Drug Repositioning

Advances in artificial intelligence for drug delivery and development: A comprehensive review

Sat, 2024-06-15 06:00

Comput Biol Med. 2024 Jun 7;178:108702. doi: 10.1016/j.compbiomed.2024.108702. Online ahead of print.

ABSTRACT

Artificial intelligence (AI) has emerged as a powerful tool to revolutionize the healthcare sector, including drug delivery and development. This review explores the current and future applications of AI in the pharmaceutical industry, focusing on drug delivery and development. It covers various aspects such as smart drug delivery networks, sensors, drug repurposing, statistical modeling, and simulation of biotechnological and biological systems. The integration of AI with nanotechnologies and nanomedicines is also examined. AI offers significant advancements in drug discovery by efficiently identifying compounds, validating drug targets, streamlining drug structures, and prioritizing response templates. Techniques like data mining, multitask learning, and high-throughput screening contribute to better drug discovery and development innovations. The review discusses AI applications in drug formulation and delivery, clinical trials, drug safety, and pharmacovigilance. It addresses regulatory considerations and challenges associated with AI in pharmaceuticals, including privacy, data security, and interpretability of AI models. The review concludes with future perspectives, highlighting emerging trends, addressing limitations and biases in AI models, and emphasizing the importance of collaboration and knowledge sharing. It provides a comprehensive overview of AI's potential to transform the pharmaceutical industry and improve patient care while identifying further research and development areas.

PMID:38878397 | DOI:10.1016/j.compbiomed.2024.108702

Categories: Literature Watch

Metformin suppresses gastric cancer progression by disrupting the STAT1-PRMT1 axis

Fri, 2024-06-14 06:00

Biochem Pharmacol. 2024 Jun 12:116367. doi: 10.1016/j.bcp.2024.116367. Online ahead of print.

ABSTRACT

Gastric cancer (GC) is a common form of cancer and the leading cause of cancer-related deaths worldwide. Chemotherapy is the primary treatment for patients with unresectable or partially resectable GC. However, its adverse effects and chemoresistance greatly restrict its applicability and efficacy. Although HER2-targeted therapy and immunotherapy have been successfully used for GC treatment, their beneficial population is limited. To expand the range of cancer treatments, drug repurposing has emerged as a promising strategy. In this study, we evaluated the potential of Metformin, an oral anti-hyperglycemic agent, to suppress GC progression both in vivo and in vitro. Functional investigations showed that Metformin significantly inhibits GC proliferation and migration. Furthermore, we discovered that Metformin bound and disrupted STAT1 phosphorylation, inhibiting PRMT1 expression and consequently GC progression. In conclusion, our study not only provides further evidence for the anti-GC role of Metformin but also identifies the direct target mediating the tumor-inhibitory effects of Metformin in GC.

PMID:38876258 | DOI:10.1016/j.bcp.2024.116367

Categories: Literature Watch

Novel drug targets and molecular mechanisms for sarcopenia based on systems biology

Fri, 2024-06-14 06:00

Biomed Pharmacother. 2024 Jun 13;176:116920. doi: 10.1016/j.biopha.2024.116920. Online ahead of print.

ABSTRACT

Sarcopenia is a major public health concern among older adults, leading to disabilities, falls, fractures, and mortality. This study aimed to elucidate the pathophysiological mechanisms of sarcopenia and identify potential therapeutic targets using systems biology approaches. RNA-seq data from muscle biopsies of 24 sarcopenic and 29 healthy individuals from a previous cohort were analysed. Differential expression, gene set enrichment, gene co-expression network, and topology analyses were conducted to identify target genes implicated in sarcopenia pathogenesis, resulting in the selection of 6 hub genes (PDHX, AGL, SEMA6C, CASQ1, MYORG, and CCDC69). A drug repurposing approach was then employed to identify new pharmacological treatment options for sarcopenia (clofibric-acid, troglitazone, withaferin-a, palbociclib, MG-132, bortezomib). Finally, validation experiments in muscle cell line (C2C12) revealed MG-132 and troglitazone as promising candidates for sarcopenia treatment. Our approach, based on systems biology and drug repositioning, provides insight into the molecular mechanisms of sarcopenia and offers potential new treatment options using existing drugs.

PMID:38876054 | DOI:10.1016/j.biopha.2024.116920

Categories: Literature Watch

The combination therapy using tyrosine kinase receptors inhibitors and repurposed drugs to target patient-derived glioblastoma stem cells

Fri, 2024-06-14 06:00

Biomed Pharmacother. 2024 Jun 13;176:116892. doi: 10.1016/j.biopha.2024.116892. Online ahead of print.

ABSTRACT

The lesson from many studies investigating the efficacy of targeted therapy in glioblastoma (GBM) showed that a future perspective should be focused on combining multiple target treatments. Our research aimed to assess the efficacy of drug combinations against glioblastoma stem cells (GSCs). Patient-derived cells U3042, U3009, and U3039 were obtained from the Human Glioblastoma Cell Culture resource. Additionally, the study was conducted on a GBM commercial U251 cell line. Gene expression analysis related to receptor tyrosine kinases (RTKs), stem cell markers and genes associated with significant molecular targets was performed, and selected proteins encoded by these genes were assessed using the immunofluorescence and flow cytometry methods. The cytotoxicity studies were preceded by analyzing the expression of specific proteins that serve as targets for selected drugs. The cytotoxicity study using the MTS assay was conducted to evaluate the effects of selected drugs/candidates in monotherapy and combinations. The most cytotoxic compounds for U3042 cells were Disulfiram combined with Copper gluconate (DSF/Cu), Dacomitinib, and Foretinib with IC50 values of 52.37 nM, 4.38 µM, and 4.54 µM after 24 h incubation, respectively. Interactions were assessed using SynergyFinder Plus software. The analysis enabled the identification of the most effective drug combinations against patient-derived GSCs. Our findings indicate that the most promising drug combinations are Dacomitinib and Foretinib, Dacomitinib and DSF/Cu, and Foretinib and AZD3759. Since most tested combinations have not been previously examined against glioblastoma stem-like cells, these results can shed new light on designing the therapeutic approach to target the GSC population.

PMID:38876048 | DOI:10.1016/j.biopha.2024.116892

Categories: Literature Watch

Alendronate/lactoferrin-dual decorated lipid nanocarriers for bone-homing and active targeting of ivermectin and methyl dihydrojasmonate for leukemia

Fri, 2024-06-14 06:00

Biomater Adv. 2024 Jun 9;162:213924. doi: 10.1016/j.bioadv.2024.213924. Online ahead of print.

ABSTRACT

Chronic myeloid leukemia is a hematological cancer, where disease relapse and drug resistance are caused by bone-hosted-residual leukemia cells. An innovative resolution is bone-homing and selective-active targeting of anticancer loaded-nanovectors. Herein, ivermectin (IVM) and methyl dihydrojasmonate (MDJ)-loaded nanostructured lipid carriers (IVM-NLC) were formulated then dually decorated by lactoferrin (Lf) and alendronate (Aln) to optimize (Aln/Lf/IVM-NLC) for active-targeting and bone-homing potential, respectively. Aln/Lf/IVM-NLC (1 mg) revealed nano-size (73.67 ± 0.06 nm), low-PDI (0.43 ± 0.06), sustained-release of IVM (62.75 % at 140-h) and MDJ (78.7 % at 48-h). Aln/Lf/IVM-NLC afforded substantial antileukemic-cytotoxicity on K562-cells (4.29-fold lower IC50), higher cellular uptake and nuclear fragmentation than IVM-NLC with acceptable cytocompatibility on oral-epithelial-cells (as normal cells). Aln/Lf/IVM-NLC effectively upregulated caspase-3 and BAX (4.53 and 15.9-fold higher than IVM-NLC, respectively). Bone homing studies verified higher hydroxyapatite affinity of Aln/Lf/IVM-NLC (1 mg; 22.88 ± 0.01 % at 3-h) and higher metaphyseal-binding (1.5-fold increase) than untargeted-NLC. Moreover, Aln/Lf/IVM-NLC-1 mg secured 1.35-fold higher in vivo bone localization than untargeted-NLC, with lower off-target distribution. Ex-vivo hemocompatibility and in-vivo biocompatibility of Aln/Lf/IVM-NLC (1 mg/mL) were established, with pronounced amelioration of hepatic and renal toxicity compared to higher Aln doses. The innovative Aln/Lf/IVM-NLC could serve as a promising nanovector for bone-homing, active-targeted leukemia therapy.

PMID:38875802 | DOI:10.1016/j.bioadv.2024.213924

Categories: Literature Watch

Computational Screening of Repurposed Drugs for HMG-CoA Synthase 2 in Alzheimer's Disease

Fri, 2024-06-14 06:00

J Alzheimers Dis. 2024 Jun 8. doi: 10.3233/JAD-240376. Online ahead of print.

ABSTRACT

BACKGROUND: HMGCS2 (mitochondrial 3-hydroxy-3-methylglutaryl-COA synthase 2) plays a pivotal role as a control enzyme in ketogenesis, and its association with the amyloid-β protein precursor (AβPP) in mitochondria implicates a potential involvement in Alzheimer's disease (AD) pathophysiology.

OBJECTIVE: Our study aimed at identifying repurposed drugs using the DrugBank database capable of inhibiting HMGCS2 activity.

METHODS: Exploiting the power of drug repurposing in conjunction with virtual screening and molecular dynamic (MD) simulations against 'HMGCS2', we present new in-silico insight into structure-based drug repurposing.

RESULTS: The initial molecules were screened for their binding affinity to HMGCS2. Subsequent interaction analyses and extensive 300 ns MD simulations were conducted to explore the conformational dynamics and stability of HMGCS2 in complex with the screened molecules, particularly Penfluridol and Lurasidone.

CONCLUSIONS: The study revealed that HMGCS2 forms stable protein-ligand complexes with Penfluridol and Lurasidone. Our findings indicate that Penfluridol and Lurasidone competitively bind to HMGCS2 and warrant their further exploration as potential repurposed molecules for anti-Alzheimer's drug development.

PMID:38875044 | DOI:10.3233/JAD-240376

Categories: Literature Watch

Leveraging Artificial Intelligence for Synergies in Drug Discovery: From Computers to Clinics

Fri, 2024-06-14 06:00

Curr Pharm Des. 2024 Jun 13. doi: 10.2174/0113816128308066240529121148. Online ahead of print.

ABSTRACT

Over the period of the preceding decade, artificial intelligence (AI) has proved an outstanding performance in entire dimensions of science including pharmaceutical sciences. AI uses the concept of machine learning (ML), deep learning (DL), and neural networks (NNs) approaches for novel algorithm and hypothesis development by training the machines in multiple ways. AI-based drug development from molecule identification to clinical approval tremendously reduces the cost of development and the time over conventional methods. The COVID-19 vaccine development and approval by regulatory agencies within 1-2 years is the finest example of drug development. Hence, AI is fast becoming a boon for scientific researchers to streamline their advanced discoveries. AI-based FDA-approved nanomedicines perform well as target selective, synergistic therapies, recolonize the theragnostic pharmaceutical stream, and significantly improve drug research outcomes. This comprehensive review delves into the fundamental aspects of AI along with its applications in the realm of pharmaceutical life sciences. It explores AI's role in crucial areas such as drug designing, drug discovery and development, traditional Chinese medicine, integration of multi-omics data, as well as investigations into drug repurposing and polypharmacology studies.

PMID:38874046 | DOI:10.2174/0113816128308066240529121148

Categories: Literature Watch

Antipsychotics possess anti-glioblastoma activity by disrupting lysosomal function and inhibiting oncogenic signaling by stabilizing PTEN

Thu, 2024-06-13 06:00

Cell Death Dis. 2024 Jun 13;15(6):414. doi: 10.1038/s41419-024-06779-3.

ABSTRACT

The repurposing of medications developed for central nervous system (CNS) disorders, possessing favorable safety profiles and blood-brain barrier permeability, represents a promising strategy for identifying new therapies to combat glioblastoma (GBM). In this study, we investigated the anti-GBM activity of specific antipsychotics and antidepressants in vitro and in vivo. Our results demonstrate that these compounds share a common mechanism of action in GBM, disrupting lysosomal function and subsequently inducing lysosomal membrane rupture and cell death. Notably, PTEN intact GBMs possess an increased sensitivity to these compounds. The inhibition of lysosomal function synergized with inhibitors targeting the EGFR-PI3K-Akt pathway, leading to an energetic and antioxidant collapse. These findings provide a foundation for the potential clinical application of CNS drugs in GBM treatment. Additionally, this work offers critical insights into the mechanisms and determinants of cytotoxicity for drugs currently undergoing clinical trials as repurposing agents for various cancers, including Fluoxetine, Sertraline, Thioridazine, Chlorpromazine, and Fluphenazine.

PMID:38871731 | DOI:10.1038/s41419-024-06779-3

Categories: Literature Watch

Repurposing FDA-approved compounds to target JAK2 for colon cancer treatment

Thu, 2024-06-13 06:00

Discov Oncol. 2024 Jun 13;15(1):226. doi: 10.1007/s12672-024-01050-9.

ABSTRACT

Colorectal cancer is one of the common cancers worldwide and the second leading cause of cancer-related death. The current treatment has the inherent drawbacks and there is a need of developing a new treatment. Interleukin-6 a pleiotropic cytokine involved in immune regulation and activation of JAK2/STAT3 pathway in colorectal cancer. JAK2/STAT3 signaling pathway functions as a critical regulator of cell growth, differentiation, and immune expression. The abnormality in the JAK2/STAT3 pathway is involved in the tumorigenesis of colon cancer including apoptosis. In this study, we identified novel inhibitors for JAK2 protein by performing virtual screening against FDA-approved compounds. To address the selectivity issue, we implemented cross-docking method followed by DFT calculations to understand the chemical reactivity of the identified compounds. Additionally, molecular dynamics (MD) simulations were performed for the top FDA compounds against JAK2 to understand the molecular interactions and structural stability of the complex over a period of 200 ns. Our results indicated that ergotamine, entrectinib, exatecan, dihydroergotamine, and paritaprevir can be used as alternative drugs for colon cancer. In addition, ergotamine was found to efficiently lower the cell viability with IC50 values of 100 µM on colon cancer cell lines. The long-term inhibitory effect of the ergotamine led to a decrease in colony size, and the toxicity properties were studied using hemolysis assay. Our study shows the potential of targeting JAK2 as a novel approach to colon cancer treatment, and demonstrate that ergotamine as a promising effects as an anti-cancer drug.

PMID:38869738 | DOI:10.1007/s12672-024-01050-9

Categories: Literature Watch

Venturicidin A affects the mitochondrial membrane potential and induces kDNA loss in <em>Trypanosoma brucei</em>

Thu, 2024-06-13 06:00

Antimicrob Agents Chemother. 2024 Jun 13:e0167123. doi: 10.1128/aac.01671-23. Online ahead of print.

ABSTRACT

Neglected tropical diseases caused by trypanosomatid parasites have devastating health and economic consequences, especially in tropical areas. New drugs or new combination therapies to fight these parasites are urgently needed. Venturicidin A, a macrolide extracted from Streptomyces, inhibits the ATP synthase complex of fungi and bacteria. However, its effect on trypanosomatids is not fully understood. In this study, we tested venturicidin A on a panel of trypanosomatid parasites using Alamar Blue assays and found it to be highly active against Trypanosoma brucei and Leishmania donovani, but much less so against Trypanosoma evansi. Using fluorescence microscopy, we observed a rapid loss of the mitochondrial membrane potential in T. brucei bloodstream forms upon venturicidin A treatment. Additionally, we report the loss of mitochondrial DNA in approximately 40%-50% of the treated parasites. We conclude that venturicidin A targets the ATP synthase of T. brucei, and we suggest that this macrolide could be a candidate for anti-trypanosomatid drug repurposing, drug combinations, or medicinal chemistry programs.

PMID:38869301 | DOI:10.1128/aac.01671-23

Categories: Literature Watch

Beyond lecanemab: Examining Phase III potential in Alzheimer's therapeutics

Thu, 2024-06-13 06:00

PCN Rep. 2024 Mar 20;3(1):e185. doi: 10.1002/pcn5.185. eCollection 2024 Mar.

ABSTRACT

This review focuses on the development of therapeutic interventions for Alzheimer's dementia. While established treatments targeted acetylcholine and NMDA receptors, there is a growing demand for innovative therapies as the aging population increases. The paper highlights the US Food and Drug Administration's approval of aducanumab (Aduhelm) and lecanemab (Leqembi), emphasizing the developmental status of new treatments. Specifically, it covers seven principal drugs in Phase III trials, detailing their mechanisms of action, clinical trial specifics in the United States and Japan, and the current status of regulatory applications. The review focuses on amyloid removal (donanemab), tau protein mitigation (E2814), drug repositioning (Semaglutide, GV1001), and disease-modifying small molecules (fosgonimeton, hydralazine, masitinib). However, Gantenerumab and Solanezumab, unsuccessful in Phase III, are not covered. While the future approval status remains uncertain, we hope these drugs will offer beneficial therapeutic effects for potential dementia patients.

PMID:38868475 | PMC:PMC11114408 | DOI:10.1002/pcn5.185

Categories: Literature Watch

Nutrient-sensitizing drug repurposing screen identifies lomerizine as a mitochondrial metabolism inhibitor of chronic myeloid leukemia

Wed, 2024-06-12 06:00

Sci Transl Med. 2024 Jun 12;16(751):eadi5336. doi: 10.1126/scitranslmed.adi5336. Epub 2024 Jun 12.

ABSTRACT

In chronic myeloid leukemia (CML), the persistence of leukemic stem cells (LSCs) after treatment with tyrosine kinase inhibitors (TKIs), such as imatinib, can lead to disease relapse. It is known that therapy-resistant LSCs rely on oxidative phosphorylation (OXPHOS) for their survival and that targeting mitochondrial respiration sensitizes CML LSCs to imatinib treatment. However, current OXPHOS inhibitors have demonstrated limited efficacy or have shown adverse effects in clinical trials, highlighting that identification of clinically safe oxidative pathway inhibitors is warranted. We performed a high-throughput drug repurposing screen designed to identify mitochondrial metabolism inhibitors in myeloid leukemia cells. This identified lomerizine, a US Food and Drug Administration (FDA)-approved voltage-gated Ca2+ channel blocker now used for the treatment of migraines, as one of the top hits. Transcriptome analysis revealed increased expression of voltage-gated CACNA1D and receptor-activated TRPC6 Ca2+ channels in CML LSCs (CD34+CD38-) compared with normal counterparts. This correlated with increased endoplasmic reticulum (ER) mass and increased ER and mitochondrial Ca2+ content in CML stem/progenitor cells. We demonstrate that lomerizine-mediated inhibition of Ca2+ uptake leads to ER and mitochondrial Ca2+ depletion, with similar effects seen after CACNA1D and TRPC6 knockdown. Through stable isotope-assisted metabolomics and functional assays, we observe that lomerizine treatment inhibits mitochondrial isocitrate dehydrogenase activity and mitochondrial oxidative metabolism and selectively sensitizes CML LSCs to imatinib treatment. In addition, combination treatment with imatinib and lomerizine reduced CML tumor burden, targeted CML LSCs, and extended survival in xenotransplantation model of human CML, suggesting this as a potential therapeutic strategy to prevent disease relapse in patients.

PMID:38865484 | DOI:10.1126/scitranslmed.adi5336

Categories: Literature Watch

Colloidal Aggregation Confounds Cell-Based Covid-19 Antiviral Screens

Wed, 2024-06-12 06:00

J Med Chem. 2024 Jun 12. doi: 10.1021/acs.jmedchem.4c00597. Online ahead of print.

ABSTRACT

Colloidal aggregation is one of the largest contributors to false positives in early drug discovery. Here, we consider aggregation's role in cell-based infectivity assays in Covid-19 drug repurposing. We investigated the potential aggregation of 41 drug candidates reported as SARs-CoV-2 entry inhibitors. Of these, 17 formed colloidal particles by dynamic light scattering and exhibited detergent-dependent enzyme inhibition. To evaluate the impact of aggregation on antiviral efficacy in cells, we presaturated the colloidal drug suspensions with BSA or spun them down by centrifugation and measured the effects on spike pseudovirus infectivity. Antiviral potencies diminished by at least 10-fold following both BSA and centrifugation treatments, supporting a colloid-based mechanism. Aggregates induced puncta of the labeled spike protein in fluorescence microscopy, consistent with sequestration of the protein on the colloidal particles. These observations suggest that colloidal aggregation is common among cell-based antiviral drug repurposing and offers rapid counter-screens to detect and eliminate these artifacts.

PMID:38864383 | DOI:10.1021/acs.jmedchem.4c00597

Categories: Literature Watch

Novel anti-<em>Acanthamoeba</em> effects elicited by a repurposed poly (ADP-ribose) polymerase inhibitor AZ9482

Wed, 2024-06-12 06:00

Front Cell Infect Microbiol. 2024 May 28;14:1414135. doi: 10.3389/fcimb.2024.1414135. eCollection 2024.

ABSTRACT

INTRODUCTION: Acanthamoeba infection is a serious public health concern, necessitating the development of effective and safe anti-Acanthamoeba chemotherapies. Poly (ADP-ribose) polymerases (PARPs) govern a colossal amount of biological processes, such as DNA damage repair, protein degradation and apoptosis. Multiple PARP-targeted compounds have been approved for cancer treatment. However, repurposing of PARP inhibitors to treat Acanthamoeba is poorly understood.

METHODS: In the present study, we attempted to fill these knowledge gaps by performing anti-Acanthamoeba efficacy assays, cell biology experiments, bioinformatics, and transcriptomic analyses.

RESULTS: Using a homology model of Acanthamoeba poly (ADP-ribose) polymerases (PARPs), molecular docking of approved drugs revealed three potential inhibitory compounds: olaparib, venadaparib and AZ9482. In particular, venadaparib exhibited superior docking scores (-13.71) and favorable predicted binding free energy (-89.28 kcal/mol), followed by AZ9482, which showed a docking score of -13.20 and a binding free energy of -92.13 kcal/mol. Notably, the positively charged cyclopropylamine in venadaparib established a salt bridge (through E535) and a hydrogen bond (via N531) within the binding pocket. For comparison, AZ9482 was well stacked by the surrounding aromatic residues including H625, Y652, Y659 and Y670. In an assessment of trophozoites viability, AZ9482 exhibited a dose-and time-dependent anti-trophozoite effect by suppressing Acanthamoeba PARP activity, unlike olaparib and venadaparib. An Annexin V-fluorescein isothiocyanate/propidium iodide apoptosis assay revealed AZ9482 induced trophozoite necrotic cell death rather than apoptosis. Transcriptomics analyses conducted on Acanthamoeba trophozoites treated with AZ9482 demonstrated an atlas of differentially regulated proteins and genes, and found that AZ9482 rapidly upregulates a multitude of DNA damage repair pathways in trophozoites, and intriguingly downregulates several virulent genes. Analyzing gene expression related to DNA damage repair pathway and the rate of apurinic/apyrimidinic (AP) sites indicated DNA damage efficacy and repair modulation in Acanthamoeba trophozoites following AZ9482 treatment.

DISCUSSION: Collectively, these findings highlight AZ9482, as a structurally unique PARP inhibitor, provides a promising prototype for advancing anti-Acanthamoeba drug research.

PMID:38863831 | PMC:PMC11165085 | DOI:10.3389/fcimb.2024.1414135

Categories: Literature Watch

Drug repurposing based on the DTD-GNN graph neural network: revealing the relationships among drugs, targets and diseases

Tue, 2024-06-11 06:00

BMC Genomics. 2024 Jun 11;25(1):584. doi: 10.1186/s12864-024-10499-5.

ABSTRACT

MOTIVATION: The rational modelling of the relationship among drugs, targets and diseases is crucial for drug retargeting. While significant progress has been made in studying binary relationships, further research is needed to deepen our understanding of ternary relationships. The application of graph neural networks in drug retargeting is increasing, but further research is needed to determine the appropriate modelling method for ternary relationships and how to capture their complex multi-feature structure.

RESULTS: The aim of this study was to construct relationships among drug, targets and diseases. To represent the complex relationships among these entities, we used a heterogeneous graph structure. Additionally, we propose a DTD-GNN model that combines graph convolutional networks and graph attention networks to learn feature representations and association information, facilitating a more thorough exploration of the relationships. The experimental results demonstrate that the DTD-GNN model outperforms other graph neural network models in terms of AUC, Precision, and F1-score. The study has important implications for gaining a comprehensive understanding of the relationships between drugs and diseases, as well as for further research and application in exploring the mechanisms of drug-disease interactions. The study reveals these relationships, providing possibilities for innovative therapeutic strategies in medicine.

PMID:38862928 | DOI:10.1186/s12864-024-10499-5

Categories: Literature Watch

A systematic review and meta-analysis, investigating dose and time of fluvoxamine treatment efficacy for COVID-19 clinical deterioration, death, and Long-COVID complications

Tue, 2024-06-11 06:00

Sci Rep. 2024 Jun 12;14(1):13462. doi: 10.1038/s41598-024-64260-9.

ABSTRACT

There have been 774,075,242 cases of COVID-19 and 7,012,986 deaths worldwide as of January 2024. In the early stages of the pandemic, there was an urgent need to reduce the severity of the disease and prevent the need for hospitalization to avoid stress on healthcare systems worldwide. The repurposing of drugs to prevent clinical deterioration of COVID-19 patients was trialed in many studies using many different drugs. Fluvoxamine (an SSRI and sigma-1 receptor agonist) was initially identified to potentially provide beneficial effects in COVID-19-infected patients, preventing clinical deterioration and the need for hospitalization. Fourteen clinical studies have been carried out to date, with seven of those being randomized placebo-controlled studies. This systematic review and meta-analysis covers the literature from the outbreak of SARS-CoV-2 in late 2019 until January 2024. Search terms related to fluvoxamine, such as its trade names and chemical names, along with words related to COVID-19, such as SARS-CoV-2 and coronavirus, were used in literature databases including PubMed, Google Scholar, Scopus, and the ClinicalTrials.gov database from NIH, to identify the trials used in the subsequent analysis. Clinical deterioration and death data were extracted from these studies where available and used in the meta-analysis. A total of 7153 patients were studied across 14 studies (both open-label and double-blind placebo-controlled). 681 out of 3553 (19.17%) in the standard care group and 255 out of 3600 (7.08%) in the fluvoxamine-treated group experienced clinical deterioration. The estimated average log odds ratio was 1.087 (95% CI 0.200 to 1.973), which differed significantly from zero (z = 2.402, p = 0.016). The seven placebo-controlled studies resulted in a log odds ratio of 0.359 (95% CI 0.1111 to 0.5294), which differed significantly from zero (z = 3.103, p = 0.002). The results of this study identified fluvoxamine as effective in preventing clinical deterioration, and subgrouping analysis suggests that earlier treatment with a dose of 200 mg or above provides the best outcomes. We hope the outcomes of this study can help design future studies into respiratory viral infections and potentially improve clinical outcomes.

PMID:38862591 | DOI:10.1038/s41598-024-64260-9

Categories: Literature Watch

Repurposing of Nano-Engineered Piroxicam as an Approach for Cutaneous Wound Healing

Tue, 2024-06-11 06:00

J Pharm Sci. 2024 Jun 9:S0022-3549(24)00224-7. doi: 10.1016/j.xphs.2024.06.003. Online ahead of print.

ABSTRACT

Drug repurposing is a potential strategy to overcome the huge economic expenses of wound healing products. This work aims to develop a topical gel of piroxicam encapsulated into a nanospanlastics vesicular system as an effective, dermal wound dressing. Firstly, piroxicam was entrapped into nanospanlastics formulations and optimized utilizing 23 full factorial experimental designs. The scrutinized factors were Span 60: Edge activator ratio, edge activator type, and permeation enhancer type. The measured responses were vesicle size (VS), polydispersity index (PDI), and % entrapment efficiency (EE). The optimized formula was further adopted into an alginate-pectin gel matrix to maximize adherence to the skin. The rheology and in-vitro release were studied for the developed nanospanlastics gel. Cytotoxicity and wound healing potential using scratch assay were assessed on human adult dermal fibroblast cells. The optimal piroxicam nanospanlastics formula demonstrated a VS of 124.1±1.3nm, PDI of 0.21±0.01, and EE% of 97.27±0.21%. About 70.0±0.9% and 57.4±0.1% of piroxicam were released from nanospanlastics dispersion and gel within 24h, respectively. Nanospanlastics gel of piroxicam flowed in a non-Newtonian pseudoplastic shear thinning pattern. It was also biocompatible with the human dermal fibroblast cells and significantly promoted their migration rate which suggests an auspicious cutaneous wound healing aptitude.

PMID:38862089 | DOI:10.1016/j.xphs.2024.06.003

Categories: Literature Watch

Computer-aided drug discovery strategies for novel therapeutics for prostate cancer leveraging next-generating sequencing data

Tue, 2024-06-11 06:00

Expert Opin Drug Discov. 2024 Jun 11:1-13. doi: 10.1080/17460441.2024.2365370. Online ahead of print.

ABSTRACT

INTRODUCTION: Prostate cancer (PC) is the most common malignancy and accounts for a significant proportion of cancer deaths among men. Although initial therapy success can often be observed in patients diagnosed with localized PC, many patients eventually develop disease recurrence and metastasis. Without effective treatments, patients with aggressive PC display very poor survival. To curb the current high mortality rate, many investigations have been carried out to identify efficacious therapeutics. Compared to de novo drug designs, computational methods have been widely employed to offer actionable drug predictions in a fast and cost-efficient way. Particularly, powered by an increasing availability of next-generation sequencing molecular profiles from PC patients, computer-aided approaches can be tailored to screen for candidate drugs.

AREAS COVERED: Herein, the authors review the recent advances in computational methods for drug discovery utilizing molecular profiles from PC patients. Given the uniqueness in PC therapeutic needs, they discuss in detail the drug discovery goals of these studies, highlighting their translational values for clinically impactful drug nomination.

EXPERT OPINION: Evolving molecular profiling techniques may enable new perspectives for computer-aided approaches to offer drug candidates for different tumor microenvironments. With ongoing efforts to incorporate new compounds into large-scale high-throughput screens, the authors envision continued expansion of drug candidate pools.

PMID:38860709 | DOI:10.1080/17460441.2024.2365370

Categories: Literature Watch

Drug Repurposing Patent Applications January-March 2024

Tue, 2024-06-11 06:00

Assay Drug Dev Technol. 2024 Jun 11. doi: 10.1089/adt.2024.047. Online ahead of print.

NO ABSTRACT

PMID:38860380 | DOI:10.1089/adt.2024.047

Categories: Literature Watch

Repositioning of antiarrhythmics for prostate cancer treatment: a novel strategy to reprogram cancer-associated fibroblasts towards a tumor-suppressive phenotype

Mon, 2024-06-10 06:00

J Exp Clin Cancer Res. 2024 Jun 11;43(1):161. doi: 10.1186/s13046-024-03081-0.

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs) play a significant role in fueling prostate cancer (PCa) progression by interacting with tumor cells. A previous gene expression analysis revealed that CAFs up-regulate genes coding for voltage-gated cation channels, as compared to normal prostate fibroblasts (NPFs). In this study, we explored the impact of antiarrhythmic drugs, known cation channel inhibitors, on the activated state of CAFs and their interaction with PCa cells.

METHODS: The effect of antiarrhythmic treatment on CAF activated phenotype was assessed in terms of cell morphology and fibroblast activation markers. CAF contractility and migration were evaluated by 3D gel collagen contraction and scratch assays, respectively. The ability of antiarrhythmics to impair CAF-PCa cell interplay was investigated in CAF-PCa cell co-cultures by assessing tumor cell growth and expression of epithelial-to-mesenchymal transition (EMT) markers. The effect on in vivo tumor growth was assessed by subcutaneously injecting PCa cells in SCID mice and intratumorally administering the medium of antiarrhythmic-treated CAFs or in co-injection experiments, where antiarrhythmic-treated CAFs were co-injected with PCa cells.

RESULTS: Activated fibroblasts show increased membrane conductance for potassium, sodium and calcium, consistently with the mRNA and protein content analysis. Antiarrhythmics modulate the expression of fibroblast activation markers. Although to a variable extent, these drugs also reduce CAF motility and hinder their ability to remodel the extracellular matrix, for example by reducing MMP-2 release. Furthermore, conditioned medium and co-culture experiments showed that antiarrhythmics can, at least in part, reverse the protumor effects exerted by CAFs on PCa cell growth and plasticity, both in androgen-sensitive and castration-resistant cell lines. Consistently, the transcriptome of antiarrhythmic-treated CAFs resembles that of tumor-suppressive NPFs. In vivo experiments confirmed that the conditioned medium or the direct coinjection of antiarrhythmic-treated CAFs reduced the tumor growth rate of PCa xenografts.

CONCLUSIONS: Collectively, such data suggest a new therapeutic strategy for PCa based on the repositioning of antiarrhythmic drugs with the aim of normalizing CAF phenotype and creating a less permissive tumor microenvironment.

PMID:38858661 | DOI:10.1186/s13046-024-03081-0

Categories: Literature Watch

Pages