Watch

The Pharmacological Landscape for Fatty Change of the Pancreas

Thu, 2024-04-04 06:00

Drugs. 2024 Apr 4. doi: 10.1007/s40265-024-02022-7. Online ahead of print.

ABSTRACT

The quest for medications to reduce intra-pancreatic fat deposition is now quarter a century old. While no specific medication has been approved for the treatment of fatty change of the pancreas, drug repurposing shows promise in reducing the burden of the most common disorder of the pancreas. This leading article outlines the 12 classes of medications that have been investigated to date with a view to reducing intra-pancreatic fat deposition. Information is presented hierarchically-from preclinical studies to retrospective findings in humans to prospective interventional studies to randomised controlled trials. This lays the grounds for shepherding the most propitious drugs into medical practice through well-designed basic science studies and adequately powered randomised controlled trials.

PMID:38573485 | DOI:10.1007/s40265-024-02022-7

Categories: Literature Watch

Ursodeoxycholic acid may protect from severe acute respiratory syndrome coronavirus 2 Omicron variant by reducing angiotensin-converting enzyme 2

Thu, 2024-04-04 06:00

Pharmacol Res Perspect. 2024 Apr;12(2):e1194. doi: 10.1002/prp2.1194.

ABSTRACT

The SARS-CoV-2 caused COVID-19 pandemic has posed a global health hazard. While some vaccines have been developed, protection against viral infection is not perfect because of the urgent approval process and the emergence of mutant SARS-CoV-2 variants. Here, we employed UDCA as an FXR antagonist to regulate ACE2 expression, which is one of the key pathways activated by SARS-CoV-2 Delta variant infection. UDCA is a well-known reagent of liver health supplements and the only clinically approved bile acid. In this paper, we investigated the protective efficacy of UDCA on Omicron variation, since it has previously been verified for protection against Delta variant. When co-housing with an Omicron variant-infected hamster group resulted in spontaneous airborne transmission, the UDCA pre-supplied group was protected from weight loss relative to the non-treated group at 4 days post-infection by more than 5%-10%. Furthermore, UDCA-treated groups had a 3-fold decrease in ACE2 expression in nasal cavities, as well as reduced viral expressing genes in the respiratory tract. Here, the data show that the UDCA serves an alternative option for preventive drug, providing SARS-CoV-2 protection against not only Delta but also Omicron variant. Our results of this study will help to propose drug-repositioning of UDCA from liver health supplement to preventive drug of SARS-CoV-2 infection.

PMID:38573021 | DOI:10.1002/prp2.1194

Categories: Literature Watch

Feature Engineering-Assisted Drug Repurposing on Disease-Drug Transcriptome Profiles in Gastric Cancer

Thu, 2024-04-04 06:00

Assay Drug Dev Technol. 2024 Apr 4. doi: 10.1089/adt.2023.141. Online ahead of print.

ABSTRACT

Gastric cancer is one of the most common and deadly types of cancer in the world. To develop new biomarkers and drugs to diagnose and treat this cancer, it is necessary to identify the differences between the transcriptome profiles of gastric cancer and healthy individuals, identify critical genes associated with these differences, and make potential drug predictions based on these genes. In this study, using two gene expression datasets related to gastric cancer (GSE19826 and GSE79973), 200 genes that were ready for machine learning were selected, and their expression levels were analyzed. The best 100 genes for the model were chosen with the permutation feature importance method, and central genes, such as SCARB1, ETV3, SPATA17, FAM167A-AS1, and MTBP, which were shown to be associated with gastric cancer, were identified. Then, using the drug repurposing method with the Connectivity Map CLUE Query tools, potential drugs such as Forskolin, Gestrinone, Cediranib, Apicidine, and Everolimus, which showed a highly negative correlation with the expression levels of the selected genes, were identified. This study provides a method to develop new approaches to diagnosing and treating gastric cancer by comparing the transcriptome profiles of patients gastric cancer and performing a feature engineering-assisted drug repurposing analysis based on cancer data.

PMID:38572922 | DOI:10.1089/adt.2023.141

Categories: Literature Watch

Repurposing lansoprazole to alleviate metabolic syndrome <em>via</em> PHOSPHO1 inhibition

Thu, 2024-04-04 06:00

Acta Pharm Sin B. 2024 Apr;14(4):1711-1725. doi: 10.1016/j.apsb.2024.01.001. Epub 2024 Jan 4.

ABSTRACT

Drug repurposing offers an efficient approach to therapeutic development. In this study, our bioinformatic analysis first predicted an association between obesity and lansoprazole (LPZ), a commonly prescribed drug for gastrointestinal ulcers. We went on to show that LPZ treatment increased energy expenditure and alleviated the high-fat diet-induced obesity, insulin resistance, and hepatic steatosis in mice. Treatment with LPZ elicited thermogenic gene expression and mitochondrial respiration in primary adipocytes, and induced cold tolerance in cold-exposed mice, suggesting the activity of LPZ in promoting adipose thermogenesis and energy metabolism. Mechanistically, LPZ is an efficient inhibitor of adipose phosphocholine phosphatase 1 (PHOSPHO1) and produces metabolic benefits in a PHOSPHO1-dependent manner. Our results suggested that LPZ may stimulate adipose thermogenesis by inhibiting the conversion of 2-arachidonoylglycerol-lysophosphatidic acid (2-AG-LPA) to 2-arachidonoylglycerol (2-AG) and reduce the activity of the thermogenic-suppressive cannabinoid receptor signaling. In summary, we have uncovered a novel therapeutic indication and mechanism of LPZ in managing obesity and its related metabolic syndrome, and identified a potential metabolic basis by which LPZ improves energy metabolism.

PMID:38572109 | PMC:PMC10985025 | DOI:10.1016/j.apsb.2024.01.001

Categories: Literature Watch

Repurposing of drugs targeting heparan sulphate binding site of dengue virus envelope protein: an in silico competitive binding study

Wed, 2024-04-03 06:00

Mol Divers. 2024 Apr 3. doi: 10.1007/s11030-024-10834-8. Online ahead of print.

ABSTRACT

Dengue virus, an arbovirus, leads to millions of infections every year ultimately leading to a high rate of mortality. Highly effective and specific therapeutic option is not available till date to combat viral infection. One of the first stages in the virus lifecycle encompasses the viral entry into the host cell which is mediated by the interaction between heparan sulphate and the Dengue virus envelope protein in turn leading to the interaction between the envelope protein receptor binding domain and host cell receptors. The heparan sulphate binding site on the envelope protein was established using literature survey and the result validated using ColDock simulations. We have performed virtual screening against the heparan sulphate binding site using DrugBank database and short-listed probable inhibitors based on binding energy calculation following Molecular Dynamics (MD) simulations in this study. Two compounds (PubChem IDS 448062 and 656615) were selected for further analyses on which RAMD simulations were performed to quantitate the binding stability of both the molecules in the protein binding pocket which ultimately led to the selection of ZK-806450 molecule as the final selected compound. Competitive binding MD simulation against dengue virus envelope protein was performed for this molecule and heparan sulphate in order to ascertain the efficiency of binding of this molecule to the dengue virus envelope protein in the presence of its natural ligand molecule and found that this molecule has a higher affinity for the dengue virus envelope protein GAG binding site than heparan sulphate. This study may help in the use of this inhibitor molecule to combat dengue virus infection in foreseeable future and open a new avenue for drug repurposing methodology using competitive binding MD simulation.

PMID:38570391 | DOI:10.1007/s11030-024-10834-8

Categories: Literature Watch

Lusutrombopag as a Repurposing Drug in Combination with Aminoglycosides against Vancomycin-Resistant Enterococcus

Wed, 2024-04-03 06:00

ACS Infect Dis. 2024 Apr 3. doi: 10.1021/acsinfecdis.3c00737. Online ahead of print.

ABSTRACT

Due to the widespread abuse of antibiotics, drug resistance in Enterococcus has been increasing. However, the speed of antibiotic discovery cannot keep pace with the acquisition of bacterial resistance. Thus, drug repurposing is a proposed strategy to solve the crises. Lusutrombopag (LP) has been approved as a thrombopoietin receptor agonist by the Food and Drug Administration. This study demonstrated that LP exhibited significant antimicrobial activities against vancomycin-resistant Enterococcus in vitro with rare resistance occurrence. Further, LP combined with tobramycin exhibited synergistic antimicrobial effects in vitro and in vivo against Enterococcus. No in vitro or in vivo detectable toxicity was observed when using LP. Mechanism studies indicated that the disrupted proton motive force may account for LP's antimicrobial activity. In summary, these results demonstrate that LP has the previously undocumented potential to serve as an antibacterial agent against refractory infections caused by Enterococcus.

PMID:38567846 | DOI:10.1021/acsinfecdis.3c00737

Categories: Literature Watch

Screening effects of HCN channel blockers on sleep/wake behavior in zebrafish

Wed, 2024-04-03 06:00

Front Neurosci. 2024 Mar 19;18:1375484. doi: 10.3389/fnins.2024.1375484. eCollection 2024.

ABSTRACT

Hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels generate electrical rhythmicity in various tissues although primarily heart, retina and brain. The HCN channel blocker compound, Ivabradine (Corlanor), is approved by the US Food and Drug Administration (FDA) as a medication to lower heart rate by blocking hyperpolarization activated inward current in the sinoatrial node. In addition, a growing body of evidence suggests a role for HCN channels in regulation of sleep/wake behavior. Zebrafish larvae are ideal model organisms for high throughput drug screening, drug repurposing and behavioral phenotyping studies. We leveraged this model system to investigate effects of three HCN channel blockers (Ivabradine, Zatebradine Hydrochloride and ZD7288) at multiple doses on sleep/wake behavior in wild type zebrafish. Results of interest included shorter latency to daytime sleep at 0.1 μM dose of Ivabradine (ANOVA, p: 0.02), moderate reduction in average activity at 30 μM dose of Zatebradine Hydrochloride (ANOVA, p: 0.024) in daytime, and increased nighttime sleep at 4.5 μM dose of ZD7288 (ANOVA, p: 0.036). Taken together, shorter latency to daytime sleep, decrease in daytime activity and increased nighttime sleep indicate that different HCN channel antagonists affected different parameters of sleep and activity.

PMID:38567282 | PMC:PMC10986788 | DOI:10.3389/fnins.2024.1375484

Categories: Literature Watch

Exploring the association between weight loss-inducing medications and multiple sclerosis: insights from the FDA adverse event reporting system database

Wed, 2024-04-03 06:00

Ther Adv Neurol Disord. 2024 Apr 1;17:17562864241241383. doi: 10.1177/17562864241241383. eCollection 2024.

ABSTRACT

BACKGROUND: Several studies have demonstrated that early childhood and adolescent obesity are risk factors for multiple sclerosis (MS) susceptibility. Obesity is thought to share inflammatory components with MS through overproduction of pro-inflammatory adipokines (e.g., leptin) and reduction of anti-inflammatory adipokines (e.g, adiponectin). Recently, drug repurposing (i.e. identifying new indications for existing drugs) has garnered significant attention. The US Food and Drug Administration Adverse Event Reporting System (FAERS) database serves not only as a resource for mining adverse drug reactions and safety signals but also for identifying inverse associations and potential medication repurposing opportunities.

OBJECTIVE: We aimed to explore the association between weight-loss-inducing drugs and MS using real-world reports from the FAERS database.

DESIGN: Secondary analysis of existing data from the FAERS database.

METHODS: We conducted a disproportionality analysis using the FAERS database between the fourth quarter of 2003 and the second quarter of 2023 to explore associations between MS and weight loss-inducing drugs. Disproportionality was quantified using the reporting odds ratio (ROR). An inverse association was defined when the upper limit of the 95% confidence interval for ROR was <1.

RESULTS: We found an inverse association between MS and anti-diabetic weight loss-inducing drugs including semaglutide (ROR: 0.238; 95% CI: 0.132-0.429), dulaglutide (ROR: 0.165; 95% CI: 0.109-0.248), liraglutide (ROR: 0.161; 95% CI: 0.091-0.284), empagliflozin (ROR: 0.234; 95% CI: 0.146-0.377), and metformin (ROR: 0.387; 95% CI: 0.340-0.440). No inverse associations were found for other weight loss-inducing drugs such as phentermine, bupropion, topiramate, zonisamide, and amphetamine. An exception was naltrexone (ROR: 0.556; 95% CI: 0.384-0.806).

CONCLUSION: Our findings suggest a potential consideration for repurposing anti-diabetic weight loss-inducing drugs including semaglutide, dulaglutide, and liraglutide (glucagon-like peptide-1 receptor agonists), empagliflozin (sodium-glucose cotransporter-2 inhibitor), and metformin (biguanide), for MS. This warrants validation through rigorous methodologies and prospective studies.

PMID:38566910 | PMC:PMC10986166 | DOI:10.1177/17562864241241383

Categories: Literature Watch

Drug Repurposing Using FDA Adverse Event Reporting System (FAERS) Database

Wed, 2024-04-03 06:00

Curr Drug Targets. 2024 Apr 2. doi: 10.2174/0113894501290296240327081624. Online ahead of print.

ABSTRACT

Drug repurposing is an emerging approach to reassigning existing pre-approved therapies for new indications. The FDA Adverse Event Reporting System (FAERS) is a large database of over 28 million adverse event reports submitted by medical providers, patients, and drug manufacturers and provides extensive drug safety signal data. In this review, four common drug repurposing strategies using FAERS are described, including inverse signal detection for a single disease, drug-drug interactions that mitigate a target ADE, identifying drug-ADE pairs with opposing gene perturbation signatures and identifying drug-drug pairs with congruent gene perturbation signatures. The purpose of this review is to provide an overview of these different approaches to FAERS-based drug repurposing using existing successful applications in the literature. With the fast expansion of adverse drug event reports, FAERS-based drug repurposing represents a versatile and promising strategy for discovering new uses for existing therapies.

PMID:38566381 | DOI:10.2174/0113894501290296240327081624

Categories: Literature Watch

Prioritizing susceptibility genes for the prognosis of male-pattern baldness with transcriptome-wide association study

Tue, 2024-04-02 06:00

Hum Genomics. 2024 Apr 2;18(1):34. doi: 10.1186/s40246-024-00591-y.

ABSTRACT

BACKGROUND: Male-pattern baldness (MPB) is the most common cause of hair loss in men. It can be categorized into three types: type 2 (T2), type 3 (T3), and type 4 (T4), with type 1 (T1) being considered normal. Although various MPB-associated genetic variants have been suggested, a comprehensive study for linking these variants to gene expression regulation has not been performed to the best of our knowledge.

RESULTS: In this study, we prioritized MPB-related tissue panels using tissue-specific enrichment analysis and utilized single-tissue panels from genotype-tissue expression version 8, as well as cross-tissue panels from context-specific genetics. Through a transcriptome-wide association study and colocalization analysis, we identified 52, 75, and 144 MPB associations for T2, T3, and T4, respectively. To assess the causality of MPB genes, we performed a conditional and joint analysis, which revealed 10, 11, and 54 putative causality genes for T2, T3, and T4, respectively. Finally, we conducted drug repositioning and identified potential drug candidates that are connected to MPB-associated genes.

CONCLUSIONS: Overall, through an integrative analysis of gene expression and genotype data, we have identified robust MPB susceptibility genes that may help uncover the underlying molecular mechanisms and the novel drug candidates that may alleviate MPB.

PMID:38566255 | DOI:10.1186/s40246-024-00591-y

Categories: Literature Watch

Repurposing mebendazole against triple-negative breast cancer CNS metastasis

Tue, 2024-04-02 06:00

J Neurooncol. 2024 Apr 2. doi: 10.1007/s11060-024-04654-x. Online ahead of print.

ABSTRACT

PURPOSE: Triple-negative breast cancer (TNBC) often metastasizes to the central nervous system (CNS) and has the highest propensity among breast cancer subtypes to develop leptomeningeal disease (LMD). LMD is a spread of cancer into leptomeningeal space that speeds up the disease progression and severely aggravates the prognosis. LMD has limited treatment options. We sought to test whether the common anti-helminthic drug mebendazole (MBZ) may be effective against murine TNBC LMD.

METHODS: A small-molecule screen involving TNBC cell lines identified benzimidazoles as potential therapeutic agents for further study. In vitro migration assays were used to evaluate cell migration capacity and the effect of MBZ. For in vivo testing, CNS metastasis was introduced into BALB/c athymic nude mice through internal carotid artery injections of brain-tropic MDA-MB-231-BR or MCF7-BR cells. Tumor growth and spread was monitored by bioluminescence imaging and immunohistochemistry. MBZ was given orally at 50 and 100 mg/kg doses. MBZ bioavailability was assayed by mass spectrometry.

RESULTS: Bioinformatic analysis and migration assays revealed higher migratory capacity of TNBC compared to other breast cancer subtypes. MBZ effectively slowed down migration of TNBC cell line MDA-MB-231 and its brain tropic derivative MDA-MB-231-BR. In animal studies, MBZ reduced leptomeningeal spread, and extended survival in brain metastasis model produced by MDA-MB-231-BR cells. MBZ did not have an effect in the non-migratory MCF7-BR model.

CONCLUSIONS: We demonstrated that MBZ is a safe and effective oral agent in an animal model of TNBC CNS metastasis. Our findings are concordant with previous efforts involving MBZ and CNS pathology and support the drug's potential utility to slow down leptomeningeal spread.

PMID:38563850 | DOI:10.1007/s11060-024-04654-x

Categories: Literature Watch

Type I interferon signaling, cognition and neurodegeneration following COVID-19: update on a mechanistic pathogenetic model with implications for Alzheimer's disease

Tue, 2024-04-02 06:00

Front Hum Neurosci. 2024 Mar 18;18:1352118. doi: 10.3389/fnhum.2024.1352118. eCollection 2024.

ABSTRACT

COVID-19's effects on the human brain reveal a multifactorial impact on cognition and the potential to inflict lasting neuronal damage. Type I interferon signaling, a pathway that represents our defense against pathogens, is primarily affected by COVID-19. Type I interferon signaling, however, is known to mediate cognitive dysfunction upon its dysregulation following synaptopathy, microgliosis and neuronal damage. In previous studies, we proposed a model of outside-in dysregulation of tonic IFN-I signaling in the brain following a COVID-19. This disruption would be mediated by the crosstalk between central and peripheral immunity, and could potentially establish feed-forward IFN-I dysregulation leading to neuroinflammation and potentially, neurodegeneration. We proposed that for the CNS, the second-order mediators would be intrinsic disease-associated molecular patterns (DAMPs) such as proteopathic seeds, without the requirement of neuroinvasion to sustain inflammation. Selective vulnerability of neurogenesis sites to IFN-I dysregulation would then lead to clinical manifestations such as anosmia and cognitive impairment. Since the inception of our model at the beginning of the pandemic, a growing body of studies has provided further evidence for the effects of SARS-CoV-2 infection on the human CNS and cognition. Several preclinical and clinical studies have displayed IFN-I dysregulation and tauopathy in gene expression and neuropathological data in new cases, correspondingly. Furthermore, neurodegeneration identified with a predilection for the extended olfactory network furthermore supports the neuroanatomical concept of our model, and its independence from fulminant neuroinvasion and encephalitis as a cause of CNS damage. In this perspective, we summarize the data on IFN-I as a plausible mechanism of cognitive impairment in this setting, and its potential contribution to Alzheimer's disease and its interplay with COVID-19.

PMID:38562226 | PMC:PMC10982434 | DOI:10.3389/fnhum.2024.1352118

Categories: Literature Watch

The Effect of Donepezil Hydrochloride in the Twitcher Mouse Model of Krabbe Disease

Mon, 2024-04-01 06:00

Mol Neurobiol. 2024 Apr 1. doi: 10.1007/s12035-024-04137-0. Online ahead of print.

ABSTRACT

Krabbe disease (KD) is a rare demyelinating disorder characterized by demyelination caused by mutations in the GALC gene, resulting in toxic accumulation of psychosine. Psychosine has been identified as detrimental to oligodendrocytes, leading to demyelination through diverse hypothesized pathways. Reducing demyelination is essential to maintain neurological function in KD; however, therapeutic interventions are currently limited. Acetylcholinesterase inhibitors (AChEi) are commonly used for symptomatic management of Alzheimer's Disease and are suggested to have potential disease-modifying effects, including regulating myelin state. In particular, donepezil, an AChEi, has demonstrated promising effects in cellular and animal models, including promotion of the expression of myelin-related genes and reduction of glial cell reactivity. This drug also acts as an agonist for sigma-1 receptors (Sig-1R), which are implicated in demyelination diseases. In the context of drug repurposing, here, we demonstrate that administration of donepezil has protective effects in the twitcher mouse model of KD. We provide data showing that donepezil preserves myelin and reduces glial cell reactivity in the brains of twitcher mice. Moreover, donepezil also improves behavioral phenotypes and increases lifespan in twitcher animals. These findings suggest that donepezil, with its dual activity as an AChE inhibitor and Sig-1R agonist, may hold promise as a therapeutic candidate for demyelinating diseases, including KD.

PMID:38558359 | DOI:10.1007/s12035-024-04137-0

Categories: Literature Watch

Modeling childhood cancer in Drosophila melanogaster

Sun, 2024-03-31 06:00

Methods Cell Biol. 2024;185:35-48. doi: 10.1016/bs.mcb.2024.02.003. Epub 2024 Mar 5.

ABSTRACT

Childhood cancer is a major cause of death in developed countries, and while treatments and survival rates have improved, long-term side effects remain a challenge. The genetic component of pediatric tumors and their aggressive progression, makes the study of childhood cancer a complex area of research. Here, we introduce the fruit fly Drosophila melanogaster as study model. We emphasize its numerous advantages, including binary gene expression systems that enable precise control over the timing and location of gene expression manipulation, the capacity to combine multiple genes associated with cancer or the testing of human cancer variants within a live, intact animal. As an illustrative example, we focus on the Drosophila cancer paradigm which involves medically relevant genes, the Notch and PI3K/Akt signaling pathways. We describe how this cancer paradigm allows assessing two critical aspects of tumorigenesis during juvenile stages: (1) viability (do animals with particular cancer mutations survive into adulthood?), and (2) tumor burden (what percentage of animals bearing the cancer mutations actually develop cancer and what is the extent of the tumor?). We highlight the potential of Drosophila as a molecular therapeutic tool for drug screening and drug repurposing of medicines already approved to treat other diseases in children, thereby accelerating the potential translation of results into humans. This preclinical animal model sustains huge potential and is cost-effective. It allows screening of thousands of compounds and genes at a relatively low cost and human efforts, opening innovative venues to explore more effective and safer treatments of childhood cancer.

PMID:38556450 | DOI:10.1016/bs.mcb.2024.02.003

Categories: Literature Watch

Pages