Drug Repositioning
Targeting AR-positive breast cancer cells via drug repurposing approach
Comput Biol Chem. 2023 Dec 15;108:108007. doi: 10.1016/j.compbiolchem.2023.108007. Online ahead of print.
ABSTRACT
Androgen Receptor (AR) is overexpressed in almost all the molecular subtypes of breast cancer. Besides aiding the tumorigenic environment of cancer by abnormal cell proliferation, AR also takes part in promoting cancer signaling pathways, thereby promoting aggressiveness. In this study, AR was selected as the target protein in breast cancer cells. Following this, a library of 1293 FDA-approved drugs was screened via molecular docking, MD simulation, and MMPBSA binding energy. Amongst the library of compounds, Adapalene exhibited the least binding energy of (-10.2 kCal/mol) in comparison to that of the chosen reference compound, Nilutamide (-8.6 kCal/mol). Furthermore, the in vitro efficacy of Adapalene was also determined in two different breast cancer cell lines such as MCF7 (AR-positive/ER-positive) and MDA-MB-231 (AR negative/TNBC). Initially, the cell viability assay (MTT) was performed, which endowed us with a lesser IC50 value of Adapalene in comparison to Nilutamide in both cell lines. The IC50 of Adapalene was found to be 12 μM and 39.4 μM in MCF7 and MDA-MB-231 cells, respectively. Furthermore, Adapalene also induced cellular ROS and apoptosis by 3.5-fold and 26.58% in MCF7 cells. However, the overall effect of Adapalene was significantly lower in the case of MDA-MB-231 cell lines, which could be attributed to its inherent nature of the absence of hormone receptors. Conclusively, Adapalene possesses greater therapeutic efficacy in comparison to the control drug, thereby hinting towards the potential use of Adapalene in the treatment of AR-positive breast cancer.
PMID:38157661 | DOI:10.1016/j.compbiolchem.2023.108007
Efficacy and safety of ivermectin in patients with mild COVID-19 in Japan and Thailand
J Infect Chemother. 2023 Dec 26:S1341-321X(23)00316-1. doi: 10.1016/j.jiac.2023.12.012. Online ahead of print.
ABSTRACT
BACKGROUND: Ivermectin is an antiparasitic drug administered to hundreds of millions of people worldwide. Fundamental research suggests that ivermectin is effective against coronavirus disease 2019 (COVID-19); therefore, we investigated the efficacy and safety of ivermectin as a COVID-19 treatment option.
METHODS: This multi-regional (Japan and Thailand), multicenter, placebo-controlled, randomized, double-blind, parallel-group, Phase III study evaluated the efficacy and safety of ivermectin in patients with mild COVID-19 (IVERMILCO Study). The participants took a specified number of the investigational product (ivermectin or placebo) tablets of, adjusted to a dose of 0.3-0.4 mg/kg, orally on an empty stomach once daily for three days. The primary efficacy endpoint was the time at which clinical symptoms first showed an improving trend by 168 h after investigational product administration.
RESULTS: A total of 1030 eligible participants were assigned to receive the investigational product; 502 participants received ivermectin and 527 participants received a placebo. The primary efficacy endpoint was approximately 96 h (approximately four days) for both ivermectin and placebo groups, which did not show statistically significant difference (stratified log-rank test, p = 0.61). The incidence of adverse events and adverse drug reactions did not show statistically significant differences between the ivermectin and placebo groups (chi-square test, p = 0.97, p = 0.59).
CONCLUSIONS: The results show that ivermectin (0.3-0.4 mg/kg), as a treatment for patients with mild COVID-19, is ineffective; however, its safety has been confirmed for participants, including minor participants of 12 years or older (IVERMILCO Study ClinicalTrials.gov number, NCT05056883.).
PMID:38154616 | DOI:10.1016/j.jiac.2023.12.012
Breaking Barriers: Current Advances and Future Directions in Mpox Therapy
Curr Drug Targets. 2023 Dec 27. doi: 10.2174/0113894501281263231218070841. Online ahead of print.
ABSTRACT
BACKGROUND: Mpox, a newly discovered zoonotic infection, can be transmitted from animal to human and between humans. Serological and genomic studies are used to identify the virus.
OBJECTIVE: Currently, there are no proven effective treatments for Mpox. Also, the safety and efficacy of intravenous vaccinia immune globulin, oral Tecovirimat (an inhibitor of intracellular viral release), and oral Brincidofovir (a DNA polymerase inhibitor) against the Mpox virus are uncertain, highlighting the need for more effective and safe treatments. As a result, drug repurposing has emerged as a promising strategy to identify previously licensed drugs that can be repurposed to treat Mpox.
RESULTS: Various approaches have been employed to identify previously approved drugs that can target specific Mpox virus proteins, including thymidylate kinase, D9 decapping enzyme, E8 protein, Topoisomerase1, p37, envelope proteins (D13, A26, and H3), F13 protein, virus's main cysteine proteases, and DNA polymerase.
CONCLUSION: In this summary, we provide an overview of potential drugs that could be used to treat Mpox and discuss the underlying biological processes of their actions.
PMID:38151842 | DOI:10.2174/0113894501281263231218070841
Differential Signaling Pathways in Medulloblastoma: Nano-biomedicine Targeting Non-coding Epigenetics to Improve Current and Future Therapeutics
Curr Pharm Des. 2023 Dec 27. doi: 10.2174/0113816128277350231219062154. Online ahead of print.
ABSTRACT
BACKGROUND: Medulloblastomas (MDB) are malignant, aggressive brain tumors that primarily affect children. The survival rate for children under 14 is approximately 72%, while for ages 15 to 39, it is around 78%. A growing body of evidence suggests that dysregulation of signaling mechanisms and noncoding RNA epigenetics play a pivotal role in this disease.
METHODOLOGY: This study conducted an electronic search of articles on websites like PubMed and Google. The current review also used an in silico databases search and bioinformatics analysis and an extensive comprehensive literature search for original research articles and review articles as well as retrieval of current and future medications in clinical trials.
RESULTS: This study indicates that several signaling pathways, such as sonic hedgehog, WNT/β-catenin, unfolded protein response mediated ER stress, notch, neurotrophins and TGF-β and ERK, MAPK, and ERK play a crucial role in the pathogenesis of MDB. Gene and ncRNA/protein are also involved as an axis long ncRNA to sponge micro-RNAs that affect downstream signal proteins expression and translation affection disease pathophysiology, prognosis and present potential target hit for drug repurposing. Current treatment options include surgery, radiation, and chemotherapy; unfortunately, the disease often relapses, and the survival rate is less than 5%. Therefore, there is a need to develop more effective treatments to combat recurrence and improve survival rates.
CONCLUSION: This review describes various MDB disease hallmarks, including the signaling mechanisms involved in pathophysiology, related-causal genes, epigenetics, downstream genes/epigenes, and possibly the causal disease genes/non-protein coding (nc)RNA/protein axis. Additionally, the challenges associated with MDB treatment are discussed, along with how they are being addressed using nano-technology and nano-biomedicine, with a listing of possible treatment options and future potential treatment modalities.
PMID:38151840 | DOI:10.2174/0113816128277350231219062154
PDATC-NCPMKL: Predicting drug's Anatomical Therapeutic Chemical (ATC) codes based on network consistency projection and multiple kernel learning
Comput Biol Med. 2023 Dec 20;169:107862. doi: 10.1016/j.compbiomed.2023.107862. Online ahead of print.
ABSTRACT
The development and discovery of new drugs is time-consuming and needs lots of human and material resources. Therefore, discovery of novel effects of existing drugs is an important alternative way, which can accelerate the process of designing "new" drugs. The anatomical Therapeutic Chemical (ATC) classification system recommended by World Health Organization (WHO) is a basic research area in this regard. A novel ATC code of an existing drug suggests its novel effects. Some computational models have been proposed, which can predict the drug-ATC code associations. However, their performance is not very high. There still exist spaces for improvement. In this study, a new recommendation system (named PDATC-NCPMKL), which incorporated network consistency projection and multi-kernel learning, was designed to identify drug-ATC code associations. For drugs or ATC codes, several kernels were constructed, which were fused by a multiple kernel learning method and an additional kernel integration scheme. To enhance the performance, the drug-ATC code association adjacency matrix was reformulated by a variant of weighted K nearest known neighbors (WKNKN). The reformulated adjacency matrix, drug and ATC code kernels were fed into network consistency projection to generate the association score matrix. The proposed recommendation system was tested on the ATC codes at the second, third and fourth levels in drug ATC classification system using ten-fold cross-validation. The results indicated that all AUROC and AUPR values were close to or exceeded 0.96. Such performance was higher than some existing computational models. Some additional tests were conducted to prove the utility of adjacency matrix reformulation and to analyze the importance of drug and ATC code kernels.
PMID:38150886 | DOI:10.1016/j.compbiomed.2023.107862
StackER: a novel SMILES-based stacked approach for the accelerated and efficient discovery of ERα and ERβ antagonists
Sci Rep. 2023 Dec 27;13(1):22994. doi: 10.1038/s41598-023-50393-w.
ABSTRACT
The role of estrogen receptors (ERs) in breast cancer is of great importance in both clinical practice and scientific exploration. However, around 15-30% of those affected do not see benefits from the usual treatments owing to the innate resistance mechanisms, while 30-40% will gain resistance through treatments. In order to address this problem and facilitate community-wide efforts, machine learning (ML)-based approaches are considered one of the most cost-effective and large-scale identification methods. Herein, we propose a new SMILES-based stacked approach, termed StackER, for the accelerated and efficient identification of ERα and ERβ inhibitors. In StackER, we first established an up-to-date dataset consisting of 1,996 and 1,207 compounds for ERα and ERβ, respectively. Using the up-to-date dataset, StackER explored a wide range of different SMILES-based feature descriptors and ML algorithms in order to generate probabilistic features (PFs). Finally, the selected PFs derived from the two-step feature selection strategy were used for the development of an efficient stacked model. Both cross-validation and independent tests showed that StackER surpassed several conventional ML classifiers and the existing method in precisely predicting ERα and ERβ inhibitors. Remarkably, StackER achieved MCC values of 0.829-0.847 and 0.712-0.786 in terms of the cross-validation and independent tests, respectively, which were 5.92-8.29 and 1.59-3.45% higher than the existing method. In addition, StackER was applied to determine useful features for being ERα and ERβ inhibitors and identify FDA-approved drugs as potential ERα inhibitors in efforts to facilitate drug repurposing. This innovative stacked method is anticipated to facilitate community-wide efforts in efficiently narrowing down ER inhibitor screening.
PMID:38151513 | DOI:10.1038/s41598-023-50393-w
Bioinformatic approach for repurposing immunomodulatory drugs for lepromatous leprosy
Int J Mycobacteriol. 2023 Oct-Dec;12(4):388-393. doi: 10.4103/ijmy.ijmy_105_23.
ABSTRACT
BACKGROUND: The lepromatous leprosy (LL) disease is caused by Mycobacterium leprae and Mycobacterium lepromatosis which is characterized by inadequate response to treatment, a propensity to drug resistance, and patient disability. We aimed to evaluate current immunomodulatory medicines and their target proteins collectively as a drug repurposing strategy to decipher novel uses for LL.
METHODS: A dataset of human genes associated with LL-immune response was retrieved from public health genomic databases including the Human Genome Epidemiology Navigator and DisGeNET. Retrieved genes were filtered and enriched to set a robust network (≥10, up to 21 edges) and analyzed in the Cytoscape program (v3.9). Drug associations were obtained in the NDEx Integrated Query (v1.3.1) coupled with drug databases such as ChEMBL, BioGRID, and DrugBank. These networks were analyzed in Cytoscape with the CyNDEx-2 plugin and STRING protein network database.
RESULTS: Pathways analyses resulted in 100 candidate drugs organized into pharmacological groups with similar targets and filtered on 54 different drugs. Gene-target network analysis showed that the main druggable targets associated with LL were tumoral necrosis factor-alpha, interleukin-1B, and interferon-gamma. Consistently, glucosamine, binimetinib, talmapimod, dilmapimod, andrographolide, and VX-702 might have a possible beneficial effect coupled with LL treatment.
CONCLUSION: Based on our drug repurposing analysis, immunomodulatory drugs might have a promising potential to be explored further as therapeutic options or to alleviate symptoms in LL patients.
PMID:38149532 | DOI:10.4103/ijmy.ijmy_105_23
Drug repositioning in thyroid cancer treatment: the intriguing case of anti-diabetic drugs
Front Pharmacol. 2023 Dec 11;14:1303844. doi: 10.3389/fphar.2023.1303844. eCollection 2023.
ABSTRACT
Cancer represents the main cause of death worldwide. Thyroid cancer (TC) shows an overall good rate of survival, however there is a percentage of patients that do not respond or are refractory to common therapies. Thus new therapeutics strategies are required. In the past decade, drug repositioning become very important in the field of cancer therapy. This approach shows several advantages including the saving of: i) time, ii) costs, iii) de novo studies regarding the safety (just characterized) of a drug. Regarding TC, few studies considered the potential repositioning of drugs. On the other hand, certain anti-diabetic drugs, were the focus of interesting studies on TC therapy, in view of the fact that they exhibited potential anti-tumor effects. Among these anti-diabetic compounds, not all were judjed as appropriate for repositioning, in view of well documented side effects. However, just to give few examples biguanides, DPP-4-inhibitors and Thiazolidinediones were found to exert strong anti-cancer effects in TC. Indeed, their effects spaced from induction of citotoxicity and inhibition of metastatic spread, to induction of de-differentiation of TC cells and modulation of TC microenvironment. Thus, the multifacial anti-cancer effect of these compounds would make the basis also for combinatory strategies. The present review is aimed at discuss data from studies regarding the anti-cancer effects of several anti-diabetic drugs recently showed in TC in view of their potential repositioning. Specific examples of anti-diabetic repositionable drugs for TC treatment will also be provided.
PMID:38146457 | PMC:PMC10749369 | DOI:10.3389/fphar.2023.1303844
Repositioning of FDA approved kinase inhibitor bosutinib for mitigation of radiation induced damage via inhibition of JNK pathway
Toxicol Appl Pharmacol. 2023 Dec 22:116792. doi: 10.1016/j.taap.2023.116792. Online ahead of print.
ABSTRACT
Radiotherapy is a common modality for cancer treatment. However, it is often associated with normal tissue toxicity in 20-80% of the patients. Radioprotectors can improve the outcome of radiotherapy by selectively protecting normal cells against radiation toxicity. In the present study, compound libraries containing 54 kinase inhibitors and 80 FDA-approved drugs were screened for radioprotection of lymphocytes using high throughput cell analysis. A second-generation FDA-approved kinase inhibitor, bosutinib, was identified as a potential radioprotector for normal cells. The radioprotective efficacy of bosutinib was evinced from a reduction in radiation induced DNA damage, caspase-3 activation, DNA fragmentation and apoptosis. Oral administration of bosutinib protected mice against whole body irradiation (WBI) induced morbidity and mortality. Bosutinib also reduced radiation induced bone-marrow aplasia and hematopoietic damage in mice exposed to 4 Gy and 6 Gy dose of WBI. Mechanistic studies revealed that the radioprotective action of bosutinib involved interaction with cellular thiols and modulation of JNK pathway. The addition of glutathione and N-acetyl cysteine significantly reduced the radioprotective efficacy of bosutinib. Moreover, bosutinib did not protect cancer cells against radiation induced toxicity. On the contrary, bosutinib per se exhibited anticancer activity against human cancer cell lines. The results highlight possible use of bosutinib as a repurposable radioprotective agent for mitigation of radiation toxicity in cancer patients undergoing radiotherapy.
PMID:38142783 | DOI:10.1016/j.taap.2023.116792
In vitro antileishmanial activity of thioridazine on amphotericin B unresponsive/ sensitive Leishmania donovani promastigotes and intracellular amastigotes
Exp Parasitol. 2023 Dec 22:108688. doi: 10.1016/j.exppara.2023.108688. Online ahead of print.
ABSTRACT
The recent increase in the drug (liposomal amphotericin-B) unresponsive cases becomes hostile for the visceral leishmaniasis (VL) elimination target. The quest for new antileishmanial drugs is on the way and may demand more time. Meanwhile, drug repurposing is a quite promising option to explore further. We made such an attempt with thioridazine (TRZ), a first-line antipsychotic drug, which was reported for antimicrobial activity. In this study, we evaluated the drug activity of TRZ against amphotericin-B (Amp-B) sensitive and unresponsive Leishmania donovani promastigotes, as well as intracellular amastigotes (drug sensitive). We observed a potent antileishmanial activity of TRZ with significantly low half maximal inhibitory concentrations (IC50) on both the variants of promastigotes (0.61 ± 0.15 μM). These concentrations are comparable to the previously reported IC50 concentration of the current antileishmanial drug (Amp-B) against L. donovani. Light microscopy reveals the perturbations in promastigote morphology upon TRZ treatment. The in vitro studies on human macrophage cell lines determine the 50% cytotoxicity concentration (CC50) of TRZ on host cells as 20.046 μM and a half maximal effective concentration (EC50) as 0.91 μM during L. donovani infection, in turn selectivity index (SI) was calculated as 22.03 μM. Altogether, the results demonstrate that TRZ has the potential for drug repurposing and further studies on animal models could provide better insights for VL treatment.
PMID:38142765 | DOI:10.1016/j.exppara.2023.108688
Lysine tRNA fragments and miR-194-5p co-regulate hepatic steatosis via β-Klotho and Perilipin 2
Mol Metab. 2023 Dec 21:101856. doi: 10.1016/j.molmet.2023.101856. Online ahead of print.
ABSTRACT
Non-alcoholic fatty liver disease (NAFLD) involves hepatic accumulation of intracellular lipid droplets via incompletely understood processes. Here, we report distinct and cooperative NAFLD roles of LysTTT-5'tRF transfer RNA fragments and microRNA miR-194-5p. Unlike lean animals, dietary-induced NAFLD mice showed concurrent hepatic decrease of both LysTTT-5'tRF and miR-194-5p levels, which were restored following miR-132 antisense oligonucleotide treatment which suppresses hepatic steatosis. Moreover, exposing human-derived Hep G2 cells to oleic acid for 7 days co-suppressed miR-194-5p and LysTTT-5'tRF levels while increasing lipid accumulation. Inversely, transfecting fattened cells with a synthetic LysTTT-5'tRF mimic elevated mRNA levels of the metabolic regulator β-Klotho while decreasing triglyceride amounts by 30% within 24 hours. In contradistinction, antisense suppression of miR-194-5p induced accumulation of its novel target, the NAFLD-implicated lipid droplet-coating PLIN2 protein. Further, two out of 15 steatosis-alleviating screened drug-repurposing compounds, Danazol and Latanoprost, elevated miR-194-5p or LysTTT-5'tRF levels. The different yet complementary roles of miR-194-5p and LysTTT-5'tRF offer new insights into the complex roles of small non-coding RNAs and the multiple pathways involved in NAFLD pathogenesis.
PMID:38141848 | DOI:10.1016/j.molmet.2023.101856
Phenotypical Screening of an MMV Open Box Library and Identification of Compounds with Antiviral Activity against St. Louis Encephalitis Virus
Viruses. 2023 Dec 13;15(12):2416. doi: 10.3390/v15122416.
ABSTRACT
St. Louis encephalitis virus (SLEV) is a neglected mosquito-borne Flavivirus that may cause severe neurological disease in humans and other animals. There are no specific treatments against SLEV infection or disease approved for human use, and drug repurposing may represent an opportunity to accelerate the development of treatments against SLEV. Here we present a scalable, medium-throughput phenotypic cell culture-based screening assay on Vero CCL81 cells to identify bioactive compounds that could be repurposed against SLEV infection. We screened eighty compounds from the Medicines for Malaria Venture (MMV) COVID Box library to identify nine (11%) compounds that protected cell cultures from SLEV-induced cytopathic effects, with low- to mid-micromolar potencies. We validated six hit compounds using viral plaque-forming assays to find that the compounds ABT-239, Amiodarone, Fluphenazine, Posaconazole, Triparanol, and Vidofludimus presented varied levels of antiviral activity and selectivity depending on the mammalian cell type used for testing. Importantly, we identified and validated the antiviral activity of the anti-flavivirus nucleoside analog 7DMA against SLEV. Triparanol and Fluphenazine reduced infectious viral loads in both Vero CCL81 and HBEC-5i cell cultures and, similar to the other validated compounds, are likely to exert antiviral activity through a molecular target in the host.
PMID:38140657 | DOI:10.3390/v15122416
The Functional Implications of Broad Spectrum Bioactive Compounds Targeting RNA-Dependent RNA Polymerase (RdRp) in the Context of the COVID-19 Pandemic
Viruses. 2023 Nov 25;15(12):2316. doi: 10.3390/v15122316.
ABSTRACT
BACKGROUND: As long as COVID-19 endures, viral surface proteins will keep changing and new viral strains will emerge, rendering prior vaccines and treatments decreasingly effective. To provide durable targets for preventive and therapeutic agents, there is increasing interest in slowly mutating viral proteins, including non-surface proteins like RdRp.
METHODS: A scoping review of studies was conducted describing RdRp in the context of COVID-19 through MEDLINE/PubMed and EMBASE. An iterative approach was used with input from content experts and three independent reviewers, focused on studies related to either RdRp activity inhibition or RdRp mechanisms against SARS-CoV-2.
RESULTS: Of the 205 records screened, 43 studies were included in the review. Twenty-five evaluated RdRp activity inhibition, and eighteen described RdRp mechanisms of existing drugs or compounds against SARS-CoV-2. In silico experiments suggested that RdRp inhibitors developed for other RNA viruses may be effective in disrupting SARS-CoV-2 replication, indicating a possible reduction of disease progression from current and future variants. In vitro, in vivo, and human clinical trial studies were largely consistent with these findings.
CONCLUSIONS: Future risk mitigation and treatment strategies against forthcoming SARS-CoV-2 variants should consider targeting RdRp proteins instead of surface proteins.
PMID:38140557 | DOI:10.3390/v15122316
Antiviral Potential of Azelastine against Major Respiratory Viruses
Viruses. 2023 Nov 23;15(12):2300. doi: 10.3390/v15122300.
ABSTRACT
The Coronavirus Disease 2019 (COVID-19) pandemic and the subsequent increase in respiratory viral infections highlight the need for broad-spectrum antivirals to enable a quick and efficient reaction to current and emerging viral outbreaks. We previously demonstrated that the antihistamine azelastine hydrochloride (azelastine-HCl) exhibited in vitro antiviral activity against SARS-CoV-2. Furthermore, in a phase 2 clinical study, a commercial azelastine-containing nasal spray significantly reduced the viral load in SARS-CoV-2-infected individuals. Here, we evaluate the efficacy of azelastine-HCl against additional human coronaviruses, including the SARS-CoV-2 omicron variant and a seasonal human coronavirus, 229E, through in vitro infection assays, with azelastine showing a comparable potency against both. Furthermore, we determined that azelastine-HCl also inhibits the replication of Respiratory syncytial virus A (RSV A) in both prophylactic and therapeutic settings. In a human 3D nasal tissue model (MucilAirTM-Pool, Epithelix), azelastine-HCl protected tissue integrity and function from the effects of infection with influenza A H1N1 and resulted in a reduced viral load soon after infection. Our results suggest that azelastine-HCl has a broad antiviral effect and can be considered a safe option against the most common respiratory viruses to prevent or treat such infections locally in the form of a nasal spray that is commonly available globally.
PMID:38140540 | DOI:10.3390/v15122300
A Robust Phenotypic High-Throughput Antiviral Assay for the Discovery of Rabies Virus Inhibitors
Viruses. 2023 Nov 23;15(12):2292. doi: 10.3390/v15122292.
ABSTRACT
Rabies virus (RABV) causes severe neurological symptoms in mammals. The disease is almost inevitably lethal as soon as clinical symptoms appear. The use of rabies immunoglobulins (RIG) and vaccination in post-exposure prophylaxis (PEP) can provide efficient protection, but many people do not receive this treatment due to its high cost and/or limited availability. Highly potent small molecule antivirals are urgently needed to treat patients once symptoms develop. In this paper, we report on the development of a high-throughput phenotypic antiviral screening assay based on the infection of BHK-21 cells with a fluorescent reporter virus and high content imaging readout. The assay was used to screen a repurposing library of 3681 drugs (all had been studied in phase 1 clinical trials). From this series, salinomycin was found to selectively inhibit viral replication by blocking infection at the entry stage. This shows that a high-throughput assay enables the screening of large compound libraries for the purposes of identifying inhibitors of RABV replication. These can then be optimized through medicinal chemistry efforts and further developed into urgently needed drugs for the treatment of symptomatic rabies.
PMID:38140533 | DOI:10.3390/v15122292
The Exploitation of pH-Responsive Eudragit-Coated Mesoporous Silica Nanostructures in the Repurposing of Terbinafine Hydrochloride for Targeted Colon Cancer Inhibition: Design Optimization, In Vitro Characterization, and Cytotoxicity Assessment
Pharmaceutics. 2023 Nov 26;15(12):2677. doi: 10.3390/pharmaceutics15122677.
ABSTRACT
Targeted drug delivery is achieving great success in cancer therapy due to its potential to deliver drugs directly to the action site. Terbinafine hydrochloride (TER) is a broad-spectrum anti-fungal drug that has been found to have some potential anti-tumor effects in the treatment of colon cancer. We aimed here to design and develop pH-sensitive Eudragit (Eud)-coated mesoporous silica nanostructures (MSNs) to control drug release in response to changes in pH. The diffusion-supported loading (DiSupLo) technique was applied for loading TER into the MSNs. The formulation was optimized by a D-optimal design, which permits the concurrent assessment of the influence of drug/MSN%, coat concentration, and MSN type on the drug entrapment efficiency (EE) and its release performance. The optimal formula displayed a high EE of 96.49%, minimizing the release in pH 1.2 to 16.15% and maximizing the release in pH 7.4 to 78.09%. The cytotoxicity of the optimal formula on the colon cancer cells HT-29 was higher than it was with TER alone by 2.8-fold. Apoptosis in cancer cells exposed to the optimum formula was boosted as compared to what it was with the plain TER by 1.2-fold and it was more efficient in arresting cells during the G0/G1 and S stages of the cell cycle. Accordingly, the repurposing of TER utilizing Eud/MSNs is a promising technique for targeted colon cancer therapy.
PMID:38140018 | DOI:10.3390/pharmaceutics15122677
Computational and Experimental Drug Repurposing of FDA-Approved Compounds Targeting the Cannabinoid Receptor CB1
Pharmaceuticals (Basel). 2023 Dec 2;16(12):1678. doi: 10.3390/ph16121678.
ABSTRACT
The cannabinoid receptor 1 (CB1R) plays a pivotal role in regulating various physiopathological processes, thus positioning itself as a promising and sought-after therapeutic target. However, the search for specific and effective CB1R ligands has been challenging, prompting the exploration of drug repurposing (DR) strategies. In this study, we present an innovative DR approach that combines computational screening and experimental validation to identify potential Food and Drug Administration (FDA)-approved compounds that can interact with the CB1R. Initially, a large-scale virtual screening was conducted using molecular docking simulations, where a library of FDA-approved drugs was screened against the CB1R's three-dimensional structures. This in silico analysis allowed us to prioritize compounds based on their binding affinity through two different filters. Subsequently, the shortlisted compounds were subjected to in vitro assays using cellular and biochemical models to validate their interaction with the CB1R and determine their functional impact. Our results reveal FDA-approved compounds that exhibit promising interactions with the CB1R. These findings open up exciting opportunities for DR in various disorders where CB1R signaling is implicated. In conclusion, our integrated computational and experimental approach demonstrates the feasibility of DR for discovering CB1R modulators from existing FDA-approved compounds. By leveraging the wealth of existing pharmacological data, this strategy accelerates the identification of potential therapeutics while reducing development costs and timelines. The findings from this study hold the potential to advance novel treatments for a range of CB1R -associated diseases, presenting a significant step forward in drug discovery research.
PMID:38139805 | DOI:10.3390/ph16121678
Frentizole, a Nontoxic Immunosuppressive Drug, and Its Analogs Display Antitumor Activity via Tubulin Inhibition
Int J Mol Sci. 2023 Dec 14;24(24):17474. doi: 10.3390/ijms242417474.
ABSTRACT
Antimitotic agents are one of the more successful types of anticancer drugs, but they suffer from toxicity and resistance. The application of approved drugs to new indications (i.e., drug repurposing) is a promising strategy for the development of new drugs. It relies on finding pattern similarities: drug effects to other drugs or conditions, similar toxicities, or structural similarity. Here, we recursively searched a database of approved drugs for structural similarity to several antimitotic agents binding to a specific site of tubulin, with the expectation of finding structures that could fit in it. These searches repeatedly retrieved frentizole, an approved nontoxic anti-inflammatory drug, thus indicating that it might behave as an antimitotic drug devoid of the undesired toxic effects. We also show that the usual repurposing approach to searching for targets of frentizole failed in most cases to find such a relationship. We synthesized frentizole and a series of analogs to assay them as antimitotic agents and found antiproliferative activity against HeLa tumor cells, inhibition of microtubule formation within cells, and arrest at the G2/M phases of the cell cycle, phenotypes that agree with binding to tubulin as the mechanism of action. The docking studies suggest binding at the colchicine site in different modes. These results support the repurposing of frentizole for cancer treatment, especially for glioblastoma.
PMID:38139302 | DOI:10.3390/ijms242417474
An AI Approach to Identifying Novel Therapeutics for Rheumatoid Arthritis
J Pers Med. 2023 Nov 23;13(12):1633. doi: 10.3390/jpm13121633.
ABSTRACT
Rheumatoid arthritis (RA) is a chronic autoimmune disorder that has a significant impact on quality of life and work capacity. Treatment of RA aims to control inflammation and alleviate pain; however, achieving remission with minimal toxicity is frequently not possible with the current suite of drugs. This review aims to summarise current treatment practices and highlight the urgent need for alternative pharmacogenomic approaches for novel drug discovery. These approaches can elucidate new relationships between drugs, genes, and diseases to identify additional effective and safe therapeutic options. This review discusses how computational approaches such as connectivity mapping offer the ability to repurpose FDA-approved drugs beyond their original treatment indication. This review also explores the concept of drug sensitisation to predict co-prescribed drugs with synergistic effects that produce enhanced anti-disease efficacy by involving multiple disease pathways. Challenges of this computational approach are discussed, including the availability of suitable high-quality datasets for comprehensive analysis and other data curation issues. The potential benefits include accelerated identification of novel drug combinations and the ability to trial and implement established treatments in a new index disease. This review underlines the huge opportunity to incorporate disease-related data and drug-related data to develop methods and algorithms that have strong potential to determine novel and effective treatment regimens.
PMID:38138860 | DOI:10.3390/jpm13121633
Exploring the Multifaceted Potential of Sildenafil in Medicine
Medicina (Kaunas). 2023 Dec 17;59(12):2190. doi: 10.3390/medicina59122190.
ABSTRACT
Phosphodiesterase type 5 (PDE5) is pivotal in cellular signalling, regulating cyclic guanosine monophosphate (cGMP) levels crucial for smooth muscle relaxation and vasodilation. By targeting cGMP for degradation, PDE5 inhibits sustained vasodilation. PDE5 operates in diverse anatomical regions, with its upregulation linked to various pathologies, including cancer and neurodegenerative diseases. Sildenafil, a selective PDE5 inhibitor, is prescribed for erectile dysfunction and pulmonary arterial hypertension. However, considering the extensive roles of PDE5, sildenafil might be useful in other pathologies. This review aims to comprehensively explore sildenafil's therapeutic potential across medicine, addressing a gap in the current literature. Recognising sildenafil's broader potential may unveil new treatment avenues, optimising existing approaches and broadening its clinical application.
PMID:38138293 | DOI:10.3390/medicina59122190