NIH Extramural Nexus News
Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
BMC Syst Biol. 2016 Aug 01;10 Suppl 2:54
Authors: Kim SG, Theera-Ampornpunt N, Fang CH, Harwani M, Grama A, Chaterji S
Abstract
BACKGROUND: Gene expression is mediated by specialized cis-regulatory modules (CRMs), the most prominent of which are called enhancers. Early experiments indicated that enhancers located far from the gene promoters are often responsible for mediating gene transcription. Knowing their properties, regulatory activity, and genomic targets is crucial to the functional understanding of cellular events, ranging from cellular homeostasis to differentiation. Recent genome-wide investigation of epigenomic marks has indicated that enhancer elements could be enriched for certain epigenomic marks, such as, combinatorial patterns of histone modifications.
METHODS: Our efforts in this paper are motivated by these recent advances in epigenomic profiling methods, which have uncovered enhancer-associated chromatin features in different cell types and organisms. Specifically, in this paper, we use recent state-of-the-art Deep Learning methods and develop a deep neural network (DNN)-based architecture, called EP-DNN, to predict the presence and types of enhancers in the human genome. It uses as features, the expression levels of the histone modifications at the peaks of the functional sites as well as in its adjacent regions. We apply EP-DNN to four different cell types: H1, IMR90, HepG2, and HeLa S3. We train EP-DNN using p300 binding sites as enhancers, and TSS and random non-DHS sites as non-enhancers. We perform EP-DNN predictions to quantify the validation rate for different levels of confidence in the predictions and also perform comparisons against two state-of-the-art computational models for enhancer predictions, DEEP-ENCODE and RFECS.
RESULTS: We find that EP-DNN has superior accuracy and takes less time to make predictions. Next, we develop methods to make EP-DNN interpretable by computing the importance of each input feature in the classification task. This analysis indicates that the important histone modifications were distinct for different cell types, with some overlaps, e.g., H3K27ac was important in cell type H1 but less so in HeLa S3, while H3K4me1 was relatively important in all four cell types. We finally use the feature importance analysis to reduce the number of input features needed to train the DNN, thus reducing training time, which is often the computational bottleneck in the use of a DNN.
CONCLUSIONS: In this paper, we developed EP-DNN, which has high accuracy of prediction, with validation rates above 90 % for the operational region of enhancer prediction for all four cell lines that we studied, outperforming DEEP-ENCODE and RFECS. Then, we developed a method to analyze a trained DNN and determine which histone modifications are important, and within that, which features proximal or distal to the enhancer site, are important.
PMID: 27490187 [PubMed - indexed for MEDLINE]
Identification of cis-regulatory sequences reveals potential participation of lola and Deaf1 transcription factors in Anopheles gambiae innate immune response.
Identification of cis-regulatory sequences reveals potential participation of lola and Deaf1 transcription factors in Anopheles gambiae innate immune response.
PLoS One. 2017;12(10):e0186435
Authors: Pérez-Zamorano B, Rosas-Madrigal S, Lozano OAM, Castillo Méndez M, Valverde-Garduño V
Abstract
The innate immune response of Anopheles gambiae involves the transcriptional upregulation of effector genes. Therefore, the cis-regulatory sequences and their cognate binding factors play essential roles in the mosquito's immune response. However, the genetic control of the mosquito's innate immune response is not yet fully understood. To gain further insight on the elements, the factors and the potential mechanisms involved, an open chromatin profiling was carried out on A. gambiae-derived immune-responsive cells. Here, we report the identification of cis-regulatory sites, immunity-related transcription factor binding sites, and cis-regulatory modules. A de novo motif discovery carried out on this set of cis-regulatory sequences identified immunity-related motifs and cis-regulatory modules. These modules contain motifs that are similar to binding sites for REL-, STAT-, lola- and Deaf1-type transcription factors. Sequence motifs similar to the binding sites for GAGA were found within a cis-regulatory module, together with immunity-related transcription factor binding sites. The presence of Deaf1- and lola-type binding sites, along with REL- and STAT-type binding sites, suggests that the immunity function of these two factors could have been conserved both in Drosophila and Anopheles gambiae.
PMID: 29028826 [PubMed - in process]
The Drosophila melanogaster Eip74EF-PA transcription factor directly binds the sciarid BhC4-1 promoter.
The Drosophila melanogaster Eip74EF-PA transcription factor directly binds the sciarid BhC4-1 promoter.
Genesis. 2017 Oct 03;:
Authors: Frank HO, Sanchez DG, de Freitas Oliveira L, Kobarg J, Monesi N
Abstract
The DNA puff BhC4-1 gene of Bradysia hygida (Diptera, Sciaridae) is amplified and expressed in the salivary glands at the end of the last larval instar. Even though there are no BhC4-1 orthologs in Drosophila melanogaster, the mechanisms that regulate BhC4-1 gene expression in B. hygida are for the most part conserved in D. melanogaster. The BhC4-1 promoter contains a 129bp (-186/-58) cis-regulatory module (CRM) that drives developmentally regulated expression in transgenic salivary glands at the onset of metamorphosis. Both in the sciarid and in transgenic D. melanogaster, BhC4-1 gene expression is induced by the increase in ecdysone titers that triggers metamorphosis. Genetic interaction experiments revealed that in the absence of the Eip74EF-PA early gene isoform BhC4-1-lacZ levels of expression in the salivary gland are severely reduced. Here we show that the overexpression of the Eip74EF-PA transcription factor is sufficient to anticipate BhC4-1-lacZ expression in transgenic D. melanogaster. Through yeast one-hybrid assays we confirm that the Eip74EF-PA transcription factor directly binds to the 129 bp sciarid CRM. Together, these results contribute to the characterization of an insect CRM and indicate that the ecdysone gene regulatory network that promotes metamorphosis is conserved between D. melanogaster and the sciarid B. hygida. This article is protected by copyright. All rights reserved.
PMID: 28971561 [PubMed - as supplied by publisher]
Diverse cis-regulatory mechanisms contribute to expression evolution of tandem gene duplicates.
Diverse cis-regulatory mechanisms contribute to expression evolution of tandem gene duplicates.
Mol Biol Evol. 2017 Sep 09;:
Authors: Baudouin-Gonzalez L, Santos MA, Tempesta C, Sucena É, Roch F, Tanaka K
Abstract
Pairs of duplicated genes generally display a combination of conserved expression patterns inherited from their unduplicated ancestor and newly acquired domains. However, how the cis-regulatory architecture of duplicated loci evolves to produce these expression patterns is poorly understood. We have directly examined the gene-regulatory evolution of two tandem duplicates, the Drosophila Ly6 genes CG9336 and CG9338, which arose at the base of the drosophilids between 40 and 60 million years ago. Comparing the expression patterns of the two paralogs in four Drosophila species with that of the unduplicated ortholog in the tephritid Ceratitis capitata, we show that they diverged from each other as well as from the unduplicated ortholog. Moreover, the expression divergence appears to have occurred close to the duplication event and also more recently in a lineage-specific manner. The comparison of the tissue-specific cis-regulatory modules (CRMs) controlling the paralog expression in the four Drosophila species indicates that diverse cis-regulatory mechanisms, including the novel tissue-specific enhancers, differential inactivation, and enhancer sharing, contributed to the expression evolution. Our analysis also reveals a surprisingly variable cis-regulatory architecture, in which the CRMs driving conserved expression domains change in number, location, and specificity. Altogether, this study provides a detailed historical account that uncovers a highly dynamic picture of how the paralog expression patterns and their underlying cis-regulatory landscape evolve. We argue that our findings will encourage studying cis-regulatory evolution at the whole-locus level in order to understand how interactions between enhancers and other regulatory levels shape the evolution of gene expression.
PMID: 28961967 [PubMed - as supplied by publisher]
A Conserved cis-Regulatory Module Determines Germline Fate through Activation of the Transcription Factor DUO1 Promoter.
A Conserved cis-Regulatory Module Determines Germline Fate through Activation of the Transcription Factor DUO1 Promoter.
Plant Physiol. 2017 Jan;173(1):280-293
Authors: Peters B, Casey J, Aidley J, Zohrab S, Borg M, Twell D, Brownfield L
Abstract
The development of the male germline within pollen relies upon the activation of numerous target genes by the transcription factor DUO POLLEN1 (DUO1). The expression of DUO1 is restricted to the male germline and is first detected shortly after the asymmetric division that segregates the germ cell lineage. Transcriptional regulation is critical in controlling DUO1 expression, since transcriptional and translational fusions show similar expression patterns. Here, we identify key promoter sequences required for the germline-specific regulation of DUO1 transcription. Combining promoter deletion analyses with phylogenetic footprinting in eudicots and in Arabidopsis accessions, we identify a cis-regulatory module, Regulatory region of DUO1 (ROD1), which replicates the expression pattern of DUO1 in Arabidopsis (Arabidopsis thaliana). We show that ROD1 from the legume Medicago truncatula directs male germline-specific expression in Arabidopsis, demonstrating conservation of DUO1 regulation among eudicots. ROD1 contains several short conserved cis-regulatory elements, including three copies of the motif DNGTGGV, required for germline expression and tandem repeats of the motif YAACYGY, which enhance DUO1 transcription in a positive feedback loop. We conclude that a cis-regulatory module conserved in eudicots directs the spatial and temporal expression of the transcription factor DUO1 to specify male germline fate and sperm cell differentiation.
PMID: 27624837 [PubMed - indexed for MEDLINE]
Identification of Cis-Regulatory Modules that Function in the Male Germline of Flowering Plants.
Identification of Cis-Regulatory Modules that Function in the Male Germline of Flowering Plants.
Methods Mol Biol. 2017;1669:275-293
Authors: Peters B, Aidley J, Cadzow M, Twell D, Brownfield L
Abstract
The male germline of flowering plants develops within the vegetative cell of the male gametophyte and displays a distinct transcriptional profile. Key to understanding the development of this unique cell lineage is determining how gene expression is regulated within germline cells. This knowledge impacts upon our understanding of cell specification, differentiation, and plant fertility. Here, we describe methods to identify cis-regulatory modules (CRMs) that act as key regulatory regions in the promoters of germline-expressed genes. We detail the complimentary techniques of phylogenetic footprinting and the use of fluorescent reporters in pollen for the identification and verification of CRMs.
PMID: 28936666 [PubMed - in process]
A catalog of Xenopus tropicalis transcription factors and their regional expression in the early gastrula stage embryo.
A catalog of Xenopus tropicalis transcription factors and their regional expression in the early gastrula stage embryo.
Dev Biol. 2017 Jun 15;426(2):409-417
Authors: Blitz IL, Paraiso KD, Patrushev I, Chiu WTY, Cho KWY, Gilchrist MJ
Abstract
Gene regulatory networks (GRNs) involve highly combinatorial interactions between transcription factors and short sequence motifs in cis-regulatory modules of target genes to control cellular phenotypes. The GRNs specifying most cell types are largely unknown and are the subject of wide interest. A catalog of transcription factors is a valuable tool toward obtaining a deeper understanding of the role of these critical effectors in any biological setting. Here we present a comprehensive catalog of the transcription factors for the diploid frog Xenopus tropicalis. We identify 1235 genes encoding DNA-binding transcription factors, comparable to the numbers found in typical mammalian species. In detail, the repertoire of X. tropicalis transcription factor genes is nearly identical to human and mouse, with the exception of zinc finger family members, and a small number of species/lineage-specific gene duplications and losses relative to the mammalian repertoires. We applied this resource to the identification of transcription factors differentially expressed in the early gastrula stage embryo. We find transcription factor enrichment in Spemann's organizer, the ventral mesoderm, ectoderm and endoderm, and report 218 TFs that show regionalized expression patterns at this stage. Many of these have not been previously reported as expressed in the early embryo, suggesting thus far unappreciated roles for many transcription factors in the GRNs regulating early development. We expect our transcription factor catalog will facilitate myriad studies using Xenopus as a model system to understand basic biology and human disease.
PMID: 27475627 [PubMed - indexed for MEDLINE]
Neural specificity of the RNA-binding protein Elav is achieved by post-transcriptional repression in non-neural tissues.
Neural specificity of the RNA-binding protein Elav is achieved by post-transcriptional repression in non-neural tissues.
Development. 2016 Dec 01;143(23):4474-4485
Authors: Sanfilippo P, Smibert P, Duan H, Lai EC
Abstract
Drosophila Elav is the founding member of the conserved family of Hu RNA-binding proteins (RBPs), which play crucial and diverse roles in post-transcriptional regulation. Elav has long served as the canonical neuronal marker. Surprisingly, although Elav has a well-characterized neural cis-regulatory module, we find endogenous Elav is also ubiquitously transcribed and post-transcriptionally repressed in non-neural settings. Mutant clones of multiple miRNA pathway components derepress ubiquitous Elav protein. Our re-annotation of the elav transcription unit shows not only that it generates extended 3' UTR isoforms, but also that its universal 3' UTR isoform is much longer than previously believed. This longer common 3' UTR includes multiple conserved, high-affinity sites for the miR-279/996 family. Of several miRNA mutants tested, endogenous Elav and a transgenic elav 3' UTR sensor are derepressed in mutant clones of mir-279/996 We also observe cross-repression of Elav by Mei-P26, another RBP derepressed in non-neural miRNA pathway clones. Ubiquitous Elav has regulatory capacity, since derepressed Elav can stabilize an Elav-responsive sensor. Repression of Elav in non-neural territories is crucial as misexpression here has profoundly adverse consequences. Altogether, we define unexpected post-transcriptional mechanisms that direct appropriate cell type-specific expression of a conserved neural RBP.
PMID: 27802174 [PubMed - indexed for MEDLINE]
A unique stylopod patterning mechanism by Shox2-controlled osteogenesis.
A unique stylopod patterning mechanism by Shox2-controlled osteogenesis.
Development. 2016 Jul 15;143(14):2548-60
Authors: Ye W, Song Y, Huang Z, Osterwalder M, Ljubojevic A, Xu J, Bobick B, Abassah-Oppong S, Ruan N, Shamby R, Yu D, Zhang L, Cai CL, Visel A, Zhang Y, Cobb J, Chen Y
Abstract
Vertebrate appendage patterning is programmed by Hox-TALE factor-bound regulatory elements. However, it remains unclear which cell lineages are commissioned by Hox-TALE factors to generate regional specific patterns and whether other Hox-TALE co-factors exist. In this study, we investigated the transcriptional mechanisms controlled by the Shox2 transcriptional regulator in limb patterning. Harnessing an osteogenic lineage-specific Shox2 inactivation approach we show that despite widespread Shox2 expression in multiple cell lineages, lack of the stylopod observed upon Shox2 deficiency is a specific result of Shox2 loss of function in the osteogenic lineage. ChIP-Seq revealed robust interaction of Shox2 with cis-regulatory enhancers clustering around skeletogenic genes that are also bound by Hox-TALE factors, supporting a lineage autonomous function of Shox2 in osteogenic lineage fate determination and skeleton patterning. Pbx ChIP-Seq further allowed the genome-wide identification of cis-regulatory modules exhibiting co-occupancy of Pbx, Meis and Shox2 transcriptional regulators. Integrative analysis of ChIP-Seq and RNA-Seq data and transgenic enhancer assays indicate that Shox2 patterns the stylopod as a repressor via interaction with enhancers active in the proximal limb mesenchyme and antagonizes the repressive function of TALE factors in osteogenesis.
PMID: 27287812 [PubMed - indexed for MEDLINE]
Tissue- and stage-specific Wnt target gene expression is controlled subsequent to β-catenin recruitment to cis-regulatory modules.
Tissue- and stage-specific Wnt target gene expression is controlled subsequent to β-catenin recruitment to cis-regulatory modules.
Development. 2016 Jun 01;143(11):1914-25
Authors: Nakamura Y, de Paiva Alves E, Veenstra GJ, Hoppler S
Abstract
Key signalling pathways, such as canonical Wnt/β-catenin signalling, operate repeatedly to regulate tissue- and stage-specific transcriptional responses during development. Although recruitment of nuclear β-catenin to target genomic loci serves as the hallmark of canonical Wnt signalling, mechanisms controlling stage- or tissue-specific transcriptional responses remain elusive. Here, a direct comparison of genome-wide occupancy of β-catenin with a stage-matched Wnt-regulated transcriptome reveals that only a subset of β-catenin-bound genomic loci are transcriptionally regulated by Wnt signalling. We demonstrate that Wnt signalling regulates β-catenin binding to Wnt target genes not only when they are transcriptionally regulated, but also in contexts in which their transcription remains unaffected. The transcriptional response to Wnt signalling depends on additional mechanisms, such as BMP or FGF signalling for the particular genes we investigated, which do not influence β-catenin recruitment. Our findings suggest a more general paradigm for Wnt-regulated transcriptional mechanisms, which is relevant for tissue-specific functions of Wnt/β-catenin signalling in embryonic development but also for stem cell-mediated homeostasis and cancer. Chromatin association of β-catenin, even to functional Wnt-response elements, can no longer be considered a proxy for identifying transcriptionally Wnt-regulated genes. Context-dependent mechanisms are crucial for transcriptional activation of Wnt/β-catenin target genes subsequent to β-catenin recruitment. Our conclusions therefore also imply that Wnt-regulated β-catenin binding in one context can mark Wnt-regulated transcriptional target genes for different contexts.
PMID: 27068107 [PubMed - indexed for MEDLINE]
MCAST: scanning for cis-regulatory motif clusters.
MCAST: scanning for cis-regulatory motif clusters.
Bioinformatics. 2016 Apr 15;32(8):1217-9
Authors: Grant CE, Johnson J, Bailey TL, Noble WS
Abstract
UNLABELLED: Precise regulatory control of genes, particularly in eukaryotes, frequently requires the joint action of multiple sequence-specific transcription factors. A cis-regulatory module (CRM) is a genomic locus that is responsible for gene regulation and that contains multiple transcription factor binding sites in close proximity. Given a collection of known transcription factor binding motifs, many bioinformatics methods have been proposed over the past 15 years for identifying within a genomic sequence candidate CRMs consisting of clusters of those motifs.
RESULTS: The MCAST algorithm uses a hidden Markov model with a P-value-based scoring scheme to identify candidate CRMs. Here, we introduce a new version of MCAST that offers improved graphical output, a dynamic background model, statistical confidence estimates based on false discovery rate estimation and, most significantly, the ability to predict CRMs while taking into account epigenomic data such as DNase I sensitivity or histone modification data. We demonstrate the validity of MCAST's statistical confidence estimates and the utility of epigenomic priors in identifying CRMs.
AVAILABILITY AND IMPLEMENTATION: MCAST is part of the MEME Suite software toolkit. A web server and source code are available at http://meme-suite.org and http://alternate.meme-suite.org
CONTACT: t.bailey@imb.uq.edu.au or william-noble@uw.edu
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
PMID: 26704599 [PubMed - indexed for MEDLINE]
INSECT 2.0: a web-server for genome-wide cis-regulatory modules prediction.
INSECT 2.0: a web-server for genome-wide cis-regulatory modules prediction.
Bioinformatics. 2016 Apr 15;32(8):1229-31
Authors: Parra RG, Rohr CO, Koile D, Perez-Castro C, Yankilevich P
Abstract
UNLABELLED: INSECT is a user-friendly web server to predict the occurrence of Cis-Regulatory Modules (CRMs), which control gene expression. Here, we present a new release of INSECT which includes several new features, such as whole genome analysis, nucleosome occupancy predictions, and which provides additional links to third-party functional tools that complement user capabilities, CRM analysis and hypothesis construction. Improvements in the core implementation have led to a faster and more efficient tool. In addition, this new release introduces a new interface designed for a more integrative and dynamic user experience.
AVAILABILITY AND IMPLEMENTATION: http://bioinformatics.ibioba-mpsp-conicet.gov.ar/INSECT2 CONTACT: pyankilevich@ibioba-mpsp-conicet.gov.ar.
PMID: 26656931 [PubMed - indexed for MEDLINE]
LedPred: an R/bioconductor package to predict regulatory sequences using support vector machines.
LedPred: an R/bioconductor package to predict regulatory sequences using support vector machines.
Bioinformatics. 2016 Apr 01;32(7):1091-3
Authors: Seyres D, Darbo E, Perrin L, Herrmann C, González A
Abstract
UNLABELLED: Supervised classification based on support vector machines (SVMs) has successfully been used for the prediction of cis-regulatory modules (CRMs). However, no integrated tool using such heterogeneous data as position-specific scoring matrices, ChIP-seq data or conservation scores is currently available. Here, we present LedPred, a flexible SVM workflow that predicts new regulatory sequences based on the annotation of known CRMs, which are associated to a large variety of feature types. LedPred is provided as an R/Bioconductor package connected to an online server to avoid installation of non-R software. Due to the heterogeneous CRM feature integration, LedPred excels at the prediction of regulatory sequences in Drosophila and mouse datasets compared with similar SVM-based software.
AVAILABILITY AND IMPLEMENTATION: LedPred is available on GitHub: https://github.com/aitgon/LedPred and Bioconductor: http://bioconductor.org/packages/release/bioc/html/LedPred.html under the MIT license.
CONTACT: aitor.gonzalez@univ-amu.fr
SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
PMID: 26628586 [PubMed - indexed for MEDLINE]
SMCis: An Effective Algorithm for Discovery of Cis-Regulatory Modules.
SMCis: An Effective Algorithm for Discovery of Cis-Regulatory Modules.
PLoS One. 2016;11(9):e0162968
Authors: Guo H, Huo H, Yu Q
Abstract
The discovery of cis-regulatory modules (CRMs) is a challenging problem in computational biology. Limited by the difficulty of using an HMM to model dependent features in transcriptional regulatory sequences (TRSs), the probabilistic modeling methods based on HMMs cannot accurately represent the distance between regulatory elements in TRSs and are cumbersome to model the prevailing dependencies between motifs within CRMs. We propose a probabilistic modeling algorithm called SMCis, which builds a more powerful CRM discovery model based on a hidden semi-Markov model. Our model characterizes the regulatory structure of CRMs and effectively models dependencies between motifs at a higher level of abstraction based on segments rather than nucleotides. Experimental results on three benchmark datasets indicate that our method performs better than the compared algorithms.
PMID: 27637070 [PubMed - indexed for MEDLINE]
NF-Y Binding Site Architecture Defines a C-Fos Targeted Promoter Class.
NF-Y Binding Site Architecture Defines a C-Fos Targeted Promoter Class.
PLoS One. 2016;11(8):e0160803
Authors: Haubrock M, Hartmann F, Wingender E
Abstract
ChIP-seq experiments detect the chromatin occupancy of known transcription factors in a genome-wide fashion. The comparisons of several species-specific ChIP-seq libraries done for different transcription factors have revealed a complex combinatorial and context-specific co-localization behavior for the identified binding regions. In this study we have investigated human derived ChIP-seq data to identify common cis-regulatory principles for the human transcription factor c-Fos. We found that in four different cell lines, c-Fos targeted proximal and distal genomic intervals show prevalences for either AP-1 motifs or CCAAT boxes as known binding motifs for the transcription factor NF-Y, and thereby act in a mutually exclusive manner. For proximal regions of co-localized c-Fos and NF-YB binding, we gathered evidence that a characteristic configuration of repeating CCAAT motifs may be responsible for attracting c-Fos, probably provided by a nearby AP-1 bound enhancer. Our results suggest a novel regulatory function of NF-Y in gene-proximal regions. Specific CCAAT dimer repeats bound by the transcription factor NF-Y define this novel cis-regulatory module. Based on this behavior we propose a new enhancer promoter interaction model based on AP-1 motif defined enhancers which interact with CCAAT-box characterized promoter regions.
PMID: 27517874 [PubMed - indexed for MEDLINE]
In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis roots.
In vivo FRET-FLIM reveals cell-type-specific protein interactions in Arabidopsis roots.
Nature. 2017 Jul 26;:
Authors: Long Y, Stahl Y, Weidtkamp-Peters S, Postma M, Zhou W, Goedhart J, Sánchez-Pérez MI, Gadella TWJ, Simon R, Scheres B, Blilou I
Abstract
During multicellular development, specification of distinct cell fates is often regulated by the same transcription factors operating differently in distinct cis-regulatory modules, either through different protein complexes, conformational modification of protein complexes, or combinations of both. Direct visualization of different transcription factor complex states guiding specific gene expression programs has been challenging. Here we use in vivo FRET-FLIM (Förster resonance energy transfer measured by fluorescence lifetime microscopy) to reveal spatial partitioning of protein interactions in relation to specification of cell fate. We show that, in Arabidopsis roots, three fully functional fluorescently tagged cell fate regulators establish cell-type-specific interactions at endogenous expression levels and can form higher order complexes. We reveal that cell-type-specific in vivo FRET-FLIM distributions reflect conformational changes of these complexes to differentially regulate target genes and specify distinct cell fates.
PMID: 28746306 [PubMed - as supplied by publisher]
Decreased Transcription Factor Binding Levels Nearby Primate Pseudogenes Suggest Regulatory Degeneration.
Decreased Transcription Factor Binding Levels Nearby Primate Pseudogenes Suggest Regulatory Degeneration.
Mol Biol Evol. 2016 Jun;33(6):1478-85
Authors: Douglas GM, Wilson MD, Moses AM
Abstract
Characteristics of pseudogene degeneration at the coding level are well-known, such as a shift toward neutral rates of nonsynonymous substitutions and gain of frameshift mutations. In contrast, degeneration of pseudogene transcriptional regulation is not well understood. Here, we test two predictions of regulatory degeneration along a pseudogenized lineage: 1) Decreased transcription factor (TF) binding and 2) accelerated evolution in putative cis-regulatory regions.We find evidence for decreased TF binding levels nearby two primate pseudogenes compared with functional liver genes. However, the majority of TF-bound sequences nearby pseudogenes do not show evidence for lineage-specific accelerated rates of evolution. We conclude that decreases in TF binding level could be a marker for regulatory degeneration, while sequence degeneration in primate cis-regulatory modules may be obscured by background rates of TF binding site turnover.
PMID: 26882985 [PubMed - indexed for MEDLINE]
Sequential construction of a model for modular gene expression control, applied to spatial patterning of the Drosophila gene hunchback.
Sequential construction of a model for modular gene expression control, applied to spatial patterning of the Drosophila gene hunchback.
J Bioinform Comput Biol. 2016 04;14(2):1641005
Authors: Spirov AV, Myasnikova EM, Holloway DM
Abstract
Gene network simulations are increasingly used to quantify mutual gene regulation in biological tissues. These are generally based on linear interactions between single-entity regulatory and target genes. Biological genes, by contrast, commonly have multiple, partially independent, cis-regulatory modules (CRMs) for regulator binding, and can produce variant transcription and translation products. We present a modeling framework to address some of the gene regulatory dynamics implied by this biological complexity. Spatial patterning of the hunchback (hb) gene in Drosophila development involves control by three CRMs producing two distinct mRNA transcripts. We use this example to develop a differential equations model for transcription which takes into account the cis-regulatory architecture of the gene. Potential regulatory interactions are screened by a genetic algorithms (GAs) approach and compared to biological expression data.
PMID: 27122317 [PubMed - indexed for MEDLINE]
Evolution and multiple roles of the Pancrustacea specific transcription factor zelda in insects.
Evolution and multiple roles of the Pancrustacea specific transcription factor zelda in insects.
PLoS Genet. 2017 Jul 03;13(7):e1006868
Authors: Ribeiro L, Tobias-Santos V, Santos D, Antunes F, Feltran G, de Souza Menezes J, Aravind L, Venancio TM, Nunes da Fonseca R
Abstract
Gene regulatory networks (GRNs) evolve as a result of the coevolutionary processes acting on transcription factors (TFs) and the cis-regulatory modules they bind. The zinc-finger TF zelda (zld) is essential for the maternal-to-zygotic transition (MZT) in Drosophila melanogaster, where it directly binds over thousand cis-regulatory modules to regulate chromatin accessibility. D. melanogaster displays a long germ type of embryonic development, where all segments are simultaneously generated along the whole egg. However, it remains unclear if zld is also involved in the MZT of short-germ insects (including those from basal lineages) or in other biological processes. Here we show that zld is an innovation of the Pancrustacea lineage, being absent in more distant arthropods (e.g. chelicerates) and other organisms. To better understand zld´s ancestral function, we thoroughly investigated its roles in a short-germ beetle, Tribolium castaneum, using molecular biology and computational approaches. Our results demonstrate roles for zld not only during the MZT, but also in posterior segmentation and patterning of imaginal disc derived structures. Further, we also demonstrate that zld is critical for posterior segmentation in the hemipteran Rhodnius prolixus, indicating this function predates the origin of holometabolous insects and was subsequently lost in long-germ insects. Our results unveil new roles of zld in different biological contexts and suggest that changes in expression of zld (and probably other major TFs) are critical in the evolution of insect GRNs.
PMID: 28671979 [PubMed - as supplied by publisher]
Simple Expression Domains Are Regulated by Discrete CRMs During Drosophila Oogenesis.
Simple Expression Domains Are Regulated by Discrete CRMs During Drosophila Oogenesis.
G3 (Bethesda). 2017 Jun 20;:
Authors: Revaitis NT, Marmion RA, Farhat M, Ekiz V, Wang W, Yakoby N
Abstract
Eggshell patterning has been extensively studied in Drosophila melanogaster However, the cis-regulatory modules (CRMs), which control spatiotemporal expression of these patterns, are vastly unexplored. The FlyLight collection contains over 7,000 intergenic and intronic DNA fragments that, if containing CRMs, can drive the transcription factor GAL4. We cross-listed the 84 genes known to be expressed during D. melanogaster oogenesis with the ~1200 listed genes of the FlyLight collection, and found 22 common genes that are represented by 281 FlyLight fly lines. Of these lines, 54 show expression patterns during oogenesis when crossed to an UAS-GFP reporter. Of the 54 lines, 16 recapitulate the full or partial pattern of the associated gene pattern. Interestingly, while the average DNA fragment size is ~3kb in length, the vast majority of fragments show one type of a spatiotemporal pattern in oogenesis. Mapping the distribution of all 54 lines, we found a significant enrichment of CRMs in the first intron of the associated genes' model. In addition, we demonstrate the use of different anteriorly active FlyLight lines as tools to disrupt eggshell patterning in a targeted manner. Our screen provides further evidence that complex gene-patterns are assembled combinatorially by different CRMs controlling the expression of genes in simple domains.
PMID: 28634244 [PubMed - as supplied by publisher]